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Abstract: As the distinction between online and physical spaces rapidly degrades, social
media have now become an integral component of how many people’s everyday experi-
ences are mediated. As such, increasing interest has emerged in exploring how the content
shared through those online platforms comes to contribute to the collaborative creation of
places in physical space at the urban scale. Exploring digital geographies of social media
data using methods such as qualitative coding (i.e., content labelling) is a flexible but com-
plex task, commonly limited to small samples due to its impracticality over large datasets.
In this paper, we propose a new tool for studies in digital geographies, bridging qualitative
and quantitative approaches, able to learn a set of arbitrary labels (qualitative codes) on a
small, manually-created sample and apply the same labels on a larger set. We introduce a
semi-supervised, deep neural network approach to classify geo-located social media posts
based on their textual and image content, as well as geographical and temporal aspects.
Our innovative approach is rooted in our understanding of social media posts as augmen-
tations of the time-space configurations that places are, and it comprises a stacked multi-
modal autoencoder neural network to create joint representations of text and images, and a
spatio-temporal graph convolution neural network for semi-supervised classification. The
results presented in this paper show that our approach performs the classification of social
media content with higher accuracy than traditional machine learning models as well as
two state-of-art deep learning frameworks.
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1 Introduction

Social media have become major platforms for people to communicate and exchange infor-
mation regarding a wide range of topics. The information created and distributed through
such platforms is now a significant source for scholars to understand the reproduction of
urban spaces (Shaw and Graham, 2017). The intersections between the "code" (Dodge and
Kitchin, 2004) of social media platforms and space capture the "localities" of users’ every-
day activities, augment spatial experiences (Elwood and Leszczynski, 2013), and shape the
representations of places emerging from those platforms. The representation and inter-
pretation of data retrieved from geo-referenced social media provide a means by which
to assess different urban dynamics (e.g., mobility, land use and urban activities, event de-
tection, etc.) (Martí et al., 2019), and further contribute to a digitally layered urban en-
vironment (Zook and Graham, 2007; Shaw and Graham, 2017). Despite the unequal ge-
ographies of social media platforms (Ballatore and De Sabbata, 2018), there is a growing
interest in analysing such information from a geographic perspective within the field of
digital geographies (Ash et al., 2018). However, traditional qualitative analysis often strug-
gles with tackling large datasets, and the volume of data produced daily on social media
is enormous. Thus quantitative analysis and summarisation are frequently necessary steps
in digital geographies. That creates a strong association with GIScience, where data min-
ing approaches have been applied to identify users’ opinions and online trends, to study
the emergence of place from space through content production (Graham et al., 2015), or
to monitor events from football to earthquakes (Frias-Martinez and Frias-Martinez, 2014;
Ifrim et al., 2014; Sechelea et al., 2016; Zahra et al., 2017) and to understand the digital
representations of a place (Ballatore and De Sabbata, 2020).

In computer science and related disciplines, sentence-level topic extraction from social
media posts has attracted wide attention, where research has mainly focused on supervised
learning approaches with well labelled and balanced data (Medhat et al., 2014). However,
labelling large volumes of social media posts can be a lengthy and costly procedure as
it requires a significant amount of human intervention. Such approaches are only viable
when a pre-defined set of topics or labels has been agreed upon by a large number of
stakeholders, for instance, for monitoring scheduled events or natural disasters. Such ap-
proaches are more difficult to employ effectively for exploratory analysis or monitoring of
unexpected events. Other studies have adopted unsupervised approaches in the context of
summarising social media posts, such as methods based on n-grams (e.g., Poorthuis and
Zook, 2017; Hamid et al., 2005). So far, however, limited attention has been given to the
study of exploratory analysis, where only vague or no labels at all have been pre-defined.
Conversely, semi-supervised learning approaches, which do not require complete labelled
training, have achieved competitive results in learning accuracy, without the time and costs
needed for the training data preparation step of supervised learning (Zhu and Goldberg,
2009). However, there are severe concerns about the uncertainties of social media analysis,
as raw data collected from social media platforms tend to be noisy and fuzzy, rendering
any approach problematic when applied to "live" data (Sommer, 2016). Thus, creating a
robust framework, able to produce consistent results with imbalanced datasets is a crucial
task in digital geographies.

In this paper, we present and test an approach for the exploratory analysis of social me-
dia content, capable of automatically classifying a large volume of posts for a user-defined
set of labels. That is, the labels are not an integral part of the framework here presented,
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but they can instead be customised for any specific research project a user might be de-
veloping. The classification process takes into account not only on the textual component
but also taking into account their visual content. The latter is a crucial contribution of our
approach, as only a handful of papers account for images when conducting quantitative
analyses of social media content (Gao et al., 2015; Xu et al., 2017; Huang et al., 2018b). Fur-
thermore, conceptualising posts as “augmentations”(Graham et al., 2015) of places, under-
stood as “time-space configurations”(Agnew, 2011), we go beyond the geo-tag (Crampton
et al., 2013a) by developing graph convolutional networks that account for the relation-
ships between each post and its spatio-temporal neighbours. To the best of our knowledge,
the proposed model is the first to account for all four aspects (text and media, as well as
geographical and temporal information) using a deep learning approach.

Our approach thus comprises two main components. The first component is a stacked
multi-modal autoencoder we developed (Liu and De Sabbata, 2019b) to create dense rep-
resentations of text and image content from social media posts. The second component
extends earlier work on a spatial graph convolutional network (Liu and De Sabbata, 2019a),
originally developed to explore how the spatial component of social media posts benefit the
labelling (i.e., semantic categorisation) of their contents, into a spatio-temporal graph con-
volutional network, which encodes the geographical and temporal proximity relationship
between social media posts.

In this paper:

1. we explore the effects of accounting for the spatio-temporal aspects of social media
posts in using a graph convolutional network to classify them;

2. we provide robust and detailed evaluation of the presented framework through a
series of comparisons between different set-ups and other baseline machine learning
approaches;

3. we explore the effects of imbalanced datasets on the labelling accuracy and evaluate
how data uncertainty (e.g., variations in the number of cases in each label category)
affects the labelling results.

2 Related Work

Due to the potential of social media platforms for exploring human activities in space and
the narrative of places (Abernathy, 2016), social media platforms in general, and Twitter in
particular, have been at the centre of data-driven analysis in GIScience and quantitative ge-
ography for about a decade (Miller and Goodchild, 2015) from location mining to residence
location prediction (Resch et al., 2015; Abrol et al., 2012; Dan et al., 2014). Lee et al. (2011b)
proposed a geo-social event detection system to detect unusual regional social activities
based on geotagged Twitter messages and identified a strong point of connection between
local events and crowd behaviours detected from posts shared on the platform. Tsou et al.
(2013) showed the effectiveness of using combined content from tweets and multiple web
sources to identify relevant spatial and temporal patterns regarding specific events. Stud-
ies by Longley and Adnan (2016) and Wakamiya et al. (2011) also illustrate how the spatial
analysis of social media progresses our understandings of socio-spatial patterns and crowd
behaviour within cities.

Despite the growing popularity of visual content in social media, limited work has been
done so far on such content within the field of GIScience. That is a severe limitation, as
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image content is a key component of social media posts – especially considering the rise
of image-focused platforms such as Instagram or Flickr. According to a recent survey1,
images or photos constitute around 36% of posts on Twitter, which renders the analysis
of visual data, an interesting area to explore. Visual content can also provide rich infor-
mation regarding places, the use of space, and people’s experiences of landscape. Earlier
work on the visual content of geo-located media mostly focused on tags or meta-data. For
instance, Hollenstein and Purves (2010) investigated the use of geo-located photos from
Flickr that users have tagged with keywords such as “downtown" or "citycentre" to ex-
plore the user-defined centre of a city. Hu et al. (2015) introduced a coherent three-layer
(data layer, spatio-temporal layer and semantic layer) framework for studying urban areas
of interest (AOI) spatially as well as temporally using geotagged photos extracted from so-
cial media. The semantic layer of this framework serves the purpose of discovering knowl-
edge from the extracted AOI combining the use of photos (based on a defined similarity
matrix) and their tags. Their proposed method quantitatively studies AOI from geotagged
photos and contributes a better understanding of how areas of interest form over time. Pan-
teras et al. (2015) developed a social multimedia triangulation process to identify natural
disasters using Twitter text content and Flicker image meta-data. With the help from the
rising methodologies of traditional machine learning, Gao et al. (2015) proposed a method
for geo-located event detection from micro-blogs, they generated an intermediate semantic
entity, named micro-blog clique (MC) based on text similarities, image similarities, location
similarities and temporal similarities to explore the highly correlated information among
the noisy and short micro-blogs. Xu et al. (2017) introduced their framework to detect urban
emergency events based on the correlations among images, texts and locations. Previous
research mainly focused on using traditional machine training approaches based on low-
or mid-level attributes from texts and images – e.g., td-idf for text representation, spatial
pyramid image features for image representation.

Current developments in deep learning technologies open new opportunities for bridg-
ing the gap, and moving beyond the use of tags chosen by the users and low- or mid- level
attributes, and combine high-level representations extracted directly from the visual con-
tent (e.g., images). Within the discipline of computer science, some work (Xu et al., 2014;
You et al., 2015; Gajarla and Gupta, 2015) has been devoted to using convolutional neu-
ral networks to analyse users’ sentiment directly from the images posted on social media
posts. Attracted by the growing popularity of multimedia content on social media posts,
research has been widely conducted from uni-modal analysis to multimedia content study.
For example, Cai and Xia (2015) proposed a framework using two separate convolutional
neural networks (CNN) to extract representations from text and images from tweets, and
feed them into another CNN to predict sentiment on Twitter multimedia content. Chen et
al. (2017) trained separated classifiers for images and text simultaneously and proposed a
weighted co-training approach for the joint visual-textual sentiment analysis. Mouzannar
et al. (2018) combined multiple pre-trained convolutional neural networks that extract rep-
resentations from raw text and images independently and classify them to identify damage
related information. Huang et al. (2018a) proposed a framework based on Deep Canonical
Correlation Analysis (Andrew et al., 2013) to jointly learning representations from text and
image and further identify event-related tweets.

To our best knowledge, within the discipline of GIScience, with the exception of the
work we presented (Liu and De Sabbata, 2019b), Huang et al. (2018b) are the only other

1https://www.adweek.com/digital/is-the-status-update-dead-36-of-tweets-are-photos-infographic/
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authors to apply this technology on text and images to analyse geo-located social media
posts. Huang et al. (2018b) proposed an end-to-end, fully supervised framework to re-
port geo-located flood events using Twitter posts. They adopted two convolutional neural
network architectures to extract representations from texts and images, and combine both
representations for filtering out flood-related tweets from a massive tweets pool. However,
their approach focuses on a binary classification and does not account for the geo-location
of social media post in the context of the classification.

3 Case study

Our case study includes a geographical analysis of geo-located, multimedia posts on a so-
cial media platform, regarding a certain set of topics (e.g., posts about personal life, trend-
ing news, or entertainment), in London. The focus is on exploring how users’ activities
are reflected through their related geo-located social media posts, and how those posts
contribute to the digital representation (Graham et al., 2013) of the city. We have collected
all geo-located tweets posted within Greater London (UK) between January 1st, 2018 and
December 31st, 2018, through the Twitter API2. The geo-located tweets we retrieved from
Twitter contain both image and text, and precise geographic coordinates. In order to fil-
ter bots, we limited the overall amount of tweets per account to 365. The final sample is
composed of 16,950 tweets, which clearly would still not be easy to analyse manually, in a
tweet-by-tweet manner.

In digital (geographies) studies, it is common to explore a sample of a few hundred
tweets and conduct a qualitative content and visual analysis by labelling the sampled
tweets through a relatively small number of "codes" (see, e.g., Felt, 2016; Awcock, 2018).
The use of larger samples is rare, due to the resources that would be required to engage
with tens of thousands (or millions) of posts.

In this scenario, the proposed framework (described in Section 4) would be able to learn
the set of labels (i.e., "codes") defined on a small sample by a researcher in digital (geogra-
phies) studies and deploy the same labels to a larger dataset. The labelled dataset could
then be used for further exploration of the specific topics. For the scope of this paper,
we randomly sampled 701 tweets from the dataset, that have been manually labelled as
discussed below.

3.1 Labelling

We manually labelled (i.e., "coded" or classified) the set of randomly sampled 701 tweets
using 11 different labels: Animals, Entertainment, Food, Nature, News, Personal, Places
and attractions, Social, Sports, Work and Not informative. These labels are for testing pur-
poses only, and they are not an integral part of the framework, which can instead be used
with any set of labels (i.e., "codes") that a researcher might consider relevant for a dataset
they aim to analyse.

The Not informative label includes advertisement and other content that was difficult
to interpret. The label Personal includes content related to personal daily activities such
as shopping or selfies, whereas tweets in the label Social are related to social activities
(e.g., parities). The label Work mostly contains tweets related to offices environment or the

2https://developer.twitter.com/en/docs.html



6 Pengyuan Liu, Stefano De Sabbata

Figure 1: Distribution of labelled tweets used for training and testing.

description of users’ work. As illustrated in Figure 1, the sampled dataset is unbalanced as
certain labels are more represented than other, for instance, there are 166 tweets regarding
Places and attractions while only 8 tweets in the label Animals.

It is important to emphasis that we labelled our social media only based on their text
and image content rather than labelling them based on their location or geographic content
explicitly. That is, labels used in the case study are not geographical per se. Pre-defined
labels that we created is relatively generic, but still very subjective and expressing the in-
terests and understandings of the authors on the classified content. Other authors might
prefer to incorporate the label Work into Personal, or clearly differentiate a diverse set of
Sports (e.g., football or tennis). However, this is not an issue in the scope of this experiment.
The objective of our proposed approach is to provide a framework to classify large volumes
of social media posts that is unrealistic to process manually, based on a set of labels tailored
to a specific project or task.

Traditional classification tasks in computer science tend to use datasets created using a
top-down approach with a set of well-balanced categories as benchmarks, which are op-
timised to test the effectiveness of new algorithms. Given the aim of our approach, we
decided to use a "real-life" dataset, retrieved from Twitter directly, which is much noisier
and could be difficult to label even for human assessors. Even for tweets within the same
label category, information tends to be much fuzzier compared with datasets used in tradi-
tional classification tasks.

As shown in Figure 1, the distribution of the tweets in our dataset is heavily concen-
trated in the central area of the inner boroughs of London, while only a few tweets are
located in the suburban areas of the external boroughs. The impact of this skewed geo-
graphic distribution on the creation of the graphs was one of the reasons that led to testing
the diverse set of approaches which will be discussed in Section 4.3. Most labels seem to

6
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follow this general pattern, and while some expected cluster can be identified (e.g., Food
in Soho, or Nature in Hyde Park), there seems to be no clear-cut geographic clustering of
the labels among the 701 sampled tweets.

4 Methodology

Figure 2: Methodology flowchart. The multi-modal autoencoder extracts dense represen-
tations from the images and text; such representations together with the spatial or spatio-
temporal components of the posts are fed into a graph convolutional network as its input
for the classification task.

In this paper, we propose an approach consisting of two components, illustrated in Fig-
ure 2. First, a stacked multi-modal autoencoder model is used to extract dense representa-
tions from both texts and images of tweets. Second, graph convolutional network (GCN) is
applied based on the graph constructed with geo-coordinates from the social media posts
(see details in Section 4.3) to do the semi-supervised classification. That is, the relationship
between features and labels is learnt throughout the process and updated based on the
information that neighbours exchange with each other. As such, each node of the neural
network learns locally, focusing on one social media post. The neural network node works
towards understanding the relationship between content and assigned labels in a locally
defined subset, taking into account that particular post and all its spatial neighbours. The
knowledge acquired locally for each social media post at one layer is added to the informa-
tion available for that post at the following layer.

We then postulate that the local learning process described above should allow the neu-
ral network to take better advantage of spatial clusters of information. In turn, that ap-
proach should deliver better performance in understanding labels that are spatially clus-
tered, as it is commonly the case in geo-located social media, which focus on local content.

The model here presented builds upon our previous work (Liu and De Sabbata, 2019b),
and it was inspired by approaches such as the Deep Embedding Clustering (DEC) (Xie
et al., 2016) and the Correlational Neural Network (Corrnet) (Chandar et al., 2016). Our
model includes two main components.
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4.1 Multi-Modal Autoencoder

First, we replace the dense layers in Corrnet with stacked Resnet-style convolution layers
for extracting image representations (Mao et al., 2016) and Long Short-Term Memory neu-
ral network (LSTM) layers for extracting textual representations. The objective was not
only to minimise the self-construction error, but also the cross-reconstruction error from
image and texts, and maximise the correlation between the hidden representations of both
parts. We achieved this by minimising the objective function introduced in the original
Corrnet paper:

JZ =
N∑
i=1

(L(zi, g(h(zi))) + L(zi, g(h(xi))) + L(zi, g(h(yi))))− λcorr(h(X), h(Y )) (1)

corr(h(X), h(Y )) =

∑N
i=1(h(xi − h(X))(h(yi − h(Y )))√

(
∑N

i=1(h(xi − h(X))2(
∑N

i=1(h(yi − h(Y ))2
(2)

considering a dataset Z = {zi}Ni=1 where all data have inputs from two channels of me-
dia text and images X and Y . Each data zi can be represented as zi = (xi, yi), where
xi ∈ X and yi ∈ Y . L is the squared error reconstruction error, and λ is the scaling pa-
rameter. h(X) is the mean vector for the hidden representation h(xi) of the text part input,
and h(Y ) is the mean vector for the hidden representation h(yi) of the image part input.
h(z) = f(Wx+ V y + b), where W and V are two k × di project matrix, and b is a k × 1 bias
vector. Equation 1 is the objective function of the proposed multi-modal autoencoder. The
first term is the objective function that allows learning meaningful hidden representations.
The second term ensures that both images and text output from the decoder can be recon-
structed using only text representations. Similarly, the third term ensures that both images
and text output from the decoder can be reconstructed using only image representations.
The fourth term ensures that the combined representations are highly correlated, and it is
defined in Equation 2.

4.2 Graph Convolutional Network

The second component of our model encodes the geographies of the content as a graph
network, thus allowing us to take advantage of recent advances in graph convolutional
neural networks. Indeed, the use of graph networks to represent proximity has long been
used in geographic information science (O’Sullivan and Unwin, 2014). In our approach,
each social media post is rendered as a node in a graph network, and their proximity is
represented by the presence and weight of the edges between nodes, depending on the
definition, as detailed in next section.

We then frame our classification problem as a graph-based semi-supervised learning
task, and a graph convolution network (Kipf and Welling, 2016) is adopted for efficient
information propagation through the graph.

The task is specified as f(X,A), where X is the extracted information from the multi-
modal autoencoder for each post, and A is the adjacency matrix for the graph. We expect
the model to produce a node-level output Z as:

Z = f(X,A) = softmax(H(L)) (3)

8
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which satisfies the layer-wise propagation rule for GCN:

H(L+1) = σ(D̂−
1
2 ÂD̂−

1
2H(L)W (L)) (4)

with Â = A+ IN . IN is the identity matrix of A and W (L) denotes the trainable weight
matrix of the Lth layer of the neural network. D̂ii =

∑
j Âij , and σ(·) represents a non-

linear activation function which in our case we use ReLu(·) = max(0, ·). H(L) is the acti-
vation matrix for the Lth layer; for example, H(0) = X and H(L) = ÂReLu(H(L−1))W (L).
The softmax activation in formula (1) is used for classifying nodes with their corresponding
labels. We calculate the cross-entropy error over all labelled nodes in the graph:

L = −
∑
l∈YL

F∑
f=1

Ylf lnZlf (5)

where YL is the set of nodes that have labels.

4.3 Graph Construction

We tested a variety of graphs that were constructed using the tweets presented in the case
study. We classified the graphs based on whether they account for the absolute positions of
tweets and distances between the tweet pairs into three different categories: a-spatial graphs,
semi-spatial graphs and spatial graphs.

In constructing the graphs, we employ Euclidean distance as a reasonable estimation of
distance in urban spaces, as illustrated by Boscoe et al. (2012).

4.3.1 A-spatial Graphs

A-spatial graphs do not take into account the absolute positions of the tweets and distances
between the pairs of nodes in the graph. We tested three different a-spatial graphs in the
experiments:

• Random Path Graph: A path graph is a graph that can be drawn so that all of its
vertices and edges lie on a single straight line (Gross and Yellen, 1999). We randomly
assign tweets in a line so that they are linked to each other one by one, as shown in
Figure 3(a). If two nodes are connected to each other Aij = 1 in its adjacency matrix,
otherwise Aij = 0.

• Random Cycle Graph: A cycle graph is a graph containing a single cycle through all
nodes shown in Figure 3(d). It is randomly generated in the same way as the Random
Path Graph, plus adding a link between the beginning and the end nodes.

• Complete Graph: A complete graph is a graph in which each pair of graph vertices
is connected by an edge shown in Figure 3(c).

Note that although Random Path Graph, Cycle Graph and Complete Graph are connected in
the form that each tweet is connected to another, such graphs do not take into account the
absolute positions of the tweets and distances between the pairs of nodes in the graph. For
example, Random Path Graph is constructed by connecting all the nodes in the graph with
a straight line. It can start from any arbitrary node as long as all the nodes can lie on the
same line by the end of the graph construction. Thus, the absolute positions of tweets are
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(a) Random Path Graph. (b) Weighted Random Path Graph

(c) Cycle Graph (d) Complete Graph

(e) Minimum Spanning Tree

Figure 3: Different graph structures

not useful in such a case. Therefore, such graphs can be seen as the nodes are connected
without the spatial component, whereby the spatial locations of tweets have no impacts in
those graph construction processes.

4.3.2 Semi-spatial Graphs

Semi-spatial graphs do not take into account the absolute positions of the tweets but are
constructed with the information of the distances between the pairs of nodes in the graph.
Following the experiment in section 4.3.1, we tested three different semi-spatial graphs in the
experiments:

• Weighted Random Path Graph: Same structure as Path Graph shown in Figure 3(b);
however, the weights for edges are defined by spatial interaction as:

Aij = 1/(1 + distance) (6)

• Weighted Random Circle Graph: Same structure as Cycle Graph; however, the
weights for edges are defined by spatial interaction.

10
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• Weighted Complete Graph: Same structure as Complete Graph, but the weights for
edges are defined by spatial interaction.

4.3.3 Spatial Graphs

Spatial graphs take into account the absolute positions of the tweets as well as the informa-
tion of the distances between the pairs of nodes in the graph. We tested two spatial graphs
as follow:

• Minimum Spanning Tree (MST): We first generate a series of graphs based on spatial
adjacency using distances ranging from 2 kilometres to 15 kilometres. We then cal-
culate the minimum spanning tree for each one of those graphs to further minimise
the number of connections. Figure 3 (e) is an example of a Minimum Spanning Tree
calculated starting from the 9 kilometres spatial adjacency. If two nodes are connected
to each other Aij = 1 in its adjacency matrix, otherwise Aij = 0.

• Weighted Minimum Spanning Tree (Weighted MST): Same structure as Minimum
Spanning Tree, but the weights for edges are defined by the same spatial interaction
defined in Section 4.3.2 (Equation (6)).

4.4 Spatio-Temporal graph

The temporal component of social media post (Yang and Leskovec, 2011) is a key aspect to
take into account to move beyond the simple geotag (Crampton et al., 2013a). The temporal
evolution of the social media trend has clear links to emerging events in the physical world
(Wang et al., 2016a), which leave “data shadows" behind them (Shelton et al., 2014). Spatio-
temporal analysis has been widely adopted in the study of digital geographies (Cheng
and Wicks, 2014; Gomide et al., 2011; Lee et al., 2011a), to identify sociospatial patterns
of online events (Crampton et al., 2013b; Luo et al., 2016), or to monitor and surveillance
nature disasters (Wang et al., 2016b; Martín et al., 2017). To explore the usefulness of the
temporal component of social media posts in better understanding its relationship with
the assigned labels, we tested two graphs based on two different spatio-temporal distances
and a weighted graph with distance information on the edges.

• Spatio-temporal neighbourhood (StN), Euclidean Distance: To be consistent with
spatial distance, we transform the time series information equivalent to the spatial
distance, and we define such a process as temporal-spatial distance transformation. That
is, the temporal differences between social media posts are measured in a defined
spatial distance (see details in Section 5.2). We define the first spatio-temporal dis-
tance as:

STDist =
√
easting2dist + northing2dist + time_series2dist (7)

where distance is calculated after projecting the longitude and latitude of each
post to the respective values as easting and northing in the British National Grid3;
time_seriesdist denotes to the defined temporal-spatial distance transformation, for ex-
ample, time_seriesdist = 1 metre if the temporal difference between two posts is 12
hours. An example of the constructed graph using Euclidean distance is shown in

3https://epsg.io/27700
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(a) Spatio-temporal neighbourhood graph, Eu-
clidean Distance (9 km).

(b) Spatio-temporal neighbourhood graph, dis-
tance defined in Chang et al. (2007) (9km)

(c) Spatio-temporal neighbourhood graph,
temporally-weighted Euclidean Distance (9 km).

Figure 4: Different spatio-temporal graph structures

Figure 4(a). We ran a series of experiments using different distances to equate time
and space, and the results are presented in Section 5.2.
• Spatio-temporal neighbourhood (StN), temporally-weighted Euclidean Distance:

Chang et al. (2007) define a spatio-temporal similarity measure to compute spatio-
temporal relevance between two trajectories of moving objects on road networks,
which is known as spatio-temporal distance:

STDist = (SD + δ ∗ TD)/2 (8)

where δ is the spatio-temporal weight; SD and TD denote for spatial distance and
temporal distance respectively. An example of using such a distance can be seen in
Figure 4(b). As each entity in our dataset represents a point in the space-time con-
tinuum, rather than a trajectory, we propose the following definition of the distance
between two points into:

STDist =
√
SD2/2 + (δ ∗ TD)2/2 (9)

where SD is defined as
√
easting2dist + northing2dist. It is a variation on the Euclidean

distance, but taking into account an additional spatial weight δ defined in formula
(8) to define the impact of the temporal distance. In this paper, we keep δ as 20 same
in Chang et al. (2007), and the results are presented in Section 5.2. Thus, we define
such approach as Temporal weighted Euclidean Distance. An example of the constructed
graph using temporal weighted Euclidean distance is shown in Figure 4(c).
• Spatio-temporal neighbourhood (StN), distance and temporally weighted Graph:

Given the best results reported in Section 5.1 is achieved by using graph defined

12
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by Equation 9, we define this graph as same structure as the temporally weighted
Euclidean Distance model, but the weights for edges are defined by spatial-temporal
interaction as:

Aij = 1/(1 + distanceST ) (10)

where distanceST is the distance calculated by Equation (9).

4.5 Baseline methods

In order to test the capability of our proposed semi-supervised multimedia classification
framework, We compare it with eight baselines developed from various methods focusing
on text content and image content, as well as the spatial component of the tweets:

4.5.1 A-spatial Baselines with Text and Images

We set up baselines which include a traditional machine learning algorithm and two neu-
ral network-based on deep learning approaches to compare their performance with our
proposed graph-based semi-supervised classification framework.

• SVM: We adopt a traditional machine learning approach Support Vector Machine
(SVM) (Cortes and Vapnik, 1995) on the extracted representations from multi-modal
autoencoder to classify tweets. Traditional machine learning methods such as SVM
has a long-standing history being adopted for social media classification and spatial
analysis within the field of geography (e.g., —-see, Guo and Chen (2014), Qi et al.
(2019)). Although recent research shows that deep learning methods outperform that
traditional machine learning method in various disciplines, SVM is still worth to be
set up as a basic baseline in comparisons with the proposed GCN framework due to
its popularity within academic studies.

• Dense Neural Network (DNN): We adopt a 3-layer dense neural network (DNN) on
the extracted representations from multi-modal autoencoder to classify tweets. Due
to its strong ability of generalisation, DNN as one type of deep learning techniques
has been widely adopted in various social media analytic studies (—-see, a survey
was done by Ghani et al. (2019)). Thus, the 3-layer DNN is chosen as another baseline.

• Visual-textual Fused CNN (VTCNN): Inspired by Huang et al. (2018b), we design
an end-to-end deep learning framework using two stacked CNN to extract repre-
sentations from images and text simultaneously and concatenate them in the middle
layer of the framework for twitter classification. Huang et al. (2018b) can be seen as a
direct comparison to our proposed framework, although such a method is primarily
a supervised training framework which usually requires training data in a large size
and to be well-labelled.

Note that the baseline VTCNN is the only end-to-end training framework among all the
baselines. For other baselines introduced in this section, representation extraction (from
images, text or both) and classification are two separated steps. It is also important to
highlight that these three baselines do not take into account the locational information of
the tweets, and they perform the labelling process purely based on the multimedia content
(images and text) from tweets. Thus, they are set up as comparisons for the version of our
framework set up on a-spatial graphs introduced in Section 4.3.1.
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4.5.2 A-spatial Baseline with Text Only

Doc2Vec + Label Propagation: We use Doc2Vec (Le and Mikolov, 2014) to extract text
representation and a traditional semi-supervised machine learning approach Label Prop-
agation (LP) (Zhu and Ghahramani, 2002) to classify tweets. Such a method has been
widely adopted on online content analysis (e.g., sentiment analysis (Mishra et al., 2019;
Wadawadagi and Pagi, 2020)). As a semi-supervised machine learning approach, LP is
used to assess the performance of the GCN framework, which is also a semi-supervised
learning framework. Such a framework aims to classify posts based on their text content;
thus, it can be used for demonstrating whether the multimedia content analysis is superior
to content analysis which only using text.

4.5.3 A-spatial Baseline with Images Only

CNN autoencoder + Label Propagation: We use a CNN autoencoder (Mao et al., 2016)
which is the same structure as we adopted in the multi-modal autoencoder to extract image
representation, and use LP approach to classify tweets.

4.5.4 Spatial Baselines with Text Only

Doc2Vec + GCN (MST): We use Doc2Vec to extract text representation and GCN on a
spatially constructed graph (MST) to classify tweets. This baseline is set up as a direct
comparison to the previous baseline (Doc2Vec + Label Propagation).
LSTM autoencoder + GCN (MST): We use an LSTM autoencoder to extract text repre-
sentation and GCN on a spatially constructed graph to classify tweets. Although the two
previous baselines have been designed to illustrate classification results based only on text,
Doc2Vec is not considered as a deep learning approach to extract text representation. As
mentioned in Section 4.1, our proposed multi-modal autoencoder contains an LSTM en-
coder extracting text representations from UGC content. Thus, we further design such a
baseline as one of the comparisons to assess whether the multimedia content analysis is
superior to content analysis which only using text.

4.5.5 Spatial Baselines with Images Only

CNN autoencoder + GCN (MST): We use the CNN autoencoder to extract image represen-
tation, and GCN on a spatially constructed graph (MST) to classify tweets. This baseline
and the previous baseline (CNN autoencoder + Label Propagation) are designed to assess
whether the multimedia content analysis is superior to content analysis which only using
images.

4.6 Model training

The image and text content of each tweet was pre-processed. Tokenisation, stop words re-
moval, and case folding was applied to the text, then vectorised using Word2Vec-Twitter4.
Images were converted to greyscale and re-sized to a 158 × 158 uniform size. A sample of
cases was selected (as discussed below) to train the GCN, ensuring that at least four tweets
from each label were selected.

4https://github.com/loretoparisi/word2vec-twitter
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We implemented the model in Python, using Keras5 with Tensorflow6, as a two-layer
GCN model with 0.5 dropout rate for both layers, L2 regularisation factor for the first GCN
layer and 8 hidden units. We trained the model using a Nivida GPU Geforce GTX 10807 for
a maximum of 3000 epochs (training iterations) using Adam (Kingma and Ba, 2014) with
a learning rate of 0.01, and early stopping with a window size of 300. Trainable weights
initialisation and feature vectors normalisation remain the same, as in Kipf and Welling
(2016). We evaluated it using both classification accuracy and F1 score.
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Figure 5: Variation of accuracy based on the number of training data.

We explored the impact of different training sample sizes on the performance of the
model by testing randomly selected training sets with increasing sizes from 50 to 600, incre-
menting the sample size by 50 at each step and using the Random Path Graph structure. As
illustrated in Figure 5, model performance peaks at 200, with a slight decrease afterwards,
while accuracy tends to be stable. Our interpretation is that, while fewer than 200 cases are
insufficient to train the model adequately, larger samples tend to become too unbalance,
which affects the performance.

5 Results

5.1 Spatial graph

The experiments started by focusing on GCN with a-spatial graph structures with no de-
fined spatial interaction (see Section 4.3.1, Equation (6)), and the assessments are based on
the classification accuracy and Micro − F1 score. The Micro − F1 score is a type of F1
score suitable for multi-label classification tasks aiming to provide robust evaluations for
machine learning or deep learning models compared to accuracy-based assessments.

As summarised in Table 1, the results reveal that our best GCN approach successfully
categorises each tweet with its corresponding label based on partially labelled data with
an accuracy of 72.57%. Figure 6 shows how the manually assigned labels compare to the
model output, and it illustrates how most of the errors are due to some Food and most of

5https://keras.io/
6https://www.tensorflow.org/
7https://www.nvidia.com/en-us/geforce/products/10series/geforce-gtx-1080/
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Model input Representation Extractor Model Accuracy Micro-F1 Score

A-spatial with
Images and Text

Multi-modal Autoencoder SVM (no graph structure) 15.87% 9.13%
Multi-modal Autoencoder DNN (no graph structure) 11.20% 4.35%
(VTCNN itself) VTCNN (no graph structure) 16.00% 8.37%
Multi-modal Autoencoder GCN (Random Path Graph) 62.78% 56.87%
Multi-modal Autoencoder GCN (Cycle Graph) 68.63% 65.94%
Multi-modal Autoencoder GCN (Complete Graph) 23.75% 15.65%

A-spatial with Text Doc2Vec Label Propagation 18.31% 3.40%
A-spatial with Images CNN autoencoder Label Propagation 26.76% 4.20%

Spatial with Text Doc2Vec GCN (MST (3 km)) 26.43% 24.32%
LSTM autoencoder GCN (MST (3 km)) 36.66% 35.95%

Spatial with Images CNN autoencoder GCN (MST (3 km)) 71.07% 70.51%

Semi-spatial with
Images and text

Multi-modal Autoencoder GCN (Weighted Random Path Graph ) 65.34% 63.15%
Multi-modal Autoencoder GCN (Weighted Cycle Graph) 68.83% 67.67%
Multi-modal Autoencoder GCN (Weight Complete Graph) 23.66% 18.15%

Spatial with
Images and text

Multi-modal Autoencoder GCN (MST (2 km)) 56.73% 51.89%
Multi-modal Autoencoder GCN (MST (3 km)) 72.57% 69.10%
Multi-modal Autoencoder GCN (MST (5 km)) 61.60% 57.83%
Multi-modal Autoencoder GCN (MST (8 km)) 55.55% 52.24%
Multi-modal Autoencoder GCN (MST (10 km)) 54.67% 48.67%
Multi-modal Autoencoder GCN (MST (15 km)) 51.64% 47.25%
Multi-modal Autoencoder GCN (Weighted MST (3 km)) 73.57% 72.89%

Spatio-temporal
with Images and
Text

Multi-modal Autoencoder GCN (StN (Euclidean, 2 km)) 67.33% 64.53%
Multi-modal Autoencoder GCN (StN (Euclidean, 3 km)) 70.28% 68.45%
Multi-modal Autoencoder GCN (StN (Euclidean, 4 km)) 69.58% 67.25%
Multi-modal Autoencoder GCN (StN (Euclidean, 5 km)) 69.15% 66.73%
Multi-modal Autoencoder GCN (StN (as defined in Chang et al. (2007), 2 km)) 63.24% 60.24%
Multi-modal Autoencoder GCN (StN (as defined in Chang et al. (2007), 3 km)) 66.57% 63.83%
Multi-modal Autoencoder GCN (StN (as defined in Chang et al. (2007), 4 km)) 69.89% 65.27%
Multi-modal Autoencoder GCN (StN (as defined in Chang et al. (2007), 5 km)) 69.24% 67.51%
Multi-modal Autoencoder GCN ((StN (temporally-weighted, 2 km)) 69.58% 65.32%
Multi-modal Autoencoder GCN (StN (temporally-weighted, 3 km)) 72.32% 69.68%
Multi-modal Autoencoder GCN (StN (temporally-weighted, 4 km)) 78.98% 76.72%
Multi-modal Autoencoder GCN (StN (temporally-weighted, 5 km)) 74.56% 71.41%
Multi-modal Autoencoder GCN (StN (distance-temp.-weighted, 4 km)) 80.08% 78.65%

Table 1: Comparisons of different graph structures. (Best results achieved.)

Nature tweets being labelled as Personal by the model, many Sports tweets being labelled as
Places and attractions, and most Work tweets being labelled as Not informative. Errors do not
seem to display any specific spatial pattern.

Those results are achieved on a training sample of 200 randomly selected tweets and de-
spite a fairly imbalanced and noisy dataset. The GCN seems to perform better on a sparse
– non necessarily simple, but less dense graph structure, as the best results are obtained
with a graph structure constructed by creating Weighted Minimum Spanning Tree using a
3 kilometres range, whereas the classification accuracy and F1 score on the two complete
graphs are much lower compared to the other spatial graph structures. Clearly, choosing a
suitable distance range for creating graph structure is essential within the framework. The
results show that identifying a geographic graph with an appropriate density of connec-
tions within a reasonable distance range can significantly improve the performance of our
graph-based semi-supervised framework.

As shown in the table, GCN on the spatial graph constructed using Minimum Spanning
Tree with 3 kilometres radius achieves the best results among other structures; we choose
the same distance radius for constructing the Weighted Minimum Spanning Tree. The re-
sults show an even better accuracy of 73.57%, and it illustrates that knowing local context
(i.e., tweets posted nearby) can help our framework to understand content better.

Based on whether the models account for the absolute positions of tweets and spatial
distances between the pairs of nodes in the graph or not, we classified the graphs into three
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Figure 6: Comparing manually assigned labels and the output from the model based on a
Minimum Spanning Tree (3 km).

major categories as introduced in Section 4.3 and shown in Table 1: a-spatial graphs, semi-
spatial graphs and spatial graphs. It is evident that the more abundant spatial information
the model has, the higher performance the GCN can achieve. GCN on Weighted Mini-
mum Spanning Tree is clearly higher than the results achieved by GCN on the semi-spatial
graphs (weighted Random Path Graph, weighted Cycle Graph and weighted Complete
Graph), and the results achieved by GCN on the a-spatial graphs (Random Path Graph,
Cycle Graph and Complete Graph).

It is also interesting to see that the results achieved by GCN are significantly higher than
the traditional supervised learning method SVM. The latter used features exacted from the
stacked multi-modal autoencoder and their corresponding labels, but it didn’t account for
the geographies of the posts. As already mentioned, labels have not been assigned based
on geography or location, but solely based on content, which is the information provided to
the SVM. Similarly, our proposed framework outperforms the two deep learning methods
DNN and VTCNN. It is, however, important to highlight that the latter two were originally
designed for supervised learning tasks with large and well-defined training data. In the
context of our task, those two frameworks tend to overfit when trained on a relatively
small and noisy sample. That is instead not a problem for the GCN framework.

These findings are particularly interesting, as they attest to the relevance of the ge-
ographies of information in analysing social media content. By propagating information
through a geographically-constructed network, our approach seems to be able to exploit
the information implicitly encoded by the location of the posts and the resulting proxim-
ity and clustering of content. As such, the GCN approaches on spatial graphs are clearly
superior to the a-spatial and semi-spatial models, including models that use random or
complete graphs.
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Additionally, following our experiment design in Section 4.5, Table 1 also summarises
the results of the baseline methods which only adopt text content and image respectively
rather than using combined representations for the classification. As GCN with spatial
graph constructed using Minimum Spanning Tree with 3 kilometres as radius achieves
reasonably good labelling, we implement the same settings for GCN models in the baseline
experiments. The result shows that the GCN model outperforms the traditional machine
learning semi-supervised approach Label Propagation. Also, the labelling solely relying on
text content proves to be unreliable with comparably low accuracy. Furthermore, although
the labelling based on image content achieves worse results compared with multimedia
content, it produces a competitive labelling output with relatively high accuracy and F1
score.

Those results particularly interesting from a social science perspective, as it proves the
evidence that visual content offers richer complementary information than what the ac-
companying text reveals (Borth et al., 2013), and the image content of tweets dominates
human judgment at the labelling stage.

5.2 Spatio-Temporal graph

As mentioned in Section 4.4, to be consistent with spatial distance, we transform the time
series information equivalent to the spatial distance. In Table 1, we summarise the results
of experiments on spatio-temporal graphs using 10 meters = 12 hours (see the paragraph
after next for further discussion). The topological structure using Minimum Spanning Tree
based on temporal weighted Euclidean distance with a 4 kilometres radius achieves the
best results for both accuracy (78.98%) and F1 score (76.72%), which are significantly higher
than the results achieved by GCN on the graphs merely with spatial information. Further
performance improvement is obtained when applying the Weighted Minimum Spanning
Tree using the same distance radius (80.08% accuracy and 78.65% F1 score). The perfor-
mance is superior compared with the results achieved by spatial graphs discussed above.

The findings also illustrate that despite the variation of the graphs constructed using
different types of spatio-temporal distance and distance radius, the results achieved prove
to be relatively stable with higher accuracy and F1 score comparing with spatial graphs.
These findings are interesting from spatio-temporal analysis perspective, as they illustrate
that adding the temporal component of tweets can help the GCN model to produce better
labelling (i.e., semantic categorisation) on their multimedia contents.

We also designed further experiments using different temporal-spatial distance trans-
formations on the graphs, and explore their impacts on classification accuracy. As shown in
Table 1, the best results for graphs constructed using Spatio-Temporal Euclidean Distance
and Temporal Weighted Euclidean Distance are achieved with a radius equal to 3 and 4
kilometres. As such, we use 3 and 4 kilometres as default radius to construct graphs respec-
tively, for these two approaches. Table 2 shows the results obtained on different temporal-
spatial distance transformations including 1 metre = 12 hours, 10 metres = 6 hours, 10
metres = 8 hours, 10 metres = 12 hours and 10 metres = 24 hours. These test allowed
us to test different temporal "localities" and how they compare against spatial "localities"
in capturing events and spatio-temporal patterns. The results indicate that 10 metres = 12
hours perform best in the context of our dataset.

As shown in Table 1 and Table 2, GCN performs best when used in combination with
our proposed spatio-temporal weighted distance. As we discussed in Section 4.4, the dis-
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Transformations Spatio-temporal Euclidean Distance Temporal Weighted Euclidean Distance
1m = 12hr 60.53% 65.56%
10m = 6 hr 65.47% 72.08%
10m = 8 hr 68.23% 75.82%
10m = 12 hr 70.28% 80.08%
10m = 24 hr 68.85% 77.07%

Table 2: Comparisons between different temporal-spatial distance transformations. (Best
results achieved.)

Figure 7: Performance comparisons using different training data.

tance proposed by Chang et al. (2007) was originally devised for analysing trajectory data
rather than social media posts. Further extensive research into such spatio-temporal mod-
elling issues is clearly needed. Despite the fact that there is a wide literature focusing on
spatio-temporal analysis of social media data, we argue our paper is the first to embed
spatio-temporal distance in a deep learning approach to achieve a semantic understanding
of content. How to best model spatio-temporal distance in this context is an interesting
research area that we hope to explore further in our future work.

5.3 Framework Robustness

As mentioned in Section 3, the dataset used for the experiments presented in this paper
is noisier and more imbalanced than classic benchmarks used in traditional classification
tasks. It is therefore important that we explore the effects of such imbalances on the classi-
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Figure 8: Results of the prediction test on a further unlabelled sample.

fication task, and evaluate the robustness of our framework against variations in training
data.

Therefore, we design an additional experiment using five different samples from our
datasets. Each sample has at least four tweets for each label, but the proportion of tweets
assigned with the different labels is slightly adjusted. The experiment is conducted using
the best performing approach in Table 1, that is a weighted graph constructed using the
temporal weighted Euclidean distance with Weighted Minimum Spanning Tree (4 km).

The results are shown in Figure 7. Although model performance is slightly affected
by the variation in the sample, the classification results are fairly consistent and stable.
The results illustrate the robustness of our proposed framework on heavily imbalanced
datasets such as "live" social media streams, and thus its relevance for applications in digital
geographies.

5.4 Showcases

In order to showcase the capabilities of our framework, we briefly include two showcases.
First, Figure 8 illustrates how the model trained for the case study above can be used to
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Model Accuracy Micro-F1 Score
GCN (StN(distance-temp.-weighted, 4km) 78.50% 76%

Table 3: Showcase of the framework on a new dataset

classify a further sample of unlabelled data (1200 tweets) with a spatially constructed graph
using Minimum Spanning Tree (3 km). As discussed above, the classification is noisy and,
for instance, the tweet in Figure 8a is labelled as Not informative, as the model struggles
to reconcile the location in a park and a text that indicates being at an attraction with the
image of a bicycle. At the same time, the remaining three tweets indicated in Figure 8 seem
to have been assigned a fairly accurate label among those we defined for our case study
and considering that the aim of the tool is to allow users to define their own labels.

Second, we extracted a new sample of 200 tweets and labelled them following the same
labelling procedure introduced in Section 3.1. The new dataset has 30 tweets that are la-
belled as Not Informative, 2 tweets as Animals, 52 tweets as Places and Attractions, 43 tweets as
Personal, 50 tweets as Food,1 tweet as News, 3 tweets as Entertainment, 3 tweets as Nature, 8
tweets as Social, 4 tweets as Sports and 4 tweets as Work. We then used the model described
above using a spatio-temporally constructed graph using Minimum Spanning Tree (4 km)
to predict the labels of the new sample, obtaining the results presented in Table 3.

6 Discussion

In the sections above, we introduced a semi-supervised learning framework based on ge-
ographic adjacency networks to label social media posts based on their textual and visual
content, as well as spatial and temporal aspects. The results demonstrate that taking into
account the geography of each post is crucial to achieving a semantic understanding of
content and enable labelling. In particular, while the labels used in the experiment were
not assigned based on the location of social media posts, spatially-enabled classifiers per-
formed better than a-spatial ones. The temporal component was also established as a key
aspect in encapsulating the concept of place, and taking into account spatio-temporal re-
lationships between social media post led to better labelling. The results show that our
framework can produce good labelling results with partially labelled data, even on noisy
and imbalanced data such as the one used for the case study presented above. Although
we used Twitter as our case study, our framework has the flexibility to be extended to any
other social media platform providing location-based services. As such, our approach has
the potential to be developed into a flexible tool for the study of digital geographies.

The majority of quantitative research on social media analysis in geography focuses on
the text, whereas qualitative research maintains the importance of visual content (Ash et al.,
2018). As such, we based our work on the assumption that including the visual component
of a post provides key information in understanding its content. To test that assumption
we designed a set of experiments to compare the labelling resulting from including both
text and images, only text and only images, using our GCN model, as well as the semi-
supervised approach Label Propagation (Zhu and Ghahramani, 2002) as our baseline. The
outcomes show that GCN provides the best results on Weighted Minimum Spanning Tree
(3 km), which takes into account the geographies of social media content (more on this
below), as well as text and image. That indicates that including both the textual and media
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component improves the labelling results compared to traditional text-based social media
analysis, confirming our assumption above. These results are particularly important in a
time where visual content such as images have become an integral and growing part of
social media communication, as users shift from text-based posts to multimedia content
(Weller et al., 2014). By taking advantage of recent developments in deep learning tech-
nologies, our paper is a first step towards bridging the gap between text-based quantitative
analysis and visual methodologies in digital geographies.

To explore how to best encode the spatial information of social media posts in our
model, we tested the effect of different graph structures on the performance of the GCN. We
implemented our proposed GCN model on different structures, from semi-spatial graphs
(e.g., Weighted Path Graph and Weighted Complete Graph) to complex structures taking
different approaches to encoding the geographies of posts as network links and distances.
The results show that constructing a geographic graph taking into account distances be-
tween posts and with an appropriate density of connections (e.g., Minimum Spanning Tree)
can significantly improve the performance of our graph-based semi-supervised framework
compared to random or complete graph structures. The performance of our model is
clearly superior to the traditional machine learning approach SVM (Cortes and Vapnik,
1995), which does not take into account spatial graph structures, and classifies tweets based
solely on the extracted feature representations. The comparison with the results obtained
by GCN on three a-spatial graphs (i.e., Random Path Graph, Cycle Graph and Complete
Graph) demonstrate that a graph-based deep neural network which takes into account the
geographies of social media post provides not only better labelling results compared to tra-
ditional machine learning methods, but also better results compared to itself on the graphs
with no geographies encoded in. Furthermore, the outcomes obtained by using different
spatial graphs demonstrate that selecting an appropriate spatial (topological) structure can
significantly improve the labelling results.

The results ultimately highlight the importance of understanding social media content
geographically. The geotag specifying the geographic location of a post is not merely a
point, but it is an integral part of the augmentations that bring the place into being(Graham
et al., 2015). As such, taking into account the spatial relations between posts via the convo-
lution of content through the spatial graphs allows us to go beyond the geo-tag(Crampton
et al., 2013a), and provides the GCN with key contextual information, that is crucial in the
semantic understanding of social media content and thus the digital representations of the
city (Ballatore and De Sabbata, 2020)

However, places do not merely exist in space, but they are "specific time-space config-
urations made up of the intersection of many encounters between ‘actants’ (people and
things)" (Agnew, 2011). In fact, our experiments indicate that the labelling (i.e., semantic
categorisation) of social media posts benefits significantly from including not only the spa-
tial but also the temporal aspects of social media content. We experimented with graphs
based on spatio-temporal distance which take the temporal element of tweets into account
during the construction of the graph. We proposed two distance calculation approaches,
one based on a spatio-temporal Euclidean distance and one based on a temporal weighted
Euclidean distance. The former simply considers the temporal element as a third, separate
dimension, whereas the latter uses a mathematical weight to equate space and time, to
control the impact of time on distance. These versions of the GCN thus take into account
not merely the spatial neighbours of a tweet to understand the local context, but its spatio-
temporal neighbours. The results show that taking into account the temporal component
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improves the quality of the labelling and the stability of the model. The GCN model on
the graph constructed using temporal weighted Euclidean distance also achieves the over-
all best results, which does not only illustrate the effectiveness of our distance calculation
approach but also indicates that a social media analysis requires sophisticated modelling
of the temporal element. The GCN seems to successfully capture the in-depth connections
between similar events that might be spatially distant from each other but temporally close,
and vice versa.

As such, a GCN on a well-defined spatio-temporal graph achieves better results through
a deeper understanding of places as "time-space configurations" (Agnew, 2011) and social
media posts as "intersection of many encounters between ‘actants’" (Agnew, 2011), thus
contextualising each post within its spatio-temporal neighbours. To the best of our knowl-
edge, this is the first paper to embed a spatio-temporal distance into a deep learning ap-
proach to achieve semantic understandings of social media content. While our approach
in this paper has achieved reasonable performance, we suggest that further research is
necessary with regard to this aspect.

Finally, we explored the robustness of our framework and evaluate whether data vari-
ability (e.g., variations in the proportion of data for each label in training data) might affect
the labelling results. The experiments demonstrate that our framework is robust and pro-
duces stable, consistent labellings. As such, we argue that our proposed framework has the
potential to be developed into a powerful tool for analysis of noisy and imbalanced social
media datasets in digital geographies.

7 Conclusions and Future Work

In this paper, we presented a novel approach to the exploratory analysis of geo-located
social media content capable of classifying posts based not only on their textual content but
also taking into account their visual content, and embedding the concept of place through
spatio-temporal graph convolutional networks, thus breaking new ground in the use of
deep learning in GIScience. Furthermore, our experiments show that our framework can
also benefit research in digital geographies (Ash et al., 2018) in the analysis of large volumes
of data, where a mixed-method approach combining quantitative and qualitative analysis
might be necessary.

We outlined a stacked multi-modal autoencoder able to extract combined representa-
tions from multimedia content of social media posts, and a graph convolutional network
with encoded geographical information developed to label social media posts based on
their content and the place where they are posted. The outcomes indicate that our frame-
work can produce good labelling results with partially labelled data, even if the dataset
is heavily noisy and imbalanced. Our experiments also demonstrate that spatio-temporal
graph convolutional networks are an effective way to encapsulate and understand social
media posts as “augmentations”(Graham et al., 2015) of places as “time-space configura-
tions”(Agnew, 2011) and thus enable a better semantic characterisation of content. As such,
our approach is a first step towards bridging the gap between quantitative textual process-
ing and visual content analysis in digital geographies, illustrating how visual content is an
indispensable part of social media analysis, and it has the potential to be developed into a
flexible tool for the study of digital geographies.
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This paper is but one step towards a better understanding of our digitally-mediated
urban spaces. The approach here presented is by no means meant to replace in-depth qual-
itative analyses of social media (or indeed urban spaces). Rather, it aims to complement
and take those findings further, expanding in-depth analyses of small volumes of social
media posts to large volumes of posts, which would not be unrealistic to process manually.
Our framework aims to bridge the qualitative-quantitative divide and provide a useful tool
for researchers in digital geographies, where the latter is understood in a broader sense, in-
cluding both quantitative and qualitative (and indeed mixed) methods.

In our future work, we aim to test the scalability of our framework further. As men-
tioned above, any labelling process, whether manual or automated, brings significant lev-
els of uncertainty and subjectiveness, thus rendering the type of classification task tackled
in the paper even more challenging, as well as difficult to assess. We are currently exper-
imenting a fuzzy logic classification, where multiple labels (or "codes") can be attached to
each tweet. We believe that such an approach might be suited to case studies in digital
geographies, where tagging a single piece of content with multiple labels can be extremely
valuable in dealing with uncertainty and subjectiveness. Moreover, the current approach
deals with feature extraction and semi-supervised training as two separated, subsequent
stages, and we are working towards combining them into an end-to-end training frame-
work.
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