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A B S T R A C T   

Segregation often dismantles common activity spaces and isolates people of different backgrounds, leading to 
irreconcilable inequalities that disfavour the poor and minorities and intensifies societal fragmentation. There-
fore, segregation has become an increasing concern and topic of research with studies typically concentrating on 
the residential communities of a particular racial or socioeconomic group. This paper enhances the residential 
view of segregation and examines the topic in the context of urban mobility. Specifically, it expands upon prior 
research by employing large-sample, seamless telecommunication logs of London, UK to provide a holistic view 
of mobility across the entire socioeconomic spectrum. A method is developed to transform the data to flows 
between geographic areas with different socioeconomic statuses. Spatial interaction models are then calibrated 
to examine the impact of both geographical distance and socioeconomic distance on the deterrence of flows and 
the analysis is extended to analyze the interaction of the two factors. Overall, socioeconomic distance is found to 
have a subtle effect compared to geographical distance. However, different effects are observed depending on the 
socioeconomic distance between flows and the deterrence of mobility tends to be the greatest when both physical 
and socioeconomic distance are high, suggesting that both factors may play a role creating and maintaining 
segregation.   

1. Introduction 

Segregation reinforces rising inequality through long-term choices 
such as where to live, work, or attend school, as well as daily mobility 
choices, such as places to shop, socialize, or hospitals to visit. Segrega-
tion can further permeate our lives as market mechanisms more deeply 
penetrate society (Sandel, 2012). For example, it may take root gradu-
ally, but communities may quickly become accustom to rising levels of 
isolation. It is inherently complicated to understand segregation as it is 
the outcome of many factors that depend upon spatial and demographic 
context. As a result, the issue of segregation is typically framed in terms 
of a particular racial group, socioeconomic class or geography, which 
may only partially characterize the ‘bubbles’ that encapsulate lived 
experiences. 

A large body of work on segregation is facilitated by the availability 
of traditional surveys (e.g., the census) of residential areas, schools, and 
workplaces of the population where the geodemographics are relatively 
static. Conspicuous patterns often emerge, though these efforts do not 

capture the experience of highly mobile urban populations that are 
dynamic across space and time. (Charles, 2003). There have been a 
number of attempts to capture mobility-based segregation using social 
media (Wang, Edward, Phillips, & Sampson, 2018), public trans-
portation logs (Lathia, Quercia, & Crowcroft, 2012) and call detail re-
cords (CDRs) of mobile phones (Silm & Ahas, 2014). These studies have 
confirmed the existence of segregation (Wang et al., 2018), demon-
strated that it may vary over time (Silm & Ahas, 2014)), and suggested 
that denser samples of urban mobility across the population are needed 
to paint an accurate picture of mobility-based segregation. 

This paper builds on previous efforts and overcomes some limitations 
by approaching mobility-based segregation through the use of a large 
sample of the urban population across the entire socioeconomic spec-
trum. Specifically, it takes advantage of seamless city-scale mobility 
traces extracted from a European mobile network operator for the city of 
London, UK. This allows for continuous location approximation as an-
tennas record the pairing events with devices (e.g., network attachment, 
detachment, and handovers). It is also combines the mobility traces with 
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census data, enabling a comprehensive segmentation of the population 
by socioeconomic status. The density and diversity of our sample is a 
major advantage over previous research that focused on particular 
racial/ethnic groups or selected a sub-set of classes (e.g., rich vs. poor). 
Consequently, it is possible to present a more holistic characterization of 
mobility-based segregation. 

The remainder of this paper is organized as follows: some related 
work is first reviewed before introducing the data and methods 
employed in this research; then the results are described; next, a dis-
cussion of the results and their significance in relation to mobility-based 
segregation is provided; and finally, some concluding remarks and po-
tential extensions of this work are put forth. 

2. Background and previous work 

Segregation is a central concern for contemporary political, 
economical, and cultural well-being. It does not simply denote socio- 
economic, racial, or ethnic differences within an urban space; rather it 
is an underlying structure of societal fragmentation and irreconcilable 
inequality (United Nations Centre for Human Settlements, 2001). One 
research approach has been to understand the proliferation of segrega-
tion as a consequence of growing income inequality. For example, one 
study examined census data from 1970 to 2000 for 100 metropolitan 
areas in the U.S. and demonstrated that income inequality contributes 
towards income segregation, which is defined as the “uneven geographic 
distribution of income groups within a certain area” (Reardon & Bis-
choff, 2011). Recent research also provides evidence on the evolution of 
segregation: for example, many studies observed an expansion of 
segregation (Musterd, Marcińczak, van Ham, & Tammaru, 2017; van 
Ham, Marcińczak, Tammaru, & Musterd, 2015; van Kempen & Murie, 
2009) whereas one study observed a decrease in racial segregation in the 
U.S. (Lee, 2016). 

There is a growing concern that segregation reinforces an unfair 
playing-field in terms of access to social capital, which ultimately dis-
favours the poor and ethnic minorities (Wilson, 1990), and various ef-
forts are being made to understand societal and individual outcomes of 
segregation and how to address the associated problems. The Moving to 
Opportunity (MTO) experiment (Sanbonmatsu, Ludwig, Katz, et al., 
2011) utilized a representative sample where 4600 low-income families 
were recruited and provided with housing vouchers for relocation. The 
experiment resulted in a number of major findings such as a link be-
tween movements and better health outcomes. A follow-up study further 
examined the long-term neighborhood effects and found that moving to 
a lower-poverty neighborhood during adolescence was associated with 
increased college attendance and reduced single parenthood rates 
(Chetty, Hendren, & Katz, 2016). In addition, other research efforts re-
ported evidence that segregation is associated with inequality in health 
care (Bach, Pham, Schrag, Tate, & Hargraves, 2004; Smith, Feng, Fen-
nell, Zinn, & Mor, 2007), education and employment outcomes (Cutler 
& Glaeser, 1997), and safety and crime rates (Krivo & Peterson, 1996). 
Consequently, understanding segregation, its drivers, and its outcomes 
remains an important topic across disciplinary perspectives. 

In particular, segregation is often investigated through a geograph-
ical lens that seeks to measure a variety of socioeconomic characteristics 
across cities, metropolitan areas, or countries. This line of inquiry tends 
to vary according to a diversity of factors, such as how the population is 
segmented (e.g., black-white (Massey, Rothwell, & Domina, 2009)), the 
geographical area of interest, scale of spatial units, or specific manifes-
tations of segregation (e.g., racial segregation at work (Ellis, Wright, & 
Parks, 2004)). However, a common thread across many geographical 
studies of segregation is that they focus on a static population, such as 
the distribution of residencies (Charles, 2003; Farrell, 2008; Katz & 
Lang, 2004) or work places (Ellis et al., 2004). The typical approach is to 
take a geographical division and/or a distribution of socioeconomic 
categories and to employ a measure or index that quantifies the 
magnitude of segregation between the categories across the 

geographical divisions. Census data is often employed because it offers 
detailed socioeconomic and racial attributes across large study areas and 
provides clear geographic divisions (Charles, 2003; Massey et al., 2009; 
Reardon & Bischoff, 2011). Furthermore, many indices have been 
developed and used to quantify and compare the degree of segregation. 
Massy and Denton (Massey & Denton, 1988) conducted an extensive 
review that surveyed and categorized 20 segregation indices. For 
instance, a measure of category “evenness” compares the ratio of ma-
jority/minority groups in a spatial unit, with the measure becoming the 
highest when no members of the minority and majority groups are 
located in the same spatial unit. Since these methods are designed to 
measure the overlap of the group distributions, an important task is how 
the groups are defined. 

A more recent perspective recognizes that residential and work lo-
cations are only a portion of where social interaction occurs (van Ham & 
Tammaru, 2016). In contrast to the traditional geographical approach, 
mobility-based segregation expands the focus to include individuals’ full 
activity space – the exhaustive set of places an individual might expe-
rience on a day-to-day basis. Daily activity spaces provide a basis for 
understanding actual exposure of individuals to different social groups. 
Systematic differences in activity spaces between social groups implies 
varying day-to-day territories, decreasing the likelihood of interaction. 
In contrast, overlapping activity spaces imply longer interaction 
amongst individuals with potentially diverse backgrounds (Park & 
Kwan, 2018). Furthermore, there is a growing body of research that 
recognizes the importance of mobility in defining the spatial context of 
observations. For example, Kwan (Kwan, 2013) discusses the impor-
tance of incorporating time and mobility into geographic research to 
move beyond the static spatial perspective. Specifically, segregation is 
pointed out as a topic that can be refined when it is viewed through the 
lens of mobility and activity spaces. 

A number of recent studies explored segregation across social 
spheres and routinised activities (Netto, Soares, & Roberto, 2015) or 
daily lived experiences of different social groups (Zhang & Wang, 2019), 
which has practical implications for bridging interactions across popu-
lation groups and for the equitable production of social capital (Wilson, 
2012). In particular, overlapping activity spaces and co-presence in 
urban environments facilitate interactions, enabling individuals to 
experience each other (Netto et al., 2015). While the type of interactions 
can range from exclusion and tolerance to sharing physical space and 
“welcoming of the other” (Levinas, 1979; Netto et al., 2015), co- 
presence opens the potential to create mutual understanding of lived 
experiences (Legeby, 2013). 

Investigating mobility not only exposes additional dimensions of 
segregation, but it also raises new questions about relationships with the 
urban environment, such as the distribution of economic opportunities 
(Kain, 2004) or public transportation networks (Lucas, 2012). Though 
understanding connections to these factors calls for further research, the 
focus here is directly on a large-scale analysis of mobility-based segre-
gation and the dynamic nature of mobility in contrast to assuming a 
static residential population. In addition, an exploratory analysis of the 
mobility-based segregation is necessary before examining additional 
factors. 

A major challenge to exploring mobility-based segregation is 
capturing the mobility of individuals across segments of the population, 
for which various data sources have been employed. For instance, CDRs 
are commonly used as they enable large-scale analyses by tracking the 
approximate location of where mobile devices connect to antennas 
(Dannamann, Sotomayor-Gómez, & Samaniego, 2018; Silm & Ahas, 
2014). For example, through CDRs Silm and Ahas (Silm & Ahas, 2014) 
observe a temporal variation in the degree of segregation in the capitol 
city of Estonia. They find variations along the diurnal cycle, and also 
between weekdays and weekends, arguing that the degree of segrega-
tion is lower when considering mobility data than when considering 
census data. CDRs are also used to predict socioeconomic indicators of 
individuals (Pappalardo, Pedreschi, Smoreda, & Giannotti, 2015) and 
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geographic areas (Smith-Clarke, Mashhadi, & Capra, 2014), though 
these studies do not directly focus on segregation. One drawback of 
CDRs is that they are inherently limited in their ability to accurately 
identify trip destinations of daily mobility due to the sparsity of records 
across different time spans. This issue is further compounded by the 
increasing usage of messaging apps instead of SMS, which are not 
recorded in CDRs. 

Another source of data for studying mobility-based segregation at a 
large-scale is geo-tagged social media. Wang et al. (Wang et al., 2018) 
studied neighborhood isolation in 50 American cities through geocoded 
Twitter data of 400,000 users generated over 18 months. Segmenting 
the users into poor vs. non-poor and white, black, and Hispanic 
ethnicity, the work analyzes the diversity and range of trips, and inter- 
group exposure. Although the data source allows GPS-level spatial ac-
curacy, the temporal sparsity described for CDRs is similarly problem-
atic here. In addition, social media sources are likely prone to 
demographic bias as active users are not typically representative of the 
general population (Jiang, Li, & Ye, 2019). Moreover, individuals’ social 
media usage habits could vary widely and may not be representative of 
routine mobility activities (Lindqvist, Cranshaw, Wiese, Hong, & Zim-
merman, 2011). 

Public transportation logs have also been used to explore the segre-
gation of mobility in London (Lathia et al., 2012). By aggregating trips 
between stations, Lathia et al. measure homophily based on the socio-
economic attributes of where the stations are located and find that well- 
off areas are visited by more diverse populations whereas people from 
well-off areas tend not to visit deprived areas. However, since the study 
is restricted to a particular mode of transportation, it is noted that 
homophily cannot be assumed to exist more generally. 

These data sources previously employed to study mobility-based 
segregation are limited in their ability to consistently capture fine- 
grained mobility activity across space and time, represent the general 
population, or both. Consequently, this research builds on previous ef-
forts to explore mobility-based segregation by taking advantage of the 
high-frequency mobility traces of nearly 2 million individuals sampled 
continuously across space and time for a single city. Östh et al.’s recent 
work (Östh, Shuttleworth, & Niedomysl, 2018) uses a similar type of 
telecommunication data for measuring mobility-based segregation in 
several Swedish metropolitan areas and finds that mobility tends to 
reduce segregation, particularly in central areas. However, only data 
from a single day (24 h) and a binary classification (i.e., poverty vs. 
wealth) were used to estimate exposure. Therefore, the data source 
employed here enables a more comprehensive estimation of population 
mobility and socioeconomic classification and is further described in the 
following section. 

3. Data 

3.1. Study area: London, UK 

The city of London, UK was selected as the study area for this 
research for two main reasons. First, London provides an interesting 
study area because the city hosts a large and diverse population that is 
contained within a highly connected metropolitan area, facilitating 
daily urban interactions and offering the opportunity to make rich ob-
servations with respect to mobility-based segregation. The second 
reason is more practical and is based on the availability of both high 
resolution mobility data and detailed geodemographic data. These data 
sources are described in more detail below. 

3.2. Mobility traces 

In order to obtain high frequency mobility data, this research takes 
advantage of the network access logs of a major UK telecom operator, 
which keeps track of the antenna that a mobile device is connected to. 
The dataset logs all access events of mobile devices to the cellular 

network, which occur whenever a device establishes or updates a 
channel with the network. For example, when the device attaches to or 
detaches from the network, or the device is handed over between an-
tennas. The mobile device frequently interacts with the network through 
such activities in order to maintain high quality service. While multiple 
antenna technologies (i.e., 2G/3G/4G) are available, in general, modern 
phones are designed to automatically join the fastest data connection 
available, making them prioritize 4G over 2G or 3G unless a user 
explicitly configures the phone not to use 4G. In addition, 4G provides 
better data and voice services by an order of magnitude, and its 
deployment is much denser than older technology. This typically results 
in a 4G (over 2G or 3G) connection with an antenna that is physically 
proximal to the mobile device for greater bandwidth and smaller last- 
mile latency. 

The high coverage and the density of the antennas permit the loca-
tion of mobile devices to be identified at a fine-grained geography (i.e., 
Lower Super Output Areas), which is further described in the subsequent 
section. In contrast to the CDRs or geo-social media check-ins more used 
in prior research, this dataset also provides continuous mobility traces 
with a high temporal granularity. In particular, a subset of network 
activity was employed that covers the Greater London area during the 
month of January 2018. 

To ensure privacy, every user is assigned a unique random ID and no 
personal information, such as name, age, or address, is included in the 
network event data. Moreover, the main analysis of this research is 
conducted using only aggregated data, further decreasing privacy risks. 

3.3. Index of multiple deprivation 

The neighborhoods of London can be classified socioeconomically 
based on the Index of Multiple Deprivation1 (IMD) survey conducted by 
the UK government. Rather than using only on a single attribute, the 
IMD consists of seven distinct dimensions: 1) income deprivation, 2) 
employment deprivation, 3) health deprivation and disability, 4) edu-
cation, skills and training deprivation, 5) crime, 6) barriers to housing 
and services, and 7) living environment deprivation. As a result, the IMD 
is employed frequently in many domains (e.g., (Mcgillion, Pine, Herbert, 
& Danielle, 2017; Rivas, Kumar, & Hagen-Zanker, 2017)) as an inclusive 
metric for socioeconomic status and is the socioeconomic variable used 
in this research. Furthermore, the IMD is available for a fine-grained 
spatial division of England, called Lower-layer Super Output Areas 
(LSOAs). LSOAs are small areas designed to have a similar number of 
socially homogeneous inhabitants. An LSOA has an average of approx-
imately 1500 residents or 650 households. There are 32,844 LSOAs in 
England and 4834 LSOAs in London. 

Based on the IMD, a ranking amongst the 32,844 LSOAs across En-
gland is created and grouped into 10 equal-sized deciles that divide the 
units from the most deprived to the least deprived. For example, the 
LSOAs in decile 1 fall within the most deprived 10% nationally while the 
LSOAs in decile 10 fall within the least deprived 10%. Fig. 1 illustrates 
the distribution of London LSOAs across the national IMD deciles. It can 
be seen that the number of LSOAs in the extreme deciles (i.e., 1 and 10) 
are significantly lower than other deciles and that a majority of LSOAs 
belong to the lower-to-middle deciles (i.e., 2, 3, and 4). Meanwhile, the 
spatial distribution of the IMD deciles across the LSOAs of London is 
heterogeneous and displays clusters of various sizes for both high and 
low values (Fig. 2). Since both the IMD data and mobile network event 
data can be obtained for LSOAs, it is possible to process and combine the 
two data sources to facilitate a fine-grained and inclusive investigation 
of mobility-based segregation across a broad socioeconomic spectrum. 

1 Available at: https://www.gov.uk/government/statistics/english-indices- 
of-deprivation-2015 
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4. Methodology 

4.1. Measuring inter-LSOA mobility from Mobile network logs 

Before mobility and segregation can be investigated, the mobile 
network log data must be processed into inter-LSOA trips. This entails 
joining the log data with LSOA data and then identifying trips that begin 
in a user’s home LSOA and end in another LSOA. Then the frequency of 
trips between each pair of LSOAs can be tallied and analyzed. 

4.1.1. Mapping between Antennas and LSOAs 
The first step for measuring inter-LSOA mobility from mobile 

network logs is to identify the visits made between LSOAs. A challenge 
here is the mismatch between the boundaries of LSOAs and the coverage 
of the antennas. Depending on the deployment of the antennas, their 
coverage could be smaller than the boundary of one LSOA or it could 
span over multiple LSOAs. Therefore, a mapping is created between the 
antennas and the LSOAs by estimating the antennas’ coverage and 
computing the overlap between the coverage and the LSOA boundaries. 
A Voronoi tesselation was used to estimate the coverage of antennas, 
which has previously produced reasonable results (Frias-Martinez, 
Williamson, & Frias-Martinez, 2011; Park, Serra, Martinez, & Nuria, 
2018). Subsequently, it was observed that the Voronoi polygons 
frequently have a finer granularity than the LSOAs. For instance, Fig. 3 
depicts the boundaries of LSOAs and the Voronoi polygons, and Fig. 4 
shows the distribution of the size of the Voronoi polygons and LSOAs in 
square meters for the study area of London. The granularity of the 
Voronoi polygons suggests that it is feasible to locate mobile devices 
with respect to LSOAs based on the antennas that they connect to. In 
addition, both LSOAs and antennas are based on population density, 
such that small LSOAs are often associated with small antenna Voronoi 
polygons. 

In some cases, an antenna coverage overlaps with a single LSOA, 
making it simple to link the two units. However, many antenna coverage 
polygons span multiple LSOAs (examples can be found in Fig. 3). In 
order to examine the impact of such cases on the study, it was first 
verified whether the LSOAs that overlap with an antenna coverage 
polygon are homogeneous in terms of their IMD decile. For each of the 
antennas coverage polygons, the standard deviation of the IMD decile 
for the overlapping LSOAs is computed. It is observed that the standard 
deviation is small in general; the distribution shows a highly positive 
skew, for example, 72% of the cases are below 1.5. We thus complete the 

Fig. 1. Number of LSOAs per decile in London.  

Fig. 2. Spatial distribution of IMD across London (more deprived LSOAs in 
darker colors). 

Fig. 3. Example boundaries of LSOA (red) and Voronoi polygons (blue). (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 
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mapping simply by assuming that the mobility measured by an antenna 
is divided to LSOAs proportional to the size of the overlap between the 
polygon and the corresponding LSOA. 

4.1.2. Home Detection 
Methods for identifying residences from mobility traces commonly 

aim to identify routine activity during the evening and/or weekends 
(Bojic, Massaro, Belyi, Sobolevsky, & Ratti, 2015; Kevin, 2014). Like-
wise, a method for home antenna detection is developed in this context 
based on this intuition. 

For each day over a month, devices that remain in the same an-
tenna’s polygon during the evening (midnight - 8 AM) for a substantial 
number of days are identified. The method first selects the set of an-
tennas to which a device connects during the evening each day of the 
study. To ensure spatial accuracy, the radius of gyration (Appendix A) is 
employed to estimate the spatial deviation of a device and filter out the 
days when the estimated radius is larger than 2 km. Finally, the method 
classifies the home antenna of a device as the one which meets the above 
criteria for at least 14 days during the month, and the devices that do not 
have a home antenna that satisfies this criteria are excluded from the 
study. 

Occasional hand-overs of stationary devices between distant an-
tennas (also known as ‘ping-pong handover’) could decrease the accu-
racy of home detection; however, it is not likely that such handovers are 
prevalent in our dataset. Both the mobile device manufacturers and 
network operators have made efforts to reduce ping-pong hand-overs (e. 
g., (Neubacher, 2013; Tayyab, Gelabert, & Jäntti, 2019)), as it provides 
battery consumption benefits. In addition, in a dense deployment 
environment, such as London, the detection of home LSOAs are less 
sensitive to antenna handovers since the average size of the Voronoi 
polygons that approximate the coverage of antennas is 0.17 km2, which 
is smaller than the LSOAs average size of 0.32 km2. As a robustness 
check, the portion of person-day instances that are filtered by the 2 km 
spatial deviation threshold were measured. It was found that only 5% 
were filtered out during the midnight to 4 AM when minimal movement 
is assumed. Considering that these filtered instances may also include 
actual movements of the people in addition to ping-pong handovers, this 
implies that ping-pong handovers should not have a strong impact on 
home detection. 

This method ultimately identifies the home antenna for 1.9 M de-
vices, which are widely distributed across the city and overlap in 
coverage with 4813 LSOAs out of 4835. The results also had a large 
number of samples for each of the IMD deciles, for example, with a 
minimum number of 24,000 residents per decile. 

4.1.3. Identification of Trips 
For every device, all of the trips that are made to non-home LSOAs 

are extracted. This is achieved by identifying the connections to the 
antennas whose coverage does not overlap with the LSOA covered by the 
home antenna of the device. A 1-h time threshold for the duration of 
connection is also used in order to filter out potentially unstable con-
nections that occur while mobile-phone users are on-the-move or in 
areas with weak connectivity. 

4.2. Analyzing the relationship between urban mobility and segregation 

An exploratory analysis of the extracted flows is first carried out 
using several visualizations to tease out the relationship between urban 
mobility and segregation. This includes the density of visits between 
IMD deciles and the distribution of distances between LSOAs by decile. 
These techniques provide initial evidence on the role of socioeconomic 
status and distance in generating urban mobility flows. 

In order to further examine segregation-based mobility, it is theo-
rized that there exists a socioeconomic distance-decay, whereby activity 
between LSOAs decreases as the IMD decile difference increases. This 
decay would be stronger if people have a tendency to restrict their daily 
mobility to locations with a more similar socioeconomic status. 

A potential challenge to the socioeconomic distance-decay hypoth-
esis is that mobility is simultaneously shaped by the geographical 
structure of LSOAs. The LSOAs of some classes might be physically closer 
to each other than those of the other classes (i.e., clustering due to place- 
based segregation), which could give rise to a traditionally theorized 
geographical distance-decay. In order to test the presence of a socio-
economic distance-decay versus a geographical distance-decay, a 
gravity-type spatial interaction model is calibrated and their marginal 
effect sizes are compared. 

Spatial interaction models are ideal for measuring the ‘cost’ or 
friction-of-distance factors between geographical regions, while ac-
counting for the push and pull factors present in each region (Farmer & 
Oshan, 2017). A basic gravity-type spatial interaction model in its most 
general form is denoted by 

Tij = k
Vμ

i Wα
j

dβ
ij

(1)  

where Tij is a matrix of flows between origins (subscripted by i) to des-
tinations (subscripted by j), V represents origin attributes describing 
their emissiveness, W represents destination attributes describing their 
attractiveness, d is a matrix of the costs to overcome the physical sep-
aration between locations (usually distance or time), k is a scaling factor 
to be estimated to ensure the total observed and predicted flows are 
consistent, and μ, α, and β are parameters to be estimated that represent 

Fig. 4. Distribution of LSOA size based on area.  
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the effect of each variable on the flows. Since we are primarily interested 
in inference on the cost/distance variables, we can extend this basic 
model to a doubly constrained model that builds in information 
regarding the total outflow and inflow at each location in lieu of exog-
enous variables and is formulated as, 

Tij = AiBjOiDjdβ
ij (2)  

Ai =
1

∑

j
WjBjDjdβ

ij
(3)  

Bj =
1

∑

i
ViAiOidβ

ij
(4)  

where Oi is the total number of flows emanating from origin i, Dj is the 
total number of flows terminating at destination j and Ai and Bj are 
balancing factors that ensures the total out-flows and total in-flows of 
the observed data are preserved in the predicted flows (Fotheringham & 
O’Kelly, 2020). This model can be calibrated using non-linear optimi-
zation where Ai and Bj are computed iteratively until convergence or by 
Poisson regression as suggested by (Flowerdew & Aitkin, 2020). The 
latter method is used here, which requires the logarithm of the cost/ 
distance variables and a categorical variable for the origins and desti-
nations (Tiefelsdorf & Boots, 1995). In the multiplicative model stated in 
(2–4), the distance term d is a multiplication of the two cost variables, 
dgeographic and dsocioeconomic, each of which has its own parameter. There-
fore, in the Poisson regression, which takes the log of the term d, the two 
are entered as separate additive independent variables2 such that: 

Tij = exp
(

k+ μi + αj + β1lndijgeographic + β2lndijsocioeconomic

)
(5)  

where ln is the natural logarithm, and μi and αj are origin-based and 
destination-based binary indicator variables that ensure the constraints 
enforced by the multiplicative balancing factors are met. The compu-
tation of the model was carried out using the spint module of the Python 
spatial analysis library (PySAL) and further details regarding model 
formulation, calibration, and interpretation are available in (Oshan, 
2016). 

5. Results 

5.1. Exploratory visualizations 

Using the individual mobility traces, a daily gyration measure was 
computed3 for every user, which can be interpreted as the ‘typical dis-
tance traveled’. It was then averaged across all days users are active over 
the period of the study. Fig. 5 reports the distribution of the measure as a 
boxenplot for each IMD decile where it can be seen that the median 
average gyration values tend to be greater for users that were identified 
as residents in LSOAs with higher IMD scores (i.e., less deprived). This 
result is consistent with some previously observed relationships between 
mobility and socioeconomic status (Dodson, Gleeson, & Sipe, 2004; 
Pappalardo et al., 2015). One reason for this result could be that in-
dividuals from different socioeconomic classes disproportionately use 
different modes of transportation. For example, people from more 
deprived areas are likely more dependent upon public transportation. 
Fig. 6 provides an aggregated overview of the public transport 

accessibility level (PTAL) data4 for London LSOAs, which measures the 
accessibility of a point to the public transport network based on walk-
ability and service availability. Each LSOA is graded between 0 and 6b 
with a score of 0 is very poor access to public transport, and 6b is 
excellent access. In general, more deprived areas tend to have better 
access to public transportation while less deprived areas tend to have 
less access despite having larger average gyration values, suggesting that 
those living in less deprived areas have the resources to rely on private 
transportation. This discrepancy is not further pursued here as it is not 
the primary interest of this research, though the importance of this 
observation is highlighted later. 

In order to obtain an overview of mobility flows between all IMD 
decile pairs, a visualization was constructed that consists of a 10 × 10 
matrix where the rows and columns indicate the decile of the source and 
the destination, respectively (Fig. 7a). Furthermore, the matrix is 
normalized by rows (divide-by-sum) to account for the different number 
of LSOAs per decile. Consequently, the rows can be read as “going to” 
and each cell as the percentage of the visits made to the corresponding 
decile, with darker colors corresponding to higher percentages. 

The rows of Fig. 7a show that the trips are dispersed throughout the 
IMD deciles, particularly across the middle of the decile distribution. 
This dispersion implies that the socioeconomic distance does not seem to 
act as a strong mobility deterrent (i.e., weak socioeconomic distance- 
decay). This pattern of dispersion is clearly contrasted when we juxta-
pose Fig. 7a with an IMD decile matrix created based on the neighboring 
frequency of LSOAs5 (Fig. 7b). A stronger concentration along the di-
agonal in Fig. 7b shows that LSOAs of similar deprivation status 
frequently neighbor each other. Despite this segregated geographical 
layout of LSOAs, the dispersion of Fig. 7a indicates that people 
frequently visit beyond neighbor LSOAs that have larger socioeconomic 
distance. However, there still does exist a trend of fewer trips being 
made between long socioeconomic distances (e.g., from decile 1 to 

Fig. 5. Boxenplot of the average gyration.  

Fig. 6. Percentage of PTAL over IMD deciles.  

2 This implies a power distance-decay function, though we also tested an 
exponential distance decay function. The power distance-decay function was 
ultimately selected because it yielded better model fit in terms of root mean 
square error and pseudo r-squared  

3 the gyration is computed as a weighted measure based on the duration of 
antenna connections 

4 Available at: https://data.london.gov.uk/dataset/public-transport-accessibi 
lity-levels  

5 The neighboring LSOAs were computed based on the queen adjacency rule. 
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decile 10 or vice versa). 
A more holistic view is furnished through an analysis of the 

geographical distance distribution of subsets of LSOAs based on deciles. 
Fig. 8 contains a plot for each of the ten deciles; each plot visualizes the 
distributions of distances between LSOAs of one decile and each other 
decile, with lower IMD deciles distinguished by darker blue hues and 
higher IMD deciles distinguished by darker red hues. It is apparent that 
in general, distances tend to be lower amongst lower IMD deciles. This 
pattern becomes weaker as the plots move from IMD decile 1 to decile 5 
and the distributions for IMD decile 5 to 7 are largely overlapping. The 
trend is reversed for IMD deciles 8 to 10 where there is a small but 
increasing proportion of short distances between higher IMD deciles. 
Overall, this suggests that LSOAs of high deprivation and low depriva-
tion tend to be more nearby, but that high deprivation LSOAs (i.e., lower 
deciles) are the most clustered in space. 

Overall, the visualizations presented here suggest a nuanced rela-
tionship between socioeconomic distance, geographical distance, and 
their impact on mobility flows. In order to further tease out these re-
lationships, it is necessary to use multivariate techniques that can 
simultaneously account for different factors. 

5.2. Spatial interaction models 

The doubly constrained spatial interaction model was used to more 
formally investigate the impact of geographical distance and socioeco-
nomic distance on mobility flows and quantify their individual distance- 
effects. More specifically, the number of trips made between each LSOA 
is employed as the dependent variable and the independent variables are 
composed of the cost/distance factors, including the difference between 
the IMD deciles of the source and destination LSOAs (i.e., socioeconomic 
distance) and the distance between the source and destination LSOAs 
centroids (i.e., geographical distance). Based on a Mcfadden’s pseudo R2 

of 0.902, calibrating the described model provides a moderately-to-high 
fit to the data. The resulting parameter estimates are displayed in 
Table 1, along with standard errors and t-values for inference. However, 
it should be noted that the very large sample of more than 9 million flow 

Fig. 7. Matrix Diagrams. Left shows the pairwise visits between IMD deciles and right shows the LSOA neighbors across IMD deciles.  

Fig. 8. Distribution of distance (in kilometers) to LSOAs of different deciles.  

Table 1 
Regression Coefficients.  

Variable Estimate Std. Err t-value 

Intercept(k) 10.97 0.00060 18,108.54 
log(Geographical Distance) − 1.97 0.00028 − 3127.05 
log(Decile Distance) − 0.03 0.0000030 − 663,225.91  
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observation between the approximately 3000 LSOAs makes it relatively 
easy to obtain statistically significant results. Hence, the interest here is 
primarily on comparing the size and direction of estimated effect sizes, 
though small standard errors and large t-values indicate all estimates are 
significantly different from zero for standard levels of confidence. 

The estimates for both geographical distance-decay and socioeco-
nomic distance-decay take on the expected negative sign, indicating that 
the volume of trips decreases as either the geographical or socioeco-
nomic distance increases. However, the magnitude of the estimate for 
socioeconomic distance-decay (− 0.03) is relatively small, especially 
compared to the estimate for geographical distance-decay (− 1.97). This 
means that although a socioeconomic distance-decay effect can be 
identified, it is minor compared to the association between geographical 
distance and the volume of trips. This suggests that people are more 
likely to choose to travel shorter distances to more diverse LSOAs than 
traveling over longer distances to more similar LSOAs. That is, they are 
more constrained in their daily activities by geographical distance than 
socioeconomic distance. These results are in agreement with the find-
ings based on Figs. 7a that there is a weak socioeconomic distance- 
decay; however, this model is too simplistic. The decay effect could 
vary depending on the direction of a flow; for example, the effect could 
be stronger for flows from more deprived areas to less deprived areas 
than for those of the opposite direction. The results thus far also do not 
highlight differences observed in Fig. 8 across different portions of the 
socioeconomic spectrum. Mobility-based segregation is therefore 
further investigated by considering a possible interaction effect between 
socioeconomic and geographical distance and analyzing the flows by 
their directions. 

In order to simplify the analysis, the 10 deciles are merged into 3 
groups: the lower group (1–4), middle group (5–7), and the higher group 
(8–10). Then 9 directional categories are made based on inter-group 
movements. These categories are referred to as “L-L" (visits from a 
lower decile LSOA to another lower decile LSOA), “L-M", “L-H", and so 
on. Then the geographical distance as a continuous variable is interacted 
with these categorical variables. The outcome is that geographical 
distance-decay can be estimated individually for each of the directional 
categories. Without this three-way classification, there would be 100 
directional categories, making the presentation and interpretation of 
results more complex. In addition, the classification is in alignment with 
patterns observed in Fig. 8 and was further corroborated using a ma-
chine learning approach that seeks to group LSOAs by simultaneously 
maximizing the similarity within groups and the differences between 
groups. In summary, a three-way logistic regression classification model 
was trained and tested that predicts the group of an LSOA based on its 
trip frequency to the 10 deciles. The model is implemented using scikit- 
learn (Pedregosa et al., 2011), and the class imbalance (different number 
of LSOAs amongst classes) is addressed by adjusting class weights (we 
set the ‘class_weight’ parameter to ‘balanced’). Table 2 presents the re-
sults of the classification model using a 5-fold cross validation, which 
achieved a reasonable level of classification performance (overall ac-
curacy >75%). 

The 9 categories based on the 3 classes were then used to create an 
interaction term with geographical distance that was entered into 
another doubly constrained interaction model and calibrated. The re-
sults are presented in Table 3 where as expected, geographical distance- 
decay is negative for all categories. 

Moreover, several additional patterns emerge. First, it can be seen 
that distance-decay is the least negative (weakest) for the three intra- 
category groups (H-H, M-M, L-L), with the overall distance-decay 
being the weakest for trips from the low group LSOAs to other low 
group LSOAs. This means that on average trips are more likely to occur 
between physically distant LSOAs with similar socioeconomic standings 
than physically distant LSOAs with dissimilar socioeconomic standings 
and suggests that trips between more deprived LSOAs are the least de-
terred by geographical distance. This might indicate that residents in 
neighborhoods with lower socioeconomic status have a greater need to 
travel to another neighborhood to access amenities and employment 
opportunities than those in neighborhoods with higher socioeconomic 
status, while at the same time residents from both ends of the spectrum 
are more inclined to travel to more similar neighborhoods even if it 
entails longer distances. Second, distance-decay is moderate between 
groups that represent moderate socioeconomic distances (L-M, M-L, M- 
H, H-M) and the most negative (strongest) between groups that repre-
sent the largest socioeconomic distances (L-H and H-L). Together, these 
two trends support the hypothesis of a socioeconomic distance-decay in 
addition to a geographical distance-decay and that both types of 
distance-decays are more pronounced when they are combined. 

6. Discussion 

Several key findings from this research are highlighted below and 
some limitations and future research avenues are suggested. 

6.1. Weak segregation in mobility: Bubbles can be broken 

The first main finding from this research is that the socioeconomic 
indicator deployed in this study, the IMD, does not appear to have a 
strong segregating influence on mobility as trip flows were primarily 
constrained by geographical distance. This result suggests that in-
dividuals are more likely to make travel choices primarily regarding the 
distance of destinations than the socioeconomic status of destinations. In 
other words, people are not generally locked into socioeconomic bub-
bles in the context of mobility. A potential implication of this finding for 
urban planning and social inclusion policies is that segregation may be 
mitigated more efficiently by focusing on reducing the geographical 
distance-decay effect (i.e., cost to travel) in addition to various efforts to 
address socioeconomic inequality. 

A reduction to geographical distance-decay could perhaps lead to an 
increase in societal integration. However, in order to assess this poten-
tial linkage it would be necessary to take advantage of a natural 
experiment using a scenario where distance-decay may become sensi-
tive. For instance, a drop in fuel costs or the expansion of transport 
networks may decrease the constraints of geographical distance, stim-
ulating mobility. In contrast, an increase in distance-decay could occur 
due to mobility restrictions. These changes in distance-decay may 
manifest disproportionately across the socioeconomic spectrum, which 
could be an interesting line of future inquiry. Importantly, to carry out 

Table 2 
Class Classification based on Mobility Destinations.   

Precision Recall F1 Num. of Items 

Overall Avg. (Micro) 0.75 0.75 0.75 4813 
Overall Avg. (Macro) 0.72 0.73 0.72 4813 
Group “LOW” 0.83 0.85 0.84 2502 
Group “MIDDLE” 0.64 0.57 0.60 1420 
Group “HIGH” 0.69 0.76 0.72 891  

Table 3 
Regression Coefficients (Interaction between geographical distance and socio-
economic distance).  

Variable Estimates Std. Err t-value 

Intercept 11.10 0.0006 18,423.0 
log(dist)⋅H-H − 1.95 0.000012 − 152,713.1 
log(dist)⋅H-L − 2.06 0.000011 − 188,076.2 
log(dist)⋅H-M − 1.99 0.000013 − 175,909.4 
log(dist)⋅L-H − 2.07 0.000012 − 173,115.6 
log(dist)⋅L-L − 1.91 0.0000045 − 424,264.1 
log(dist)⋅L-M − 1.97 0.0000073 − 271,358.0 
log(dist)⋅M-H − 2.01 0.000012 − 165,703.4 
log(dist)⋅M-L − 1.98 0.0000072 − 276,124.7 
log(dist)⋅M-M − 1.94 0.0000078 − 248,942.06  
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such an investigation would require future research to incorporate more 
accurate measures of travel cost into the spatial interaction models in 
order to better capture potential sensitivities to the described 
interventions. 

Another area to focus future research efforts would be to investigate 
whether the results obtained here vary within a study area and across 
study areas. As the results are based on a particular framework with a 
limited set of variables, a more detailed application of the result requires 
further investigation of diverse and complex socioeconomic and 
geographic factors. Variations within a study area could be investigated 
by decomposing a flow dataset by origin and individually analyzing trips 
from each origin to all other destinations (Fotheringham, 1981; Nakaya, 
2001; Oshan, 2016). It would then be possible to reveal whether or not 
distance-decay varies spatially and if any potential variation is corre-
lated with other factors, such as residential segregation, income, edu-
cation, or heath disparities. Another approach would be to repeat the 
analysis for other cities and determine whether or not the evidence 
produced here is corroborated. However, it could be possible that urban 
areas with diverse social and spatial structures generate much different 
distributions of mobility flows. In addition, the calibration techniques 
employed here may become computationally prohibitive for a larger 
study area with many more spatial units, requiring alternative methods 
(Östh, Lyhagen, & Reggiani, 2016). 

6.2. Bubbles are stronger for socioeconomically distant locations 

The interaction effects observed between geographic distance and 
socioeconomic status provide a more nuanced understanding of 
mobility-based segregation. While visits decrease as geographical dis-
tance grows in general, the magnitude of the decrease is greater amongst 
the areas of greater socioeconomic distance (i.e, L-H and H-L flows), 
providing some evidence towards bubbles due to mobility-based segre-
gation. Such a finding permits speculation on the the role of socioeco-
nomic and geographical distance in the context of urban renewal or 
neighborhood revitalization projects, such as the establishment of a 
mixed-use complex or the enhancement of community infrastructure (e. 
g., (Scher, 2019)). Large projects often entail complicated trade-offs 
between location and the distribution and nature of benefits across 
many communities. Consequently, a useful strategy could be to consider 
investing in “bridging” projects that are located geographically to pro-
vide integration between communities that are socioeconomically 
distant. This may seem counter-intuitive in the case where conventional 
wisdom suggests directly investing in deprived communities. Such a 
counter-intuitive strategy may also be supported by recent work that 
approaches urban segregation from the perspective of spatial configu-
ration; for example, Lageby’s work (Legeby, 2013) exploring how 
structural urban patterns impact segregation in public spaces. Pursuing a 
combination of strategies would likely prove the most beneficial and 
would also contribute to restructuring the socio-spatial structure of so-
ciety rather than solely treating the symptoms of systemic inequality. 
These findings may also be helpful for funding programs to develop and 
revise eligibility criteria. Many programs, such as e.g., scholarships 
(FSC, 2020), start-up grants (The Scout Association, 2020), and neigh-
borhood renewal projects (OSCI, 2011)) use the IMD to deploy resources 
and it could be beneficial to target areas with relatively low mobility in 
addition to high deprivation. 

An unexpected finding from this analysis is that there was near- 
symmetry for all pairs of opposite flow directions: distance-decay was 
similar between the flows for H-L and L-H, L-M and M-L, and also H-M 
and M-H categories. However, mobility flows from lower deciles to 
higher deciles (L-H) are inherently different from those from the higher 
deciles to lower deciles (H-L) due to different daily routines, access to 
services, and transportation modes. Though this analysis did not find 
evidence to support these hypothesized differences, the mobility-based 
segregation perspective is important because it allows directional 
asymmetries to be investigated and would not be possible through a 

traditional segregation lens based solely on static residential pop-
ulations. The investigation of directional asymmetries in other contexts 
would therefore be an interesting avenue for future research. 

6.3. Exploring the underlying mechanisms of mobility-based segregation 

A promising direction for future research is to link the current 
findings with different urban disparities and further identify the un-
derlying mechanisms of mobility-based segregation. One factor worth 
exploring is the distribution of the economic opportunities across the 
urban landscape and the formation of routine mobility patterns. A 
possible mechanism is that the location of employment and education 
opportunities that generate routine trips are not spatially aligned with 
certain socioeconomic groups, promoting socioeconomic mixing over 
shorter distances (i.e., weakening socioeconomic but not geographic 
distance-decay). The exploration of these economic factors would also 
provide insights regarding the spatial mismatch hypothesis (Kain, 2004) 
and whether those living in more deprived areas typically have longer 
commutes. Similarly, access to crucial services (e.g., health, groceries, 
transportation) is another factor worth examining by incorporating 
additional data sets about urban amenities (Daras, Green, Davies, Barr, 
& Alex, 2019; Office for National Statistics, 2020) and transport net-
works (Lucas, 2012). Furthermore, the exploration could be extended to 
interactions between such factors (e.g., between transportation network 
and economic opportunities) and enriched with information about local 
urbanism (e.g., East-West divide of London.) In this research, the iden-
tified trips do not include information regarding their purpose and 
future work could seek to use auxiliary data to incorporate contextual 
information to infer trip purpose (Sia-Nowicka et al., 2016) and link 
different mechanisms to different types of trips. 

6.4. Advantages and disadvantages of the mobility data 

Recall that in section 5.1 it was noticed that user average movement 
distance (i.e., gyration) was higher for less deprived areas despite being 
less accessible to public transportation. This observation suggests that 
attempts to analyze mobility solely based on public transportation could 
be limited because the data may systematically under-represent the 
mobility of some individuals. Therefore, a strength of the the data used 
here is that it is able to sample mobility activity across the entire pop-
ulation due to its inclusion of all antenna activity and high spatial 
coverage. This characteristic may have facilitated the finding of near- 
symmetry in the directional distance-decay estimates, which is in 
contrast to the results of Lathia et al. (Lathia et al., 2012) where asym-
metries were detected based on socioeconomic status while analyzing 
public transportation logs. Another advantage of the our data that was 
not explored here is the high temporal resolution of the data. Recent 
work proposes using temporal subsets of data for time-specific spatial 
interaction models (Batty, 2018; Oshan, 2017; Oshan, 2020), which 
could be an interesting extension to the research presented here. For 
instance, this study could be replicated using daily, weekly, or monthly 
mobility flow matrices to investigate the potential evolution of 
geographical or socioeconomic distance-decay over time. 

There are also some potential challenges to working with this type of 
data. First, the process of extracting trips between LSOAs based on an-
tenna activity may be subject to some uncertainty. Future work could 
seek to validate trip flow volume against other sources of data or 
conduct sensitivity analysis for the various parameters used to define 
trips. In this case, the IMD was used as a proxy for socioeconomic status. 
However, future work could incorporate additional geodemographic 
variables such as race and ethnicity, which are commonly of interest in 
the segregation literature (e.g., (Wang et al., 2018)). Likewise, contex-
tual information can also be incorporated from social media and land- 
use records. These endeavors could further enhance the potential to 
understand mobility-based segregation. 
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7. Concluding remarks 

In this paper, segregation was approached through the lens of urban 
mobility and an inclusive analysis of the mobility between neighbor-
hoods with different socioeconomic status was undertaken. Specifically, 
mobility-based segregation was investigated through the combination of 
radio access logs in London, UK, which capture extensive and diverse 
mobility activities across an urban population, with the IMD scores of 
small geographic areas to approximate socioeconomic status. Using 
these data sources overcame limitations from previous research that 
only examined relatively short time periods, a small number of socio-
economic classes, or a particular subset of the population. The presence 
of a socioeconomic distance-decay factor was then examined through 
the use of spatial interaction models, and found to have a subtle effect 
compared to geographic distance. Furthermore, it was observed that 
socioeconomic distance may interact with geographical distance, such 
that geographical distance-decay becomes stronger when the 

socioeconomic distance is greater. 
The results obtained here demonstrate that by considering human 

mobility when inspecting segregation, a more nuanced picture emerges 
than what can be achieved based strictly on the residential perspective. 
An outcome is the ability to increase our understanding of how mobile 
populations can intensify or moderate the boundaries that define soci-
ety, and to explore possibilities for promoting interactions across soci-
ety. Some potential implications of these new insights were discussed in 
the context of planning and an array of extensions for this line of inquiry 
were outlined. This direction of work therefore warrants further atten-
tion and holds merit to contribute towards alleviating societal frag-
mentation and irreconcilable inequality. 
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Appendix A. Appendix 

Radius of gyration measures how far from the center of mass the masses are (Abramowicz, Miller, & Stuchlík, 1993). In the context of mobility, the 
measure has been used as an approximation of the average of traveled distances (Gonzalez, Hidalgo, & Barabasi, 2008). It is defined as the root mean 
squared distance between the set of antennas and its center of masses, weighted by the time spent with the connection. Formally: 

g =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

j=1

(
tjlj − lcm

)2

√
√
√
√ (6)  

where lj represents the location of the jth visited antenna, tj represents the time spent in the jth visited antenna and lcm represents the location of the 
center of mass of the user’s trajectory, calculated as lcm = 1

N
∑N

j=1
{
tjlj} and N the total number of antennas visited. 
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Östh, J., Lyhagen, J., & Reggiani, A. (2016). A new way of determining distance decay 
parameters in spatial interaction models with application to job accessibility analysis 
in Sweden. European Journal of Transport and Infrastructure Research, 2(2016), 16. 
https://doi.org/10.18757/ejtir.2016.16.2.3142. 

John Östh, Ian Shuttleworth, and Thomas Niedomysl. 2018. Spatial and temporal 
patterns of economic segregation in Sweden’s metropolitan areas: A mobility 
approach. Environment and Planning A: Economy and Space 50, 4 (2018), 809–825. 

Pappalardo, L., Pedreschi, D., Smoreda, Z., & Giannotti, F. (2015). Using big data to 
study the link between human mobility and socio-economic development. In 2015 
IEEE International Conference on Big Data (Big Data)., 871–878. https://doi.org/ 
10.1109/BigData.2015.7363835. 

Park, Y. M., & Kwan, M.-P. (2018). Beyond residential segregation: A spatiotemporal 
approach to examining multi-contextual segregation. In , 71. Computers, Environment 
and Urban Systems. 

Park, S., Serra, J., Martinez, E. F., & Nuria, O. (2018). Mobinsight: A framework using 
semantic neighborhood features for localized interpretations of urban mobility. ACM 
Transactions on Interactive Intelligent Systems (TiiS), 8(3), 23. 

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., … 
Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine 
Learning Research, 12(2011), 2825–2830. 

Reardon, S. F., & Bischoff, K. (2011). Income inequality and income segregation. Amer. 
Journal of Sociology, 116(4), 1092–1153. http://www.jstor.org/stable/10.1086/ 
657114. 

Ioar Rivas, Prashant Kumar, and Alex Hagen-Zanker. 2017.Exposure to air pollutants 
during commuting in London: Are there inequalities among different socio-economic 
groups? Environment International 101 (2017), 143–157. 

Sanbonmatsu, L., Ludwig, J., Katz, L. F., et al. (2011). Moving to opportunity for fair 
housing demonstration program: Final impacts evaluation (p. 2011). Washington, DC: 
US Department of Housing and Urban Development Office of Policy Development & 
Research. 

Sandel, M. J. (2012). What money can’t buy: The moral limits of markets. In Macmillan. 
Scher, P. L. (2019). How Detroit became a model for urban renewal. Fortune. https://fort 

une.com/2019/01/02/detroit-cities-urban-renewal-innovation/. 
Sia-Nowicka, K., Vandrol, J., Oshan, T., Long, J. A., Demar, U., & Fotheringham, A. S. 

(2016). Analysis of human mobility patterns from GPS trajectories and contextual 
information. International Journal of Geographical Information Science, 30(5), 
881–906. https://doi.org/10.1080/13658816.2015.1100731. May 2016. 

Silm, S., & Ahas, R. (2014). The temporal variation of ethnic segregation in a city: 
Evidence from a mobile phone use dataset. Social Science Research, 47(2014), 30–43. 
https://doi.org/10.1016/j.ssresearch.2014.03.011. 

Smith, D. B., Feng, Z., Fennell, M. L., Zinn, J. S., & Mor, V. (2007). Separate and unequal: 
racial segregation and disparities in quality across U.S. nursing homes. Health Aff 
Millwood, 26(5), 1448–1458. 

Smith-Clarke, C., Mashhadi, A., & Capra, L. (2014). Poverty on the cheap: Estimating 
poverty maps using aggregated mobile communication networks. In Proceedings of 
the SIGCHI conference on human factors in computing systems (pp. 511–520). ACM.  

Tayyab, M., Gelabert, X., & Jäntti, R. (2019). A survey on handover management: From 
LTE to NR. IEEE Access, 7(2019), 118907–118930. 

The Scout Association. (2020). HQ Start-Up Grants for new sections in deprived areas. htt 
ps://members.scouts.org.uk/supportresources/4733. 

Tiefelsdorf, M., & Boots, B. (1995). The specification of constrained interaction models 
using the. SPSS loglinear procedure., 2(1995), 21–38. 

United Nations Centre for Human Settlements. (2001). The State of the World’s Cities, 
2001. Vol. 27. UN-HABITAT. 

van Ham, M., & Tammaru, T. (2016). New perspectives on ethnic segregation over time 
and space. A domains approach. Urban Geography, 37(7), 953–962. 
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