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A B S T R A C T

This study investigated the spatial consistency of the SLEUTH urban growth and land use change model using a
massive data set. The research asks whether SLEUTH can yield both a reliable forecast of land use in the state of
California for the year 2100 CE, and an assessment of the forecast's reliability. Data were prepared, and SLEUTH
calibrated for 174 tiles made by partitioning the data within the 6 California State Plane Zones. A null hypothesis
that all data divisions of California would give similar calibration outcomes so that a uniform simulated rate of
growth would apply to statewide future simulations was proven false by mapping and Moran's I values. Spatial
autocorrelation was found to propagate forward into the SLEUTH forecasts, resulting in major differences within
the state in land use change and change rates. We also explored the spatial distribution of the rules that changed
pixels between land use classes, finding that almost 99% of forecast growth in California comes from outward
spread from new and existing settlements. The paper concludes with an examination of the uncertainty inherent
within, and displayed by the SLEUTH forecasts.

1. Introduction

Land use change is a principal driver of global change, and among
all land use transitions, the spread of urban areas has a dominant ne-
gative impact on greenhouse gas emissions, loss of natural space,
farmland and biodiversity, along with increased congestion and en-
vironmental pollution (Foley, DeFries, Asner, Barford, et al., 2005). The
mapping, modeling, and forecasting of these changes are of critical
concern for anticipating and mitigating these negative consequences.
Among the most popular and successful land use change models are
those based on cellular automata (Clarke, 2019). SLEUTH is a mature
land use change and urban growth cellular automaton simulation
model that ingests gridded data, and creates probabilistic simulations of
future land use states (Chaudhuri & Clarke, 2013). The cellular auto-
maton embeds rules governing urban growth based on spread rules, and
class-to-class land use changes based on a Markovian transition matrix
computed from past changes. Modeling consists of preparing the input
data, testing the model code, using past data to calibrate the model's
behavioral coefficients, and allowing the model to run into the future to
create scenarios of growth and change. Traditionally, the calibration
sequence consisted of a brute force method that adjusted the coeffi-
cients to best fit the prior data (Silva & Clarke, 2002). However, this
brute force method is both labor and CPU intensive, which has proven
to be a barrier to the model's application.

As such, the SLEUTH calibration process has been studied in detail

(Clarke, 2008; Clarke, Hoppen, & Gaydos, 1996). Several studies ex-
plored the use of parallel and high-performance computing to decrease
the calibration time (Chaudhuri & Foley, 2019; Guan & Clarke, 2010).
Others investigated the sensitivity of the model to the number of Monte
Carlo iterations used (Goldstein, Dietzel, & Clarke, 2005); the duration
used for calibration and forecasting (Peiman & Clarke, 2014); the
changes made by the self-modification rules (Saxena & Jat, 2018); the
means of including past and future exclusions (Akin, Clarke, &
Berberoglu, 2014; Onsted & Clarke, 2012); and the use of alternative
goodness of fit measures, such as landscape metrics (Herold, Couclelis,
& Clarke, 2005). Sakieh, Salmanmahiny, and Mirkarimi (2016) tested
alternative models against SLEUTH, such as logistic regression and a
multi-layer perceptron. Dietzel and Clarke (2005) explored the scale
effect of disaggregating land use classes on model calibration and
forecasts, while Jantz and Goetz (2005) explored the impact of scale
geographically.

Significant changes to SLEUTH calibration involved the analysis of
model behavior to detect correlation among the original 13 fit metrics,
which resulted in a subset of 8 being used for the Optimal SLEUTH
metric (Dietzel & Clarke, 2007). Other work offered new versions of the
model with different means of calibration (Jantz, Drzyzga, & Maret,
2014: CAGIS, 2019; Jantz, Goetz, Donato, & Claggett, 2010; Houet,
Aguejdad, Doukari, Battaia, & Clarke, 2016). Liu, Sun, Yang, Su, and Qi
(2012) made two modifications to improve SLEUTH: using ant colony
optimization to calibrate and performing sub-regional calibration to
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replace calibration of the entire study area. Both modifications im-
proved the calibration accuracy and efficiency compared with the ori-
ginal SLEUTH applications. Wu et al. (2009) employed the relative
operating characteristic (ROC) curve statistic, multiple-resolution error
budget, and landscape metrics for comparison and validation to eval-
uate the simulation performance of the SLEUTH urban growth model in
the Shenyang metropolitan area of China.

Probably the most significant improvement for SLEUTH calibration
was the conversion of the calibration method from brute force to a
genetic algorithm. After initial experiments with the new method
(SLEUTH-GA) (Clarke-Lauer & Clarke, 2011), a more complete set of
procedures and constants were derived for more general application
and the code added to the SLEUTH website (Clarke, 2017; Clarke,
2018). Testing showed that SLEUTH-GA could calibrate the model with
a computational speed-up of between 3 and 22 times. This means that a
single city or regional data set can be calibrated in days instead of years.
Jafarnezhad, Salmanmahiny, and Sakieh (2015) also showed the ad-
vantages of the genetic algorithm, which include fully automating the
calibration process and removing any remaining human subjective
choice.

Zhou, Varquez, and Kanda (2019) used the historical distribution of
global population as a proxy for urban land cover, to calibrate SLEUTH
for the period 2000 to 2013. This simulation used two urban growth
layers as 50 arc-minute grids to simulate global urban cover, which they
forecast to reach 1.7 × 106 km2 by 2050. The modeling used parti-
tioned data (tiles) and repeat applications by region to get global ex-
tent. To reduce the computational load in the calibration, not all
coefficients were varied, and data tiles with less than about 25 km2 of
urban area according to the 2012 global urban map were excluded. The
2012 global urban extent data were averaged from Landscan data for
2012 and 2013 (Oak Ridge National Laboratory, 2020). Data parti-
tioning also enabled SLEUTH application for other massive data sets,
for example all of Italy (Martellozzo, Amato, Murgante, & Clarke,
2018). With these developments, SLEUTH has gained the ability to not
only deal with big data, but to ensure accurate and timely calibration
even with massive extents and high resolution.

In the present study we took advantage of these SLEUTH improve-
ments to simulate the State of California for the entire 21st century. In
addition, we used a very high spatial resolution (30 m) for which data
were available. The purpose of the study is to investigate the con-
sistency of SLEUTH spatially. Our research question is: can we create
both a reliable forecast of land use in California (excluding the Channel
Islands) for the year 2100 CE, and an assessment of the forecast's re-
liability? A null hypothesis is that all data divisions of California would
give similar calibration outcomes (goodness of fit and coefficient va-
lues) so that a uniform simulated rate of growth will apply to future
simulations. Failing this, is there spatial autocorrelation among the
calibrated values? Finally we explored the spatial distribution of the
rules that govern land use changes, and the uncertainty inherent within
them, as revealed by the SLEUTH model.

2. Compiling the data

SLEUTH requires data for slope, land use, exclusions, urban extent,
transportation and hillshade, where the last is used for visualization and
not a part of the model. Percent slope and hillshade were calculated
from the 1 arc sec elevation data in the USGS National Elevation
Dataset. California Land Use was extracted from the National Land
Cover 30 m data for 2001, 2006, and 2011, derived from Landsat sa-
tellite data as part of the Multi-Resolution Land Characterization
(MRLC) project (See: https://www.mrlc.gov/about). Land use class la-
bels were abbreviated into 13 classes, and followed the MRLC classifi-
cation but without the classes specific to Alaska. Finally, all urban
classes (and densities) were compressed into a single class. For the
modeling, 2001 was assigned as the initial year and the 2011 layer
duplicated for 2017, as at the time no newer land use data were

available. Exclusions came from the 2017 GreenInfo Network California
Protected Areas Database, the 2016 GreenInfo Network California
Conservation Easement Database, the GreenInfo Network Military
Lands, and the GreenInfo Network Tribal Lands (BIA). Lastly, water
body exclusions came from the National Hydrography Dataset Plus V2.
Exclusion values in this layer vary between 0 and 100, with 0 meaning
no resistance to urbanization and 100 meaning complete exclusion.
Values were assigned subjectively by exclusion category and land use
classification.

Urban extents were extracted from the USDA Cropland Dataset
between 2007 and 2015, and from the 2001, 2006 and 2011 NLCD land
use layers. Starting in 2001, these data layers were forward overlain, so
that any pixel urbanized in any time period remained urban in all future
periods, assuming that any pixel deurbanized was a commission error.
Since many of these layers added little data year to year, the dates of
2001, 2006, 2008, 2012, 2014 and 2017 were selected to reduce the
computation time.

For transportation, the TIGER line files from the US Census were
compiled for 2000, 2005, 2010, and 2015. The road designations were
as reported by the US Department of Transportation, with four classes
varying by definition over time. All features whose names started with
“Interstate”, “State”, “Hwy”, “Fwy” or “Highway” were included. For
1990 to 2005, the Census Feature Class Codes were A10 to A18; for
years 2010 to 2015, the MAF/TIGER Feature Classification Codes were
S1100 and S1200. All maps were projected into the Albers equal area
projection, to preserve the equal area property across the state and
referenced to the NAD83 datum. Lastly, the data were partitioned into 8
subsets, corresponding with the 6 California State Plane Coordinate
Zones.

3. Tiling

Each final data set contained 789,777,829 pixels, and since each
model run used 6 urban layers, 3 roads layers, 2 land use layers, 1
exclusion, 1 slope and 1 hillshade layer, each model calibration used 14
times the data of the base rasters for a grand total of 1.1 × 10^10 pixels.
The whole map was assembled as GeoTIFFs in the Albers equal area
map projection at the Landsat native 30 m pixel size. The raster datasets
were so large that the SLEUTH model was unable to allocate sufficient
memory to execute. The data were then divided into 8 subsets corre-
sponding with the extents of the State Plane Coordinate System zones
for California (Fig. 1). Two zones (4 and 5) were still too large and were
subsequently divided east/west into two zones apiece along county
boundaries.

A second data partitioning used custom C language code to read
each data set and partition it into 4 cells based on the bounding rec-
tangle of the zone. Allowance was made for odd and even numbers of
rows and columns. The quartering of tiles were then repeated

Fig. 1. Division of the California Data set into zones.
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recursively, using the naming convention shown in Fig. 2. In four of the
zones (ca1, ca4W, ca5E, ca5W) it was necessary to further divide the
tiles by splitting them into east and west halves. The final data parti-
tioning included 8 zones, four of them with 16 subtiles and four with 32
for a total of 192 subtiles. Eighteen of these fell outside the State Plane
zones, had no data, or were in the ocean, leaving a calibration for 174
subtiles.

4. Executing the calibration

SLEUTH calibration uses scenario files that hold all needed file
identification and parameter data for a SLEUTH model calibration run.
Separate scenario files were prepared for each of the 8 major zones, and
these were then modified manually to cycle through each of the sub-
tiles. All input data for each zone was maintained in a separate folder in
the 8-bit GIF format required by SLEUTH. Calibration consisted of in-
voking the SLEUTH-GA code using the Cygwin UNIX emulator for MS
Windows. It was found that execution could be enhanced by using the
“peflags –cygwin-heap” setting to increase the heap size and speed the
execution. Having a GPU available (Intel Core i7-4770K at 3.5GHz and
4 GPU cores on an NVIDIA GeForce GPU) sped up the execution,
nevertheless each calibration used 4 Monte Carlo iterations, took about
20 generations of the genetic algorithms with a genome size of 55, and
ran for approximately 24 h, meaning that the full set of 174 calibrations
used about a year of CPU time across two different computers. Results
were output to a shell script file that called the clock at the start and end
of each calibration run. Some typical results are shown in Table 1–of
the five selected and different times, the tile average calibration took
28.32 h. Differences were due to the specifics of the task, how many
tasks were running, the size of the tile, the amount of data it contained
and the amount and complexity of the growth captured.

5. Calibration performance

The calibration period was 2001–2017, where the 2017 land use
data was assumed unchanged from 2011. This assumption was needed
to align the most current urban data (from USDA) with the land use
data (from USGS), which were not available for 2017 at the time of the
study (data for 2016 have subsequently become available). The results
were explored first in terms of performance. An ideal model is able to
replicate exactly the last calibration time period (2017) and all inter-
mediate data sets, using only data from the start year (2001) and the
land use transition matrix (2001–2017).

Much discussion has been made over how best to measure the ac-
curacy or performance of a model calibration. We used five measures,
the maximum and mean (over the chromosome) optimal SLEUTH me-
tric (OSM) achieved, the producers and users accuracy, and the figure
of merit (FOM). Producer's accuracy measures how often actual classes
on the ground are correctly classed by the model, or its equivalent
probability. The user's accuracy is referred to as reliability and is the
complement of the Commission Error, i.e. 100% - Commission Error. It
is calculated by taking the total number of correct classifications for a
particular class and dividing it by the row total in the contingency
matrix between the actual and the modeled end calibration year. The
FOM is the ratio of the intersection of the observed change and the
predicted change divided by the union of the observed change and
predicted change. To compute this value, the persistence (i.e. a class
remaining unchanged) was eliminated, and success or a “correct due to
observed change predicted as change” set to only those cases where the
pixel had changed class and the classes matched exactly. There is a bias
when no or very few pixels change class, as getting the few changed
pixels right can give perfect or near perfect performance. These mea-
sures are detailed extensively in Pontius Jr et al. (2007) and Table 2
outlines the descriptive statistics for the California SLEUTH calibration
over the 174 subtiles.

Table 2 shows that the goodness of fit measures at the gene (Max-
imum OSM) and chromosome (Mean OSM) levels averaged 0.25146
and 0.17938, with medians of 0.21405 and 0.14654 respectively. The
OSM metric is the product of 8 of the 13 SLEUTH metrics, each in the
range {0–1.0}. The expected mean value of each of the 8 parameters, if
they were identical, would be 0.842 and 0.787, and the medians 0.825
and 0.787 for the best gene and chromosome respectively. In fact, many
of the fit parameters are close to 1.0, with only one or two of the fit
measures lower. The independent measures of fit were computed for
the 2001 land use layer matched to the simulated 2017 layer, using the
2017 actual layer as the reference map with custom C-code that read
the SLEUTH data layers directly. This gave high values of the FOM
(mean 0.9403, median 0.9786), producers accuracy (mean 0.9649,
median 0.9883) and users accuracy (mean 0.9409 median 0.9794),
indicating a successful calibration in all but a few subtiles.

However, the impressive mean and median statistics hide a large
range in actual model performance. Fig. 3 is a boxplot of the data in
Table 3, and clearly illustrates that the independent accuracy statistics
are skewed high, while the two OSM measures are more normally
distributed, but with more high outliers than low. These may be due to
the many subtiles with little or no change, which the model did well in
capturing. Figs. 4 and 5 show radar plots by subtile and by zone re-
spectively, with values for the five performance metrics. These plots

Fig. 2. Recursive Division of the Zones using a file naming convention. Example
using Zone 5E (San Bernardino County). Sample tile has the label ca5EbaE.
Eventually 174 such tiles were used for calibration and forecasting.

Table 1
Sample calibration execution times and performance for five of the 174 subtiles.

Tile Start time End time Calibration time (hours) # Generations Maximum OSM

5EbaE (Fig. 2) Fri, Sep 20, 2019 8:54:12 AM Sat, Sep 21, 2019 8:22:40 AM 23.47 20 0.009841
ca1ccW (best) Mon, Sep 09, 2019 3:09:03 PM Tue, Sep 10, 2019 3:27:46 AM 12.31 19 1.000000
ca5EcbW (median) Wed, Sep 25, 2019 9:08:46 AM Fri, Sep 27, 2019 2:06:34 AM 40.96 20 0.012062
ca4Ead (1st quartile) Mon, Sep 9, 2019 11:48:47 AM Tue, Sep 10, 2019 3:46:03 PM 27.95 20 0.081839
ca2dd (3rd quartile) Thu, Sep 5, 2019 9:40:48 AM Fri, Sep 6, 2019 10:35:37 PM 36.91 20 0.353441
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show the random nature of the differences in goodness of fit, with zone
2 performing best and zone 5 W performing worst, but with both high
and low values occurring in all zones. Fig. 4 in particular hints at spatial
autocorrelation in the metrics, as adjacent tiles are listed in order and
show some degree of resembling their neighboring tiles in values.

Perhaps the most reliable performance measure is the maximum
OSM, that achieved by the best performing gene within the chromo-
some at the end of the evolution of the genetic algorithm. As this is a
composite measure, with mean and median values of 0.25146 and
0.21405, the expected individual measure values of 0.842 and 0.8250
are better indicators of actual proportion of model fit. The model's ac-
curacy seems about equivalent to the usual measured accuracy of the
land use classifications used as model input and are compatible with
several other studies that have used the metric to measure calibration
success.

6. Model behavior and parameters

The genetic algorithm creates an initial chromosome filled with
random integer values in the {0…100} range. These are then changed
in subsequent generations by cross over, competition, replacement, and
mutation to evolve the final best fit parameters. Replacement ensures
that new random genes can jump to the top and become the most fit at
any time. The calibrations were run from a UNIX C-shell script as fol-
lows:

date > ../Output/CaliforniaZone6/DD/CAcal-DD
../grow.exe evolve scenario.ca6_calibrate 55 100 0.131600 55

50 > > ../Output/CaliforniaZone6/DD/CAcal-DD
date > > ../Output/CaliforniaZone6/DD/CAcal-DD
The values are explained in Clarke (2017), with 55 as the chromo-

some size, 0.13 as the mutation rate and 1600 the maximum number of
replacements, that terminates the genetic algorithm. None of the cali-
brations seemed to become stuck at local maxima, in fact the lowest
Maximum OSM usually terminated with fewer generations, between 14
and 19, noting that the first iteration is generation “0”. Parameters
during evolution for subtile ca2dd, with the third quartile Maximum
OSM, are shown in Fig. 6. Note the initially assigned values produced a
good fit, but during generations 2–10 they underwent considerable
change, eventually remaining unchanged from generations 10–19, but
with the mean gene fitness slowly rising then falling until the lack of
further improvement terminated the sequence.

The OSM of the best performing gene, as stated above, is a com-
posite measure of 8 of the 13 SLEUTH fit parameters. Fig. 7 shows a
radar plot of all 13, with the independent goodness of fit measures
included for the five subtiles listed in Table 1. All of the individual
values are scaled from 0 to 1, and many are r-squared Pearson's cor-
relation coefficients from regressions between values measured from
the known calibration maps, and their equivalent values from the
model. A perfectly modeled subtile would have values near one for all
of the coefficients. All five of the subtiles shown have very low values
for at least one of the metrics. Product, Lee-Sallee and Cluster (Mean
Cluster Size) seem to be the best discriminators where ‘product’ is
simply the product of the other 12 metrics, so it is not surprising to find
its values low; ‘Lee-Sallee’ is the ratio of the intersection to the union of
the urban extents. High values imply a perfect spatial match, which is

Table 2
SLEUTH performance metrics for the 174 subtiles for the California data, over
the calibration period 2001–2017.

MaxOSM MeanOSM FOM Producers
Accuracy

Users
Accuracy

Minimum 0 0 0.43824 0.60936 0.43824
Q1 0.08230 0.05560 0.94193 0.96715 0.94291
Median 0.21405 0.14654 0.97859 0.98834 0.97939
Q3 0.35299 0.26968 0.99687 0.99837 0.99689
Mean 0.25146 0.17938 0.94029 0.96489 0.94088
Maximum 1 0.71032 1 1 1

Fig. 3. Boxplot of the SLEUTH performance metrics across the 174 tiles.

Table 3
Descriptive statistics for the five SLEUTH control parameters over the 174
subtiles, during the initial calibration phase.

Diffusion Spread Breed Slope Road Gravity

Min 0.00 0.00 0.00 0.00 0.00
Q1 5.00 1.00 6.00 3.00 26.00
Median 14.50 20.50 15.00 44.50 54.00
Q3 60.00 83.50 36.00 82.75 71.00
Max 100.00 100.00 100.00 100.00 100.00
Mean 32.36 39.27 26.57 45.89 49.48
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very difficult to accomplish when the growth rate is high and the
growth scattered or sprawling. Lastly, the mean cluster size can be
highly skewed when one large urban “blob” dominates a set of smaller
areas, so this measure is sensitive to getting the urban areas size

distribution correct. However, the five subtiles scored well on many of
the OSM measures, especially those reflecting location and distribution.

SLEUTH allows growth to occur as a result of 5 different growth
stages. Table 3 contains the ranges and descriptive statistics for the 174
calibrations (aggregated by) subtile for the five behavioral coefficients
that control the SLEUTH growth stages. All values are in the range {0…
100} as integers. Diffusion controls the degree of scatter of newly ur-
banized cells. At 0, there is no diffusion and all growth takes place as
the spread of existing urban cells, while at 100 any non-urbanized cell
can be urbanized at random. Spread controls the outward spread and
infill of urban cells. Zero prevents all spread, while 100 adds outward
spread to every urban pixel in the image. Breed controls the likelihood
of a newly converted, but isolated, urban cell to begin its own growth.
At zero, no isolated cells grow, while at 100, all do. Slope is a weighted
resistance factor that prevents urban cells from growing uphill. Values
range from zero, where slope does not matter to growth, to 100 where
cells can grow uphill until a maximum slope value (CRITICAL_SLOPE) is
reached. For this application, this critical value was 25%, and all slopes
greater than this could not be urbanized, although they could change
among the other land use classes. Slope also acts in selecting which new
land use class is chosen when other classes transition. The road gravity
coefficient affects the degree to which newly urbanized cells are

Fig. 4. Radar plot of the five performance metrics by subtile.

Fig. 5. Radar plot of the five performance metrics by zone.

Fig. 6. Change in the coefficient values for the 5 SLEUTH control parameters
during calibration by genetic algorithm for subtile ca2dd. Note that the
Maximum OSM (best performing gene) and Mean OSM (across the whole
chromosome) are multiplied by 100 to be in the same range as the coefficients.

Fig. 7. Radar plot of the 13 SLEUTH degree of fit metrics, plus the Maximum
OSM, for the five subtiles listed in Table 1.
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attracted to and moved along roads. At zero roads have no impact,
while at 100 all roads attract all growth within a constant distance.
Across the 174 tiles, the values covered the full range for each of the
five coefficients, with mean values ranging from 26.57 (Breed) to 49.48
(Road) and the median values ranging from 14.50 (Diffusion) to 54
(Road).

The calibration values that yielded the maximum OSMs were used
as input to SLEUTH and run over the calibration period (2001–2017)
for 100 Monte Carlo iterations. The ending values of each run were
averaged across the 100 runs. This is necessary because the coefficients
are changed by reactive self-modification during the run, and predic-
tion needs to start at the end year of the calibration. The big data ca-
libration provided an opportunity to explore how the start and end
coefficients are related. Fig. 8 shows the five coefficients, with the va-
lues on the y axis being the initial and the x axis being the averaged
values. Most fall along the 45 degree line, with values unchanged by
periods of boom or bust. Some “max out” and increase to 100 only to
remain there. Diffusion, breed and spread often increase by a constant
multiplier, the effect of self-modification and an indication that these
tiles are in “boom” mode, i.e. are undergoing rapid growth. In a few
instances, where points lie above the line, the opposite “bust” has taken
place and the values have been reduced. Slope shows the most change,
since it is modified both by weighting and reactive self-modification.

To begin to answer the research question regarding spatial auto-
correlation, the five behavioral coefficients were averaged by zone.
Fig. 9 shows the averages by zone in order as a radar plot. Values seem
higher for all parameters except slope in zone ca1 (in the far north) with
some significant differences zone to zone. These differences are ex-
plored in more detail in the following section.

7. Mapping the calibration

Choropleth maps were prepared by subtile for all of the metrics
using R. First, the 5 performance measures were plotted (Fig. 10).

The maximum and mean OSM values showed the most range, and
similar spatial distributions with highs in northern California (Zones 1
and 2), and lows in Central California (Zone 5 W). The independent
metrics were universally high, with lows in Zone 5 W, but even there
interspersed with high values.

Similar maps were prepared for the five best fit SLEUTH coefficients
for each subtile. These maps (Fig. 11) show that not only was there
great variation across subtiles, there were also similar and opposite
values from subtile to subtile. For example, the block of four subtiles in
the center/west of Zone 1 had high values for diffusion, spread, breed
and road gravity, but low values for slope. There was also evidence of
spatial autocorrelation, with values being similar within clusters, and
even across zone boundaries.

Fig. 12 shows the coefficients at the end of the calibration period
averaged over 100 Monte Carlo iterations. It is noticeable that the
averaging seems to diminish the middle ranges for those shown in
Fig. 11, and to actually increase the amount of clustering and contrast.
Next, to quantify the actual amount of spatial autocorrelation across the
two sets of coefficients and five goodness of fit measures, the R software
was used to compute the value of Moran's I and its statistical sig-
nificance (Table 4). Values of I usually range from negative one to
positive one. Values significantly below −1/(N-1) (for California,
N = 174 so −1/(N-1) = −0.00578) indicate negative spatial auto-
correlation, that is, values are dissimilar from their neighbors. Con-
versely, values significantly above −1/(N-1) indicate positive spatial
autocorrelation. For statistical hypothesis testing, Moran's I values can
be transformed to z-scores, and this was used to create the values shown
in Table 4, using the 95% significance level.

All of the fit metrics proved significant at the 95% level, with
Moran's-I values from 0.237 to 0.282, rejecting the null hypothesis and
proving spatial autocorrelation in model fit by subtile. Curiously, none
of the initial calibration coefficient values, except spread, showed
spatial autocorrelation, but all of the averaged values, except road
gravity, did. This implies that just as the GA trains the model, the
coefficient values seem to adjust during calibration to reflect the spatial
autocorrelation inherent within the input data sets. This furthers the
argument in favor of rejecting the null hypothesis.

8. Forecasting with SLEUTH

With the calibration complete, the next stage was to run simulations
using the best sets of coefficients for the period 2017–2100. As fore-
casts, there can be no accuracy measure comparable to the calibration,
but the accuracy measures are believed to be indicators of the con-
fidence or reliability of the forecasts. Maps of the actual forecasts are to
be published elsewhere. As a simple summary, Table 5 lists the numbers
of hectares in each of the 13 land use classes for 2001 and 2100.

Fig. 8. Scatter plots of the best SLEUTH calibration parameters before and after averaging across 100 Monte Carlo iterations at the start (y) and end (x) of the
calibration period.

Fig. 9. Radar plot of average SLEUTH coefficients derived from calibration by
zone. Values plotted are before averaging.
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Notable is the forecast 162% increase in urban land, from 2,743,179 ha
in 2001 to 7,199,339 ha in 2100. In contrast to the rapid growth in San
Francisco and Los Angeles and their surrounding suburban areas at the
end of the 20th century, coastal California's growth is projected to be
minimal, but major urban expansions are expected in the southern San
Joaquin Valley, north of the Salton Sea, and around Interstate 10 near
Indio and Palm Springs. Other expansion is in the valleys of the Sierras,
around Bishop and in the valleys of the Sierra Nevada Mountains in
Modoc, Lassen and Plumas Counties. Evergreen forest and shrubland
are expected to increase in area in addition to urban, and agricultural
land and grassland areas are expected to decrease in area.

SLEUTH contains options for labeling pixels that are converted to
urban with the behavioral rule that triggered their change. The pro-
jections allowed a closer examination of how and where the four CA
rules expanded urban areas. The four rules that led to urbanization
were dominated by the spread rule, with 98.8% (36,337,322 cells) of
the conversions triggered by this rule that simply adds pixels to existing
clusters of urban pixels. Diffusion, in which pixels detached from cur-
rently urban areas become urban, accounted for 0.66% (242,935 cells)
of the urban growth, while the breed rule accounted for 0.47%
(173,658 cells). The combination of diffusion and breed is how new
spreading centers form, and while they are few in number, they create
important changes in the urban form. Lastly, the road growth rule
draws newly urbanized cells toward roads, and creates new settlements
along those roads. Road growth accounted for only 0.08% of the growth
(29,626 cells). The actions of these rules are evident in Fig. 13, which
shows enlargements of areas within zone 6. In the upper left panel of
Fig. 13, an area with many existing roads attracted road growth (cyan)
that was later expanded through spread (blue). The upper right panel
shows examples of new settlements, created initially by the diffusion

rule (green) then expanded by the breed rule (yellow) so that sub-
sequent growth took place according to the spread (blue) rule. The
lower left panel shows examples of both existing urban pixels and two
diffusion rule pixels (green), one of which started to grow due to the
breed (yellow) and spread (blue) sequence, and one that failed to do so,
while two existing isolated urban pixels failed to grow at all.

Although the new urban growth was largely due to the spread rule,
maps of the numbers of new urban pixels by subtile are shown in
Fig. 14. Sheer numbers of pixels show some consistency, with a clear
link between diffusion, spread and breed rules spatial distribution,
again showing a high hot spot in zone 5 W. Values are generally high in
the east of Zone 1, but especially so for the road trip rule. Attraction to
existing roads seems to have a major influence on the expected high
rate of urban spread in this region. The right-most map in Fig. 14 shows
percent growth by subtile, a value that ranges from 0.0% to 932.7%,
with a mean of 180.1% and a median of a 49.1% increase. The highest
growth rates correspond with the highest number of growth pixels, but
also with the parameter distributions shown in Fig. 12. These maps
were also tested for spatial autocorrelation using Moran's I, with the
results shown in Table 6. All showed strong autocorrelation, with the
highest value (0.7740) being the existing (2017) number of urban
pixels. The growth rate (0.4820) and the diffusion rule (0.4270) are also
very highly spatially autocorrelated. This again lends strength to the
rejection of the null hypotheses of no spatial autocorrelation in the
model forecasts, in addition to the model calibration.

In summary, both the SLEUTH calibration and forecasts showed
significant spatial autocorrelation and ranges of values across the state
of California. Calibration fit ranged from very low to very high, but in
most cases skewed toward high. This implies that a lack of growth, just
like very rapid growth, has unique causal factors and locations that are

Fig. 10. Performance metrics for the 174 subtiles. White partial subtiles had no change, and therefore no metrics.

Fig. 11. Best fit SLEUTH coefficients from the initial calibration for California mapped by subtile.
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captured by the model, and that the effect of these extrema is to in-
fluence adjacent subtiles and areas. This is a strong effect and was
proven to be significant for most of the fitness metrics, for the model
calibration parameters and for the amounts of simulated growth.

9. Uncertainty in the calibrations and forecast

There are three sources of uncertainty in the SLEUTH modeling
effort: the data, the calibration and the forecasts. The MRLC land use
data are based on Landsat satellite and other data, and the extraction of
classified land use from such data is known to be imperfect for reasons
of the vagueness in class descriptions, imprecision in class semantics
and other inaccuracy in the classification process. That said, Wickham

et al. (2017) found that the MRLC single-date overall accuracies were
82%, 83%, and 83% at Level II and 88%, 89%, and 89% at Level I for
2011, 2006, and 2001, respectively.

Unfortunately, at the time this project began, the NLCD land cover
only extended to 2011. However, the USDA products offered geospatial
estimates of urban areas out to 2017. To maximize the use of both of
these datasets it was assumed that landcover did not change between
2011 and 2017. The net effect may be to underestimate change in the
modeling. SLEUTH is known to be sensitive to pixels that change out of
the urban class, so by forward overlay processing, any urban pixel was
changed to urban for all subsequent years. The impact could be over-
estimation, especially where settlements are losing population. Lastly,
while every effort was made to preserve the land geometry nevertheless
some of the data, especially the roads, showed slight displacements over
time, which can lead to false transitions. Finally, the weights in the
exclusion layer were assigned by judgement and consensus, but
nevertheless were subjective and liable to error. Liu et al. (2019) con-
cluded that using exclusion layers without effective limits in SLEUTH
might result in unreasonable prediction of future built-up land.

Secondly the model calibration itself introduced possible errors.
SLEUTH calibration revealed results that showed unexpectedly large
variations of both the behavioral coefficients and the degree of fit
across subtiles and zones. No attempt was made to eliminate or smooth
out these differences, and as a result the tile and zone boundaries are in
some cases visible in the forecasts. Leaving these obvious errors in place
was more honest than attempting to smooth them out. The SLEUTH
data processing and the calibration were user and CPU time intensive.
Several small C language scripts were written to adjust color tables,
conflate images, divide data tiles, and reassemble the final maps. In
some cases, calibrations were repeated when the results were doubted,
with some entire zones going through the calibration process three
times.

Fig. 12. Best fit SLEUTH coefficients from calibration averaged for 2017 over 100 Monte Carlo iterations for California mapped by subtile.

Table 4
Moran's I values for each of the fit and coefficient measures for the SLEUTH
calibration.

Name p_value Moran's-I Sig. (5%)

MaxOSM 0.001 0.2820 TRUE
MeanOSM 0.001 0.2800 TRUE
FOM 0.001 0.2490 TRUE
Producers Accuracy 0.001 0.2370 TRUE
Users Accuracy 0.001 0.2520 TRUE
Diffusion - Calibration 0.192 0.0320 FALSE
Spread - Calibration 0.001 0.2200 TRUE
Breed - Calibration 0.303 0.0170 FALSE
Slope - Calibration 0.291 0.0170 FALSE
Road Gravity - Calibration 0.457 −0.0040 FALSE
Diffusion- Averaged 0.004 0.1150 TRUE
Spread -Averaged 0.001 0.2430 TRUE
Breed -Averaged 0.001 0.2030 TRUE
Slope-Averaged 0.004 0.1170 TRUE
Road Gravity-Averaged 0.293 0.0160 FALSE

Table 5
Past and Projected Land Use Change in California 2001–2100 using the SLEUTH modeling described.

Land Use Hectares (2001) Percent (2001) Hectares (2100) Percent (2100) Change Ha (2001−2100) PERCENT Change (2001–2100)

Urban 2,743,179 6.69 7,199,339 17.56 4456,160 162.45
Water 620,477 1.51 605,587 1.48 −14,890 −2.40
Permanent Ice & Snow 4075 0.01 2494 0.01 −1581 −38.81
Barren 1,996,573 4.87 1,656,437 4.04 −340,136 −17.04
Dec. Forest 354,241 0.86 217,402 0.53 −136,839 −38.63
Evergreen Forest 8,349,849 20.37 8,242,761 20.10 −107,088 −1.28
Mixed Forest 1,013,537 2.47 793,222 1.93 −220,314 −21.74
Shrubland 16,232,513 39.59 15,185,704 37.03 −1,046,809 −6.45
Grassland 5,237,890 12.78 4,080,716 9.95 −1,157,173 −22.09
Pasture 766,215 1.87 485,422 1.18 −280,793 −36.65
Orchards/Row Crops 3,354,812 8.18 2,288,693 5.58 −1,066,119 −31.78
Woody Wetland 100,131 0.24 60,553 0.15 −39,577 −39.53
Herbaceous Wetland 224,702 0.55 186,564 0.45 −38,138 −16.97
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The use of the genetic algorithm for calibration reduced the CPU
time and human control necessary. However, a genetic algorithm itself
requires calibration, and the values used were those researched in
Clarke (2017), with a chromosome of 55 genes, and a mutation rate of
0.13. The maximum number of replacements of genes, which controls
the time of calibration and the number of generations was set at 1600,
which gave a consistent completion of the evolution at 20 generations,
with very few exceptions. Other variations in the performance and
coefficients in the calibration were the subject of the current research.

Lastly, SLEUTH forecasting involves uncertainty. SLEUTH tracks
forecast uncertainty by creating maps of two kinds. First, over the 100
Monte Carlo iterations for the prediction, a count is made of how many
times each pixel became urban, and these yield expected probabilities
of urbanization. Secondly, once a simulation is complete and a final
land use chosen, a specific land use class is chosen by voting across the
100 iterations. A pixel that is assigned a new land use of the same type

in all 100 iterations is assigned 0 uncertainty. A pixel is assigned the
majority class, but sometimes this value can fall lower, for example a
pixel could theoretically be assigned equally to all 13 classes with 1/
13 = 7.7% probability, with a selected class being assigned that high
value of uncertainty (100–7.7 = 92.3% uncertain). These two un-
certainty values were mapped and are shown in Fig. 15 for the Paso

Fig. 13. Details from subtiles in California zone 6 showing urban conversion by the CA rule that led to the change.

Fig. 14. Counts of the number of pixels converted to urban during the 2017–2100 simulation by each of the four CA behavior rules. Far right map is for the total
urban growth rate by cells in percent. Note that the scales vary by behavior rule.

Table 6
Moran's I calculations for the growth rule variables shown in Fig. 12.

Name p_value Moran's-I Sig (5%)

Number of Pixels Urban in 2017 0.001 0.7740 TRUE
Pixels by Diffusion Growth 0.004 0.4270 TRUE
Pixels by Breed Growth 0.001 0.1120 TRUE
Pixels by Spread Growth 0.003 0.1850 TRUE
Pixels by Road Growth 0.001 0.1330 TRUE
Percent Growth2017–2100 0.001 0.4820 TRUE
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Robles area in San Luis Obispo County While their Moran's-I values
were not computed, the maps reveal strong spatial autocorrelation.

Lastly it is worth noting that SLEUTH does not account for popu-
lation. If, for example, California's high cost of living causes an exodus
of people then the forecasted growth may not come to fruition as there
is not the population to demand it. Further changes in demographic
structure, changes in conservation priorities, or social changes such as a
preference for dense urban living (smart growth) are not modeled.
Neither have we attempted to compare our modeling forecasts with
those of other studies (e.g. Sleeter, Wilson, Sharygin, & Sherba, 2017).

10. Big data and SLEUTH

Lessons were learned through having to deal with massive amounts
of data in SLEUTH modeling. Three keys to bulk data processing were:
(1) tiling the data into manageable chunks that allowed each subtile to
be calibrated (and forecast) largely independently; (2) simplification of
the number of data layers and the use of the genetic algorithm made the

model application tractable in terms of CPU time; and (3) the tile
naming convention made it possible to repeatedly use the same scenario
files and shell scripts with only minor changes from run to run. This
reduced user time, and allowed rapid viewing and repetition of tile
calibrations when necessary.

It was still necessary to handle the data in bulk, by zone and entire
state, and for this purpose a GIS (ArcGIS10.3) was used. Intermediate
visualization made extensive use of the open source tool GIMP, which
has remarkable format flexibility. Lastly, file sizes were kept under
control by using two forms of the Graphics Interchange Format (GIF),
that can be either grayscale or indexed color.

Perhaps the most important lessons learned by using SLEUTH with
big data were first, that very high resolutions made it feasible to look up
exact locations on web mapping systems to see whether the model re-
sults made sense, and second, that more aggregate modeling averages
out immense local variations in both model fit and the best model
coefficients. While in general the model performed extremely well,
application at a coarser scale would miss much of the richness of detail

Fig. 15. Uncertainty maps for Paso Robles/Atascadero area surrounding Highway 101 in California in subtile ca5WaaW. Upper left; Detail showing topographic map.
Upper Right: Land use maps in 2001 and 2100, class colors Red = Urban; Pink = Agriculture; Green = Forest and Rangeland. Lower left: Uncertainty classified:
Yellow = urban in 2017; Red = 95–100% certainty of urban in 2100;Green = 50–94% certainty of urban in 2100. Lower center: Monte Carlo likelihood of being
urban in 2100. Lower right: Grey scale level of uncertainty of land use class label for all classes. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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now possible by high resolution modeling.

11. Conclusion

This study set out to investigate whether spatial autocorrelation
exists among SLEUTH calibrations when massive data sets are spatially
tiled to make computations possible. Data for the state of California on
land use and other factors was used at a 30 m resolution, which re-
quired divisions into State Plane zones, then tiles and in most cases
subtiles. Of the 192 subtiles, only 174 contained data for calibration.
SLEUTH was calibrated for these subtiles using repeated changes to
scenario files containing file names and other data. A genetic algorithm
reduced the necessary computation time to about a year of CPU time
across two different computers. Across the 174 subtiles, the five cali-
brated coefficients covered the full range from zero to 100, the means
ranged from 26.57 (Breed) to 49.48 (Road) while the medians ranged
from 14.50 (Diffusion) to 54 (Road). Spatial autocorrelation was proven
with 95% confidence for not only the performance and accuracy me-
trics, but also for the five calibration coefficients. Once calibrated,
SLEUTH was used to forecast California land use from 2017 to 2100, for
an estimated 162% increase in urban land by the end of the 21st cen-
tury, with 98.8% of the growth caused by outward spread of existing
(and some new) settlements. Given the uneven spatial pattern of the
model's coefficients, their spatial autocorrelation then propagated into
the forecasts based on these coefficients to produce behavior that was
also spatially autocorrelated, best illustrated by the high degree of
clustering in high values of the road gravity coefficients. The un-
certainty associated with the projections was estimated using Monte
Carlo methods, and mapped for the expected land use future.

A growth in urban land use by 2100 of 4,456,160 ha alone is a
sobering prospect for the state. However, other changes such as the loss
of farmland and wildlands are also challenges. California's future re-
sidents will increasingly live in areas that are prone to earthquakes,
wildfire, drought and climate changes, such as sea level rise and higher
temperatures. With the state population at almost 40 million today,
continued economic and population growth and an abundance of land
available for development, SLEUTH's forecasts are within the limits of
feasibility. Local and patchwork growth management strategies or their
absence may be among the causes of the great range in forecast growth
rates from 0.0% to 932.7% by subtile, with a mean of 180.1% and a
median of 49.1% increase. A more sustainable land use future may
require coordinated statewide growth planning, and the adoption of
smart growth principles in planning to deal with this highly varied, but
highly autocorrelated future growth and change.
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