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Abstract

Delineating urban functional use plays a key role in understanding urban dynamics, eval-
uating planning strategies and supporting policymaking. In recent years, Points of Interest
(POI) data, with precise geolocation and detailed attributes, have become the primary data
source for exploring urban functional use from a bottom-up perspective, using local, highly
disaggregated, big datasets. Previous studies using POI data have given insufficient con-
sideration to the relationship among POI classes in the spatial context, and have failed to
provide a straightforward means by which to classify urban functional areas. This study
proposes an approach for delineating urban functional use at the scale of the Lower Layer
Super Output Area (LSOA) in Greater London by integrating the Doc2Vec model, a neural
network embedding method commonly used in natural language processing for vectoring
words and documents from their context. In this study, the neural network vectorises both
POI classes (’Word’) and urban areas (’Document’) based on their functional context by
learning features from the spatial distribution of POIs in the city. Specifically, we first con-
struct POI sequences based on the distribution of POI classes, and add their LSOA IDs as
’document’ tags. By utilising these constructed POI–LSOA sequences, the Doc2Vec model
trains the vectors of 574 POI classes (word vectors) and 4,836 LSOAs (document vectors).
The vectors of POI classes are then used in calculating the functional similarity scores based
on their cosine distance, with the vectors of LSOAs grouped into clusters (i.e., functional
areas) via the k-means clustering algorithm. We also identify latent functions in each cluster
of LSOAs by performing topic modelling and enrichment factor. Compared with TF–IDF,
LDA and Word2Vec models, the Doc2Vec model obtains the highest accuracy when classi-
fying functional areas. This study proposes a straightforward approach in which the model
directly trains vectors for urban areas, subsequently using them to classify urban functional
areas. By employing the enhanced neural network model with low-cost and ubiquitous POI
datasets, this study provides a potential tool with which to monitor urban dynamics in
a timely and adaptive manner, thereby providing enhanced, data-driven support to urban
planning, development and management.
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1. Introduction

Scholars have studied the topic of urban functional use for decades, especially in the
contexts of urban planning and geographical information science (Lynch, 1960; Crooks et al.,
2015; Joshi et al., 2016). Urban functional use not only describes the configuration of
the physical environment (e.g., buildings, spaces and facilities), but also reflects the socio-
economic patterns of human activity at the collective level, which influences many urban
processes from land-use regulations (e.g., the designation of permitted use of land) (Frias-
Martinez & Frias-Martinez, 2014) to urban vibrancy (Yue et al., 2017). Understanding urban
functional use is critical for planners and policymakers, especially in flexible planning systems
where the uses of land and buildings change dynamically. For example, in England, the Use
Classes Order (i.e., the legal framework that defines how land and buildings change from one
class to another) was recently deregulated in order to introduce flexibility, which generated
a surge in the conversion of uses without planning permission (Barton & Grimwood, 2019;
Ferm et al., 2020). In practice within this context, delineating urban functional use offers
a more nuanced understanding of how disaggregated land and building uses (e.g., offices,
restaurants and so on) can be mapped by employing a bottom-up approach, and how the
functional use of urban areas can be tracked. This approach allows for tracking, in near
real-time, of what is happening with extended planning development rights, such as office-
to-residential conversions or flexible use permission of commercial properties in cities such
as London. It can also offer a tool to monitor the dynamic demand for urban facilities
and services introduced by changes in the Use Classes Order, thereby assisting in solving
planning-related issues such as refuse collection, parking supply and local taxation. The
need for such tools is particularly important in flexible planning systems.

Traditionally, understanding urban functional use been heavily dependent on the identi-
fication of land-cover and land-use from remote sensing data (Forestier et al., 2012). How-
ever, this method only classifies urban land by its geographical features, neglecting the
socio-economic characteristics of land use (Gao et al., 2017). It thus remains an insufficient
method for exploring contemporary cities where urban land use is highly mixed and subject
to rapid, dynamic changes. In the era of big data, new urban data sources such as social
media check-ins, points of interest and mobile phone data provide disaggregated and fine-
scale information about urban functional use (Liu et al., 2015; Crooks et al., 2015). In the
urban context, POI data are a collection of location points such as commercial properties,
offices, public spaces, transportation facilities, and so forth comprising detailed informa-
tion including geospatial location, name, postcode, address, coordinates and so on (Elwood
et al., 2012). POI data define the first-hand account of human activities and building uses,
providing opportunities for researchers to explore the distribution of urban functions from a
bottom-up perspective (Niu & Silva, 2020). As this type of data records accurate geoloca-
tion and specific uses of urban spaces and buildings at a very granular level, they are used to
infer urban functional use by following a bottom-up approach to data mining. Particularly
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because there are many mixed-use buildings, POI data provide the finest level of building
utilisation data that can be aggregated and categorised according to urban functions at
a different scale. For instance, a commercial building might have a clothing shop on the
ground floor and a nightclub on the upper floor. With POI data, we can identify the build-
ing’s commercial use as two seperate functions, Clothing and Nightclubs, defined by their
POI classes. Despite the disaggregated and fine-level information of functional use, POI
data are also characterised by large volume and high dimensionality, presenting challenges
in data processing and interpretation. Previous studies have introduced text mining tech-
niques such as term frequency-inverse document frequency (TF–IDF) and latent Dirichlet
allocation (LDA) to infer urban functional use from collections of POIs (Yuan et al., 2015;
Liu et al., 2017; Gao et al., 2017). The drawback of these frequency-based methods is that
they only take into account the number of POIs, without considering the spatial relationship
among POIs in cities. To solve this issue, a group of studies have integrated neural word
embedding models with POI data to classify urban areas by their functional use (Yao et al.,
2017; Zhai et al., 2019; Hu et al., 2020).

The embedding method trains vectors of POI classes from their spatial context (i.e., the
surrounding POI classes) and computes vector representations for urban areas based on the
local combination of different POIs. Due to the fact that these low-dimensional vectors of
urban areas extract information from POI classes (i.e., the finest-level of building utilisation
data), the cosine distance (i.e., the similarity metric) between these vectors can be utilised for
measuring the functional similarity between urban areas. However, there are gaps between
the neural word embedding model and its applications in delineating urban functional use.
First, few studies take full advantage of vector representations of POI classes when revealing
the relationship between high-dimensional POI classes. Previous studies overlook the models
potential for measuring functional similarities among hundreds of POI classes in the city,
which is important if seeking to understand how different POI classes are configured as
urban functions and how certain POI classes tend to cluster more easily than others. When
classifying urban functional areas, it is important to note that as the Word2Vec model
adopted by previous studies only trains vectors of POI classes, researchers have to calculate
the vectors of urban areas using an average, or a weighted average, of the vectors of POIs
in those areas. This rigorous compounding process fails to capture the spatial heterogeneity
among urban areas because some areas may share the same ratios of different POI classes,
but differ in terms of the spatial arrangement of the POIs.

To fill this gap, this study integrates the Doc2Vec model, an extension of Word2Vec
developed by Le & Mikolov (2014), with POI data to train vectors of urban areas directly,
as well as training the vectors of POI classes through the neural network. This proposed
method considers spatial heterogeneity during the training process for vectors of urban areas,
assisting in substantially improved identification of urban functional areas. Simultaneously,
because the Doc2Vec model provides a direct means of obtaining vectors for urban areas,
this study also contributes to the existing academic literature by proposing a more efficient
way to delineate urban functional use, relative to previous studies.

Section 2 of this paper presents a literature review regarding POI data, previous methods,
and the research trends in this area. Section 3 introduces the case study and its datasets.
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Section 4 describes the methodology, including the pre-processing of POI data, training with
the Doc2Vec model, analysis of the vectors of POIs and urban areas, and model evaluation.
Section 5 presents the result for urban functional similarity between POI classes and urban
functional areas in Greater London. Finally, Section 6 discusses the findings, implications
and limitations of this study, before offering suggestions for future research.

2. Literature review

2.1. Urban functional use detection with crowdsourced data

Scholars typically conceptualise urban functional use based on the purposes of urban
spaces by linking the preferences of human activities and the configurations of land or build-
ing use (Lynch, 1960; Crooks et al., 2015). In exploring urban functional use, researchers
have traditionally employed remote sensing data to classify urban land use and monitor the
dynamic change thereof (Joshi et al., 2016; Ma et al., 2019). Although remote sensing data
provide a valuable source for extracting the physical characteristics of the land surface, they
are less helpful in delineating urban functional use; namely, the collective activities in urban
spaces and the socio-economic environment formed by these activities (Gao et al., 2017). In
recent years, with the development of information and communications technology and the
proliferation of location-based services (LBS), crowdsourced data (social media, points of in-
terest and geotagged images) have demonstrated potential in understanding urban activities
and the use (or multiple uses) of buildings, often with high levels of granularity and fine-
temporal resolution (Goodchild, 2007; Niu & Silva, 2020). In exploring urban functional use,
Crooks et al. (2015) highlights the notable contribution of crowdsourced data that provide
primary accounts of urban form and function. In this vein, applications of crowdsourced
data can be found in exploring urban function-related topics such as the detection of com-
munities (Cranshaw et al., 2012; Hasan & Ukkusuri, 2015), identification of urban functional
areas (Yuan et al., 2012; Chen et al., 2017; Liu et al., 2017), and in measurements of urban
function mixture (Li et al., 2016; Yue et al., 2017).

Among the types of crowdsourced data, ubiquitous POI data are commonly utilised in
studies of urban functional use. Previous studies have evaluated the capability of POI data
for extracting urban functions from different sources (Jiang et al., 2015; Gao et al., 2017; Song
et al., 2018; Chen et al., 2019). There are two primary sources of data. The first includes
POI databases that provide a location-based directory, including national mapping agencies
(e.g., Ordnance Survey UK), open-source platforms (e.g., OpenStreetMap1) and business
platforms (e.g., Google Places2 and Baidu Map3). These POI databases provide a wide
range of types of POIs, including public services and privately-owned businesses, services and
facilities. The second comes from location-based social networking data, or check-ins data,
on platforms such as Foursquare, Yelp and Twitter. Although this type of data primarily
links human activities with places, it has limited coverage in POI categories (mainly business-

1www.openstreetmap.org
2www.google.com/maps
3map.baidu.com
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and leisure-related POIs) and spatial distribution (only covering particularly vibrant areas).
Considering the diversity and complexity of POI sources, previous studies have developed
several common requirements for POI data, especially for urban functional use exploration.
First, the POI dataset should have a unified taxonomy that clearly defines the classification
of POI classes. For instance, POI data from the Ordnance Survey (UK) have nine groups POI
groups for 616 POI classes, including Accommodation, Eating and Drinking ; Commercial
Services ; Attractions and so on (see Appendix A). It would be problematic to code different
POIs into classes without a robust POI taxonomy, resulting in ambiguity when aggregating
urban functional uses for urban areas (Jiang et al., 2015). POI data must also have broad
spatial and categorical coverage in the study areas, so as to ensure it can accurately reflect
heterogeneity within and among different areas. For example, the POI dataset derived from
social media platforms (such as Yelp) provides more catering and leisure POIs in those
vibrant areas, but fewer POIs of other types, such as businesses and industry, especially in
the urban periphery. Therefore, extracting urban functions from this sampled POI dataset
(i.e., limited coverage in both space and POI categories) may only reveal the patterns of
commercial and entertainment functions in the central area of the city, thus impeding a
comprehensive urban analysis.

2.2. Mining POI data with natural language processing techniques

Like many other types of new urban data, POI data are characterised by the large
volume and high dimensionality that traditional methods mostly fail to incorporate and
accommodate. Over recent decades, researchers have attempted to employ new techniques,
such as natural language processing (NLP), in order to extract urban functional use. As
with natural languages, the rank-frequency distribution of POI data follows Zipf’s law (an
empirical power law for rank and frequency), which states that the rank of a POI class is
inversely proportional to its frequency, as demonstrated in Equation 1 (Gabaix, 1999; Soo,
2005). In other words, it reveals that only a small number of POI classes appear most
frequently in cities, while others emerge only occasionally.

f ∝ 1

r
(1)

Yuan et al. (2012) introduced a topic-based inference model to identify urban functional
areas with POI data using LDA topic modelling, similar to how researchers use the model
to extract semantic topics from documents. Similarly, Gao et al. (2017) utilised LDA topic
modelling to classify urban functional regions with POI and social media data. Xing &
Meng (2018) made comparable attempts to extract semantics from POI data. Although
LDA topic modelling helps to explore the hidden structure of functional semantics in POI
data, this topic model is built on an approach known as the ’bag of words’ model, which
disregards grammar and word order, but maintains the word counts. In the case of POI
data mining, LDA topic modelling retains the occurrences of POIs across the whole city,
but disregards spatial relationships between POIs.
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2.3. Neural network embedding: from Word2Vec to Doc2Vec

Neural network embedding offers a feasible solution to fill this gap, taking into account
spatial relationships between POIs when delineating urban functional use. Neural network
embedding, such as the Word2Vec model, refers to feature learning techniques based on a
neural network in which words or terms in corpora (i.e., collections of text) are mapped
to low-dimensional vectors (Mikolov et al., 2013b). The output vectors with real numbers
represent words and their common context, which researchers can use to explore the se-
mantic relations in a continuous vector space (Li & Yang, 2018). The integration of neural
word embedding with POI data treats POI classes as ’words’, POI sequences as ’sentences’,
regions/districts as ’paragraphs’ and cities as the ’documents’. In this approach, the func-
tions in urban areas hidden in the POI dataset are equivalent, to some extent, to semantic
topics hidden in the text corpora. Most significantly, the spatial arrangement of POIs can
be regarded as equivalent to the syntactic order of words in sentences, meaning that the
spatial context of POIs in urban areas can be learned as a constituent element of vectors,
an inclusion which is not able to be made with frequency-based methods such as LDA and
TF–IDF models.

Yao et al. (2017) first used the Word2Vec model, developed by Mikolov et al. (2013a), to
train vectors of POI classes with POI sequences built by ascertaining the shortest path in
traffic analysis zones (TAZs). With POI vectors, vectors for all TAZs can then be calculated
and utilised to identify urban land-use types. Based on this work, Zhai et al. (2019) de-
ployed the Place2Vec model and applied it to the neighbourhood level. The main difference
in approach is that the Place2Vec model adopts the nearest neighbour method for POI se-
quences in neighbourhood areas, and constructs (POIcentre, POIcontext) pairs. This method
considers the first law of geography, namely that nearby POIs are more related than distant
POIs. Apart from this distinction, the Place2Vec model essentially mirrors the Word2Vec
model. Following a similar approach, this study aggregates POI vectors to generate vectors
specific to urban areas, which then serve to identify urban functional areas by subsequent
clustering. The recent study by Hu et al. (2020) also employed the Word2Vec model with
POI sequences, constructed by POI centre-context pairs and classifying urban functional
areas on a 1km-by-1km grid. However, these studies all build on the Word2Vec model that
only trains vectors for POI classes, meaning that they had to calculate a compound vector
to represent urban areas (i.e., spatial units such as TAZ, neighbourhood zones and grids)
for later identification of urban functional areas through clustering. The problem is that
researchers have calculated compound vectors by using either an average or a weighted av-
erage of all vectors of POIs that appear in each area. This rigorous compounding process
ultimately fails to capture the spatial heterogeneity among urban areas because some areas
may share a similar POI configuration (i.e., the same count in each POI category) but differ
in the spatial arrangement of those POIs. By contrast, the Doc2Vec model, an extension of
the Word2Vec model developed by Le & Mikolov (2014), uses the neural network to train
additional vectors for paragraphs, which can be utilised to specifically avoid the aforemen-
tioned problem and in directly training vectors for urban areas directly. Although there
have been some applications of the Doc2Vec model in the urban context, few of them focus
on detecting urban functional use with POI data (Wang et al., 2017; Li et al., 2019).
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3. Study area and data

The study area covers Greater London as the extent is great enough to demonstrate the
diversity of urban functional uses (see Figure 1). According to the Census Output Area
population estimates (mid-2019) by the Office of National Statistics (ONS), 8.96 million
people live in the region of Greater London, an area of 1572 km2. As one of the largest
megacities in the world, Greater London needs to monitor its urban dynamics, including
urban functional uses, to accomplish smart and adaptive urban management.

Figure 1: The case study area: Greater London. The grey dots refer to locations of 420,559 POIs updated
in March 2019 by the Ordnance Survey.

The POI dataset utilised for this research derives from the Ordnance Survey, the national
mapping service for Great Britain. This dataset was last updated in March 2019, comprising
420,559 POIs for the London metropolitan area. Each record of a POI has numerous at-
tributes, including a unique reference number, name, PointX classification code, geographic
coordinates, address detail, street name, postcode, administrative boundary and other spe-
cific identifiers. The PointX classification code (POI classes), referring to the specific use
of POI, contains an eight-digit number consisting of a two-digit group code, a two-digit
category code and a four-digit class code, which assists with classification of POIs by their
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functions at different levels. The POI classification scheme is a three-tier hierarchy, includ-
ing nine groups, 52 categories and 616 classes with codes (See POI Groups and Categories
in Appendix A). This study excludes some POI class codes, such as infrastructure features
(electricity, gas and fire safety), industrial features (chimneys, pipelines, tanks, and so forth)
and transport facilities that are unrelated to the functional use of a building or space in the
city, leaving a total of 574 POI classes. Figure 2 illustrates the distribution of the dataset.
The rank of POI classes and their frequency follows Zipf’s law, in which a few POI classes
account for a large proportion of all the POIs in Greater London. The ten most frequent
POI categories are Bus Stops ; Hair and Beauty Services ; Convenience Stores and Indepen-
dent Supermarkets ; Fast Food and Takeaway Outlets ; Restaurants ; Cafes, Snack Bars and
Tea Rooms ; Cash Machines ; Clothing; Property Sales ; Pubs, Bars and Inns.
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Figure 2: Rank-Frequency plot for 620 POI classes in Greater London.

4. Methodology

This section first describes the preparation of the data for POI sequences with urban
area tags. In order select the optimal unit of analysis, consideration is given to how scale
and zone affect the spatial aggregation of POIs. Subsequently, this section introduces the
Doc2Vec model for training vectors for POI classes and urban areas, followed by the method
of calculating the functional similarity between POIs and the methods of classifying and
annotating urban functional areas. The final part explains the overall evaluation of the
model (Figure 3).
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Figure 3: Flowchart of the methodology.

4.1. Constructing POI sequences tagged with urban areas

Unlike text corpora following a certain syntactic rule (i.e., how words are organised in
a sentence), POIs in urban spaces essentially have no sequential order. This lack of order
means that researchers must manually construct POI data as sequences, in order render
them as valid inputs for the model. In practice, Yao et al. (2017) built a POI corpus
based on traffic analysis zones and implemented the shortest path algorithm to construct
POI sequential orders, where the length of path segments referred to the Euclidean distance
within POI pairs. Zhai et al. (2019) later challenged this approach by arguing that sequences
generated by the shortest path sorted all POIs in the traffic analysis zone with connecting
points only once, which is not convincing when seeking to explore the spatial relationship
between POIs. Zhai et al. (2019) adopted the nearest neighbour method for each POI to
create (POIcenter, POIcontext) pairs, in which distance decay augmented the spatial context.
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However, this method risks oversampling POI sequences in areas with a high density of
POIs, resulting in an overfitting problem for the model.

To avoid the oversampling issue, this study utilises generated random points with a
minimal interval to construct POI sequences in Greater London. To align with the POI
density in the city, these random points are generated along with the road network (excluding
unclassified roads). Setting the distance interval between any two random points at 50 metres
produces a structured set of random points R {r1, r2, ..., ri, ..., rn} with the maximum size
being 201,000. Subsequently, for each random point ri, we search its accessible POIs within
200 metres and thus obtain an accessible POI set Si. By computing the distance for all of
the pairs between the central random point and POIs within Si, we can use the distance
as a reference by which build a sequentially ordered POI list Li = [poi1, poi2, poi3, ..poin],
where i refers to the index of the random point, n is the number of accessible POIs around
the random point ri and elements in the list refer to the POI classes. The left part of Figure
4 illustrates all the lines between random points and their accessible POIs where colours
are assigned by random point ID. The right part of Figure 4 shows a single POI sequence
constructed for random point i with a 200-metre buffer. After constructing POI sequences,
we retain only the POIs sequences with lengths which are greater than three; this is to avoid
the sparse meaning and randomness produced by short POI sequences.

200m

© Mapbox, © OpenStreetMap

Ramdom points

POIs

Searched POIs

Distance to POI

Ramdom points

POIs

Searched POIs

Distance to POI

Li=[poi1, poi2, poi3, .. poin]

Figure 4: POI sequences construction in Greater London. Left: Constructed POI sequences with random
points on the road network of Greater London. Right: Illustration of a single POI sequence constructed for
random point ri with a 200-metre buffer.

The most significant difference between Word2Vec and Doc2Vec is that, in the Doc2Vec
model, each sentence can be tagged by its paragraph tag. This enables it to be later mapped
into vectors representing the paragraphs. When applying the Doc2Vec model to POI se-
quences, the paragraph tag refer to an administrative district, a postcode area, part of a
grid, a TAZ or any other spatial unit where POI sequences exist. During the training pro-
cess, vectors of paragraph tags are generated from the semantics of POIs shared within their
units, and can be served as the reference to classify urban functional areas.
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4.2. Selecting the optimal aggregation level

As the model extracts information about urban functional use from point-based data
(POIs), the effects of the modifiable areal unit problem (MAUP) must be considered. When
researchers aggregate spatial phenomena from points data into areas, MAUP can occur
because results can be impacted both by the shape (zoning effects) and the size (scale effects)
of the analysis units (Openshaw, 1983; Viegas et al., 2009). To select the optimal aggregation
level for examining urban function from POI data, we compared two types of zoning methods
(UK census units and grid) at three levels of scale. The UK census units, including OA
(output area), LSOA (lower layer super output area) and MSOA (middle layer super output
area), are geospatial statistical units built from postcodes, with standardised populations
and household sizes. For example, OA units typically contain 100 people, while LSOAs have
an average population of around 1,500. We also applied three sizes of grid (200m, 500m,
1000m) corresponding to the median areas of OA, LSOA and MSOA, respectively. We used
three indicators, including POI class diversity, richness, and POI density, to compare the
six analytical units. Table 1 presents the description of indicators and the related effects.

To examine the scale effect, we measured POI class richness and diversity for both grid-
based and census units at three levels. Figure 5 shows that small units in scales GRID200
and OA have a greater number of low outliers (See the number of NaN values shown in Table
2) and a low mean of the diversity indices (1.33 and 1.57, respectively). When the scale size
increases, the mean and median of the diversity and richness indexes (GRID500 and LSOA)
are greater, because the wider extent includes more areas with varying functions. However,
the density function distribution for GRID1000 and MSOA is left-skewed, with a notably
high mean and median of diversity index. This would increase the difficulty of extracting
urban functional use because the units include too much POI information (high entropy
in information theory). For zoning effects, we compared the POI density of units between
grids and census units (See Figure 6). Table 2 demonstrates that grid-based units have more
NaN values than census units, especially at the smallest scale. Compared with larger scales,
GRID500 and GRID1000 had lower POI densities than LSOA and MSOA, respectively. This
is because the grid partition method generates more units than the geostatistical method
in outer London, where there are fewer POIs. By synthesising both scale and zoning effects
of the different analytical units with POIs, we chose LSOA (the census units at the middle
scale) as the optimal unit of analysis to aggregate urban functional use from POI data.

All POI sequences of Li generated in the last step by LSOA units were tagged, marked as
a tag set T {t1, t2, ..., tj, ..., tm}. By spatially combining random points and the LSOA layer,
each POI sequence receives an LSOA ID for the area in which the central random point
is located. This process produces a tagged POI sequence STi = [tj, poi1, poi2, poi3, ...poin]
where i refers to the ID of the random point and j refers to the LSOA ID.

11



Table 1: Indicators for examining scale and zoning effects when aggregating POIs.

Indicator Description Related Effects

POI density Number of POIs per square metre:
D = n/a, where n refers to the number
of POIs and a refers to the area of unit of
analysis.

Zoning effects: indicates the in-
tensity of urban functional use

POI class richness Number of POI classes present in a unit:
R = m, where m refers to the number of
POI classes.

Scale effects: indicates the de-
gree of mixed-use

POI class diversity The weighted geometric mean of the POI
classes’ proportional abundances. The in-
dex is calculated by Shannon’s Diversity In-
dex:
SDI = −

!m
i=1 (Pi lnPi), where pi refers to

the proportion of type ith POI class

Scale effects: indicates the diver-
sity of urban functions in units.
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Figure 5: Plots of POI class diversity for different analysis units (NaN values excluded).
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Figure 6: Plots of POI density for different analysis units (NaN values excluded).

Table 2: Results of indicators measured for six analysis units.

Units N NNaN POI Class Diversity POI Class Richness POI Density
Mean St. Dev. Median Mean St. Dev. Median Mean St. Dev. Median

GRID200 40637 9524 1.33 1.01 1.10 8.17 3.00 0.11 0.80 1.83 0.30
GRID500 6672 423 2.59 1.11 21.47 18.40 16.00 0.42 0.78 1.40 0.36
GRID1000 1731 52 3.47 1.08 3.83 46.59 29.23 46.00 0.76 1.18 0.45
OA 25053 1498 1.57 0.98 1.56 7.92 9.19 5.00 1.37 2.97 0.51
LSOA 4836 0 3.15 0.61 3.16 27.70 16.42 24.00 1.28 1.74 0.70
MSOA 983 0 4.22 0.28 4.24 70.44 19.25 69.00 1.25 1.44 0.84

4.3. Training vectors for POI classes and urban areas with Doc2Vec model

The neural network architectures of the Doc2Vec model, and their training process, are
similar to those in the Word2Vec model. The Doc2Vec model has two neural network archi-
tectures: the Bag of Words version of Paragraph Vector (PV-DBOW) and the Distributed
Memory version of Paragraph Vector (PV-DM) (Le & Mikolov, 2014). The PV-DBOW
model predicts POI classes using a spatial tag (the paragraph tag), while the PV-DM model
uses context POI classes to predict the central POI class. In this study, we employ the PV-
DM model that takes the tagged POI sequences ST as the input. Two types of vectors can
be learned in the model. The first is the ’word vector’ type, which represents vectors for POI
classes in the POI sequences ST . The second is ’paragraph vectors’ type, which represents
urban areas tagged in set T . The training process of PV-DM for POI classes (word vector) is
based on the CBOW model in Word2Vec, which Goldberg & Levy (2014) and Rong (2016)
thoroughly explain. In brief, the objective of the CBOW model is to predict a word, based
on the surrounding words in a given context. The aim is to maximise the average of the log
probability for predicting the central word (Equation 2).

minimize J = − logP (wc|wc−m, . . . , wc−1, wc+1, . . . , wc+m) (2)
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wc is the POI class of the central POI and m is the window size of the context. Equation
3 calculates the probability of the central word by the context P (wc|wc−m, . . . , wc+m) where
v̂ is the mean embedding vector over all context words, uc is the output vector of word
wc, and V refers to the size of vocabulary (the number of POI classes). In the above
equation, a score vector is initially generated by uT

c v̂, which is then mapped to a probability
via the softmax function. With the probability estimate P (wc|wc−m, . . . , wc+m), the model
uses cross-entropy to calculate the loss against the true distribution (i.e., one-hot word
representation of the central word) (See Figure 7, left). Stochastic gradient descent is used
to minimise J , while updating input and output word representations.

P (wc|wc−m, . . . , wc−1, wc+1, . . . , wc+m) =
exp

!
uT
c v̂

"
#|V |

j=1 exp
!
uT
j v̂

" (3)

Based on the CBOW model in Word2Vec, the PV-DM model additionally output a new
embedding for the whole context (See Figure 7, right). The variation of the input data is
the additional document token. In the process of averaging all context words, the method
uses this token to predict the subsequent word. For all POI sequences from the same LSOA,
the represented document vector can perform as a shared memory of the functional context
in this area. Considering the total number of POI classes (574), we chose a dimension size
of 20 for vectors trained in the model.
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Input Projection Output  

Doc2Vec (PV-DM)

!!

!"

!#

!$

POI
Classes

POI
Classes

LSOA
Unit ID

Softmax

0.15
0.21
0.08
0.02
…
0.50
0.03

1
0
0
0
0
0
0

0
1
0
0
0
0
0

0
0
0
0
0
0
1

0
0
0
0
0
1
0

Cross Entropy

"%×'

"'×(
`

#

"

"`

!!

!"

!#

!$

Word Matrix

Document Matrix

!'

Word2Vec (CBOW)

Input Projection Output

Figure 7: Comparison of the training processes using Word2Vec (CBOW) and Doc2Vec (PV-DM).
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4.4. Functional similarity between POI classes with hierarchical clustering

When the training process is complete, each POI class and LSOA is represented by a 20-
dimensional vector. For any two POI classes, the similarity between them can be measured
by the cosine similarity in the vector space using Equation 4 where Ai and Bi are components
of vectors A and B, respectively. A lower cosine distance indicates a higher similarity. The
similarity score range is from -1 to 1, where 1 indicates the same and -1 signifies the opposite.

sim(A,B) =
A · B

||A||||B|| =
#N

i=1 AiBi$%#N
i=1 A

2
i

&%#N
i=1 B

2
i

& (4)

With similarity scores computed for all pairs of POI classes, we can generate a similarity
matrix for all POI classes. The similarity between the vectors of POI classes from the
Doc2Vec model refers to their semantic similarity – they have a similar context in urban
space (Mikolov et al., 2013a). The similar pairs of POI classes mean that they tend to
appear in the city as associated functional use. Based on this understanding, we conducted
agglomerative hierarchical clustering to further explore the similarity scores between all
pairs of 574 POI classes in Greater London. We chose the hierarchical clustering algorithm
because this non-flat algorithm provides a sequence of nested relationships between POI
classes and may, therefore, produce meaningful taxonomies. In hierarchical clustering, we
chose complete linkage (i.e., furthest-neighbour linkage) as the metric by which to calculate
all pairwise dissimilarities between observations in any two groups. As complete linkage
emphasises the maximal inter-cluster dissimilarity, assisting the classification of classify POI
groups with different functions (James et al., 2013b). The result of the clustering can be
visualised by way of a dendrogram, a tree-based representation.

4.5. Urban functional areas classification and annotation

The vectors of LSOAs are used for exploring urban functional areas in Greater London.
By clustering these vectors referring to the functional context in LSOAs, we classify all
LSOAs into different groups, which are urban functional areas. Here, we use the k-means
method to cluster LSOAs and choose an external evaluation method, Adjusted Rand Index
(ARI), to determine the optimal k for the clustering. Researchers often utilise ARI to
compare the similarity between two clustering types (Santos & Embrechts, 2009). This
study employed ARI to compare the predicted clustering by the k-means algorithm and
the ground truth that we derived from London Output Area Classification (LOAC). This
classification system for 340 statistical units in Greater London, is founded on 60 attributes
recorded in the 2011 census at the OA level, indicating the social, economic and demographic
characteristics of local communities (Singleton & Longley, 2015). Specifically, we calculated
the Rand Index (RI) with Equation 5.

RI =
TP + TN

TP + FP + TF + FN
=

TP + TN

C2
N

(5)

• True positive (TP): two similar POI classes are in the same cluster
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• True negative (TN): two dissimilar POI classes are in different clusters

• False positive (FP): two dissimilar POI classes are in the same cluster

• False negative (FN): two similar POI classes are in different clusters

We then computed ARI with Equations 6-8, where nij denotes the number of times a POI
class occurs in cluster i of the POI classification scheme and cluster j of k-means clustering;'

n
2

(
refers to unordered pairs in a set of n elements. The bounded range of the ARI score

is [-1, 1], where a negative score means independent labelling and a positive score represents
similar labelling. The random label assignments produce an ARI score of close to 0.

ARI =
RI− E[RI]

max(RI)− E[RI]
(6)

E(RI) = E

)
*

i,j

'
nij

2
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=

,
*

i
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ni

2

(*

j

'
nj

2
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(
(7)

max(RI) =
1
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,
*

i

'
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2

(
+
*

j
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n,j

2

(-
(8)

After classifying LSOAs into several groups of functional areas, the next step is to in-
terpret these groups. This is necessary because the clustering result gives no guarantee
regarding on the interpretation of functional use in each cluster. Therefore, it is necessary
to annotate the clusters with latent functions. In this study, we implemented LDA topic
modelling for clusters separately, in order to extract topics from POI sequences. LDA topic
modelling is one of the most powerful text mining tools for topic extraction from a collec-
tion of texts. The LDA model regards documents as mixtures of several topics, in which
words characterise each topic with certain probabilities (Blei et al., 2003). Based on this
conception, LDA topic modelling can be used for extracting the latent functions (topics)
with probabilities of POI classes (words) in all the clusters identified by k-means.

We also applied the enrichment factor (EF) to supplement the annotation for urban
functional areas. EF explores the difference in expression of elements between the sample
data and background data; it is an approach that has been widely adopted in previous studies
(Chen et al., 2017; Zhai et al., 2019). The metric allows us to aggregate the configuration
of 574 POI classes at the category level (52 POI categories), so as to better interpret the
urban functions in each cluster. This study used EF to calculate the ratio of the proportion
of a POI category in a cluster to the proportion in the whole city, as shown in Equation 9:

EF q
i = (P q)cluster/(P

q)context = (N q
i /Ni) / (N

q/N) (9)

where N q
i denotes the number of POIs in category q in the cluster i, Ni refers to the

number of POIs in cluster i, N q represents the total number of POIs in category q in the
city, and N refers to the total number of POIs.

16



4.6. Model evaluation

To better comprehend the performance of the Doc2Vec model in delineating urban func-
tional areas, we compared it with other three open-source models: TF–IDF, LDA and
Word2Vec. We used the features output from the above models to train a random forest
classifier, and compared their accuracy by the out-of-bag scores (James et al., 2013a). Ran-
dom forest is a supervised learning algorithm that consists of multiple decision trees as an
ensemble. The random forest algorithm is a popular classification tool due to its advantages
in reducing the overfitting problem, responding to high-dimensional features, and exploring
the non-linear correlation between independent variables (Biau, 2012). The true labels used
to train the random forest classifier were the super groups identified in the LOAC. Table 3
lists the classification scheme comprising eight super groups and 19 groups.

Table 3: London Output Area Classification (LOAC): Super Groups and Groups.

Super Group Group

A: Intermediate Lifestyles A1: Struggling suburbs
A2: Suburban localities

B: High Density and High-Rise Flats B1: Disadvantaged diaspora
B2: Bangladeshi enclaves
B3: Students and minority mix

C: Settled Asians C1: Asian owner-occupiers
C2: Transport service workers
C3: East-End Asians
C4: Elderly Asians

D: Urban Elites D1: Educational advantage
D2: City central

E: City Vibe E1: City and student fringe
E2: Graduation occupation

F: London Life-Cycle F1: City enclaves
F2: Affluent suburbs

G: Multi-Ethnic Suburbs G1: Affordable transitions
G2: Public sector and service employees

H: Ageing City Fringe H1: Detached retirement
H2: Not quite Home Counties

Source: Singleton & Longley (2015)

5. Results

This study implemented the methodology using Python version 3.7 and PostGIS ver-
sion 3.0 on Windows 10 (x64). PostGIS was used to manage geospatial data and run
geoprocessing. The Gensim library for Python (https://radimrehurek.com/gensim/) was
used to conduct Word2Vec, Doc2Vec and LDA models. Scikit-learn library for Python
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(https://scikit-learn.org/) provided codes for machine learning algorithms, including
TF–IDF, k-means clustering, agglomerative hierarchical clustering and random forest clas-
sification.

5.1. Functional similarity between POI classes in London

The Doc2Vec model returned 20-dimensional vectors for 574 POI classes and 4,836
LSOAs. By calculating the similarity between all pairs of POI classes in Greater Lon-
don, we produced the 574-by-574 similarity matrix shown in Figure 8. Cells in the cluster
map are coloured with the RdBu ramp, based on their similarity score, with a range from
-1 to 1; red cells indicate high similarity and blue cells denote dissimilarity. Along the di-
agonal, POI classes are grouped into several clusters according to the functional similarity.
The details of annotation for POI classes in each cluster can be found in Supplementary
File 1. The dendrogram shown at the left of Figure 8 illustrates the underlying hierarchical
structure of these clusters. We cut off the hierarchical tree with eight clusters (coloured
in the dendrogram) in order to enable subsequent comparison with the nine groups in the
original classification scheme. The results show that POI classes are not necessarily from
the same POI category or group. This finding is not surprising, as a mix of functional uses
is common in metropolitan cities such as London. From top to bottom, the eight clusters
regarding functional use are: Leisure and domestic services; Industrial production, farming
and municipal facilities; Food & household retail and personal services; Media, financial and
business services; High-end retail, arts and real estate; Entertainment and transport; Public
facilities, schools and public areas; Educational, government and institutes.
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Figure 8: The functional similarity cluster map of 574 POI classes in Greater London. Each cell in the
cluster map refers to the similarity value sim(POIi, POIj) calculated by the cosine distance between the
characteristic vector trained in the Doc2Vec model. Matrix elements are coloured with the RdBu ramp
according to the similarity value with a range from -1 to 1, where red elements indicate high similarity and
blue elements show low similarity. The similarity scores are clustered by the hierarchical clustering shown
as the coloured dendrogram on the left-hand side. The square clusters around the diagonal indicate the
clusters of POI classes with similar functional use. Names and codes for POI classes are labelled in the axes.

To further explore the difference between hierarchical clusters based on functional simi-
larity and POI classification taxonomy, we reordered the index of the same matrix by their
PointX classification code defined in Appendix A. In Figure 9, POI classes are sequentially
ordered from Group 01 to Group 10 (See classification code for POI classes on the x-axis).
The details regarding annotation of the POI classes can be found in Supplementary File 2.
Along the diagonal, POI groups can be identified by the black frames. We found that POI
classes in Groups 02 (Commercial Services), 07 (Manufacturing and Production) and 09
(Retail) shared a functional similarity within their groups, while POI classes in other groups
had lower similarity scores within their groups. POI classes in both Group 07 (Manufactur-
ing and Production) and Group 09 (Retail) demonstrated an overall functional similarity,
while those in other groups were only partially congregated. Figure 9 also shows the func-
tional similarity between different groups in Greater London. For example, one would not
expect to see a high similarity score between Group 02 (Commercial Services) and Group 07
(Manufacturing and Production). The results show that only specific commercial services
such as construction, contract, and engineering services tend to appear around manufactur-
ing and production POIs. Similarities also appear in group pairs between Groups 07 and 09
(Retail), and between Groups 03 (Attractions) and 04 (Sport and Entertainment).
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Figure 9: The functional similarity heat map of 574 POI classes in Greater London (re-indexed by classi-
fication codes). Each element in the matrix refers to the similarity score sim(POIi, POIj) calculated by
the cosine distance between the characteristic vector trained in the Doc2Vec model. Matrix elements are
coloured with the RdBu ramp according to their similarity score with a range from -1 to 1, where red ele-
ments denote high similarity and blue elements indicate low similarity. The matrix is sequentially re-indexed
according to POI codes from Group 01 to Group 10. Black frames around the diagonal refer to the similarity
matrix of POI classes from the same POI group. Names and codes for POI classes are labelled in the axes.

5.2. Urban functional areas in Greater London

To identify functional areas, we applied k-means clustering to classify vectors of all 4,836
LSOAs in Greater London. In selecting parameter k for the algorithm, we used the Adjusted
Rand Index to evaluate the clustering results by comparing them with super groups in the
LOAC (James et al., 2013b). Figure 10 presents the ARI with different numbers of clusters
k, from 2 to 15. Although k = 6 has the highest ARI, it was necessary to examine the
optimal number of clusters for the task of detecting functional areas. Therefore, we selected
another two k with high ARI, k = 4 and k = 7, as comparisons.
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Figure 10: Adjusted Rand Index against the number of clusters using k-means.

Figure 11 illustrates the clustering result when k = 4, 6 and 7. It is apparent that three
classifications were successful in identifying the central areas of London, which overlap with
the Central Activities Zone (CAZ) in the city. It is a reasonable result, as the CAZ is the
vibrant centre hub of London, which is very different from the outer areas in most aspects
of urban function. However, in the classification with k = 4 (Figure 11a), Cluster 0 not
only covers the CAZ, but also includes large areas such as Wimbledon and Hampstead.
Comparing this result with the other two, it clearly fails to subdivide the functional areas
both in inner and outer London. For Figure 11b (k = 7) and Figure 11c (k = 6), the
clustering results were similar. Both classifications subdivide inner London (except for the
CAZ) into two main functional areas shown as yellow- and blue-coloured regions, implying
the spatial division between western and eastern areas. The difference between them is
that the result for k = 7 (Figure 11b) further classifies the areas in outer London, which
is challenging to interpret with the random distribution. Ultimately, we chose six as the
optimal k for k-means clustering to aggregate all LSOA vectors.
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Figure 11: Urban functional areas classification with k-means clustering when k = 4, 6, and7.

After classifying the urban functional areas with k-means (k = 6), we used LDA topic
modelling and enrichment factor explained in section 4.5 to annotate these clusters. In
order to find the optimal number of topics for interpreting each cluster, we utilised the
coherence score as the indicator. Figure 12 shows the results of coherence scores against
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the number of topics. Due to the fact that most of the clusters shared one or two common
topics (i.e., basic urban functions), including the most common POI classes such as Hair
and Beauty Services, Convenience Stores and Independent Supermarkets, Restaurants and
Cafes, we chose at least three topics so as include more latent topics in the functional areas.
By looking at the average score of coherence in Figure 12, we found that Cluster 3 has the
lowest average score, indicating a heterogeneous collection of POI classes. Cluster 1 and
Cluster 2 both exhibit a higher coherence than other clusters. The table of EFs for POI
categories (Table 4) also served as another reference for the annotation of urban functional
areas.
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Figure 12: Coherence scores against the number of topics in each cluster.

Table 4: Enrichment factor for POI category in each cluster.

POI Category Enrichment Factor
Code Names C0 C1 C2 C3 C4 C5

01 Accommodation 1.067 0.5 0.391 2.499 0.689 0.666
02 Eating and Drinking 0.968 0.467 0.787 1.434 1.158 1.137
03 Construction Services 0.718 1.536 2.064 0.228 0.649 0.72
04 Consultancies 1.157 0.688 0.751 1.883 0.556 0.905
05 Employment and Career Agencies 0.707 0.646 0.718 2.126 0.92 0.612
06 Engineering Services 0.655 1.611 1.315 1.223 0.519 0.502
07 Contract Services 0.686 1.577 1.023 0.968 0.767 0.951
08 IT, Advertising, Marketing and Media Services 1.023 0.766 0.655 1.881 0.533 1.114
09 Legal and Financial 0.708 0.646 0.887 1.481 1.278 0.815
10 Personal, Consumer and Other Services 1.122 0.599 1.127 0.889 1.176 1.101
11 Property and Development Services 1.508 0.353 0.797 1.275 1.17 0.931
12 Recycling Services 0.604 2.308 1.191 0.284 0.728 0.951
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Table 4: Enrichment factor for POI category in each cluster.

POI Category Enrichment Factor
Code Names C0 C1 C2 C3 C4 C5

13 Repair and Servicing 0.724 1.822 1.177 0.272 1.091 0.959
14 Research and Design 1.814 0.766 0.922 1.325 0.336 1.006
15 Transport, Storage and Delivery 0.677 2.392 0.573 0.554 0.956 0.953
16 Botanical and Zoological 1.79 1.568 1.305 0.459 0.292 0.829
17 Historical and Cultural 1.416 0.679 0.973 1.599 0.506 0.816
18 Recreational 0.786 1.242 0.711 0.249 0.645 2.88
19 Landscape Features 0.997 1.999 1.703 0.279 0.592 0.399
20 Tourism 1.782 0.171 0.362 2.597 0.296 0.774
21 Sport and Entertainment Support Services 1.281 0.883 0.779 1.285 0.475 1.47
22 Gambling 0.684 0.514 0.893 0.75 1.909 1.182
23 Outdoor Pursuits 1.929 1.47 1.616 0.358 0.126 0.738
24 Sports Complex 1.7 1.14 1.688 0.3 0.615 0.684
25 Venues, Stage and Screen 0.79 0.455 0.756 2.011 0.8 1.031
26 Animal Welfare 1.527 1.01 2.239 0.143 0.54 0.563
27 Education Support Services 0.757 0.64 0.609 1.541 1.079 1.344
28 Health Practitioners and Establishments 1.32 0.57 1.266 0.807 1.106 0.953
29 Health Support Services 1.145 0.683 1.081 0.965 1.027 1.135
31 Primary, Secondary and Tertiary Education 1.081 0.975 1.208 0.498 0.954 1.435
32 Recreational and Vocational Education 1.203 0.877 1.297 0.593 0.927 1.207
33 Central and Local Government 0.661 0.842 0.76 1.345 1.313 0.951
34 Infrastructure and Facilities 1.029 1.127 1.251 0.437 1.02 1.243
35 Organisations 0.871 0.635 0.798 1.522 0.836 1.323
37 Consumer Products 1.024 1.288 0.971 0.946 0.84 0.965
38 Extractive Industries 0.457 3.169 0.45 1.279 0.235 0.351
39 Farming 0.576 3.62 0.8 0.134 0.285 0.768
40 Foodstuffs 0.555 2.288 0.472 0.757 0.892 1.138
41 Industrial Features 0.522 3.297 0.558 0.163 0.611 1.069
42 Industrial Products 0.671 1.976 0.87 0.997 0.649 0.822
46 Clothing and Accessories 0.986 0.434 0.367 1.96 1.44 0.617
47 Food, Drink and Multi-Item Retail 0.858 0.738 0.863 0.601 1.689 1.289
48 Household, Office, Leisure and Garden 1.13 1.04 0.87 0.989 1.143 0.829
49 Motoring 0.46 2.413 1.225 0.183 1.114 0.545
53 Air 0.127 5.525 0.453 NA NA NA
54 Road and Rail 0.844 1.643 1.422 0.507 0.967 0.541
55 Walking 1.254 1.523 1.494 0.439 0.64 0.713
56 Water 1.492 2.056 0.709 0.473 0.355 1.273
57 Public Transport, Stations and Infrastructure 1.085 0.866 0.734 1.304 0.994 1.025
58 Bodies of Water 1.651 1.683 2.117 0.099 0.222 0.296
59 Bus Transport 0.97 1.353 1.431 0.381 0.853 1.083
60 Hire Services 0.645 2.35 0.993 0.495 0.793 0.747

Cluster 0 (Affluent neighbourhoods and leisure spaces) The spatial distribution
of LSOAs in Cluster 0 (shown in Figure 13a) covers the affluent suburbs of Kensington and
Chelsea, Hammersmith and Fulham, Hampstead, Richmond Upon Thames, Wandsworth
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and so on. Table 5 provides an example of four topics extracted by LDA topic modelling
where each topic is represented as a latent function by a list of weighted POI classes. Topic 1
and Topic 3, both group the POI classes, related to essential shops and services for daily life,
identifying the residential function as the primary purpose in this cluster. Topic 2 includes
a high number of property-related POI classes and associated facilities, including Design
Services, Architectural and Building-Related Consultants, Estate and Property Management,
Tennis Facilities and Playgrounds. Topic 4 includes a series of facilities and services in these
affluent neighbourhoods, including Tennis Facilities, Nursery Schools and Pre and After
School Care, Accountants and Auditors, Sports Grounds, Stadia and Pitches and Entertain-
ment Services. Table 4 displays a high EF for both Outdoor Pursuit and Sports Complex
in Cluster 0, indicating that leisure and outdoor activities play an important role in LSOAs
within this cluster. The high EFs for Botanical and Zoological and Tourism reveal the
popularity of these affluent areas among tourists.

Cluster 1 (Municipal facilities and industrial areas) As Figure 13b illustrates,
Cluster 1 covers large areas in outer London. The topic extraction identified five topics that
can be summarised as industrial areas and municipal facilities. One of the topics includes
a group of municipal facilities such as Sports Grounds, Stadia and Pitches, Cemetreies and
Crematoria and Waste Storage, Processing and Disposal which typically occupy large areas,
requiring idiosyncratic site conditions. The presence of industrial areas is evident from the
high weights for POI classes such asDistribution and Haulage, Container and Storage, Import
and Export Services, Construction and Tool Hire and Courier, Delivery and Messenger. The
high EFs for a range of manufacturing and production POIs (POI category codes 37 to 42)
in Table 4 further reveals that most of the industrial production is located in this cluster.
Air transport also emerges as a key function, because the EF for Air, in this specific cluster,
is the highest among all other scores. Airports such as London Heathrow Airport, London
City Airport and Royal Air Force Northolt are included in this cluster.

Cluster 2 (Suburbs and developing areas) LSOAs in Cluster 2 are distributed
along the urban fringe, including Hillingdon, Enfield, Havering, Bexley, Bromley, Sutton
and so on (Figure 13c). The result of topic extraction shows that LSOAs in this cluster
function as residential areas. In neighbourhoods within this cluster, there are more facilities
such as Nursing and Residential Care Homes, Tennis Facilities and Places of Worship.
The results also demonstrate that building services such as Building Contractors, Electrical
Contractors and so on are another significant function within the cluster. The high EF
(2.064) of Construction Services further confirms this finding. Table 4 also shows that Body
of Waters, Animal Welfare and Landscape Features are uniquely high POI classes in this
cluster, compared with the other five clusters. This result is not surprising, because the
urban fringe in Greater London is surrounded by the Green Belt.

Cluster 3 (Vibrant city centre) Cluster 3 is predominantly comprises the CAZ, which
is the most vibrant area of London. The cluster also identifies similar areas outside the CAZ,
such as Canary Wharf, Richmond and Wimbledon town centre. With the lowest average
coherence score among all the clusters (Figure 13d), Cluster 3 has a highly mixed use of urban
functions, therefore, requires more topics to interpret. We selected eight topics with which to
annotate the cluster and to summarise the main functions of tourism, business, commercial
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and cultural activities. For example, the topic of tourism includes POI classes such as Hotels,
Motels, Country Houses and Inns, B&B Accommodation, and Youth Accommodation. The
commercial function can be identified from POIs related to high-end retail and fashion
such as Jewellery, Gems, Clocks and Watches and Jewellery and Fashion Accessories. The
business function in this cluster is diverse, involving the media industry, financial services,
legal consultancy, property sales, health services and others. The EF result also reveals that
POIs in categories such as Accommodation, Employment and Career Agencies, Tourism
and Clothing and Accessories are representative functions in this cluster. The high EF for
Venues, Stage and Screen indicates that LSOAs in Cluster 3 also operate as entertainment
centres.

Cluster 4 (Local service centres) Most of the LSOAs in Cluster 4 are distributed in
suburban areas surrounded by Cluster 1 and Cluster 2 (see Figure 11c). The functions in
this cluster are predominantly local services, including convenience stores, retail businesses,
and professional support. The high EFs for both Clothing and Accessories and Food, Drink
and Multi-Item Retail show that these LSOAs comprise local retail centres for surrounding
neighbourhoods. The EF for Central and Local Government in this cluster also indicates
that most of the public services and local government offices are within these LSOAs.

Cluster 5 (Recreation, education, and organisations) The LSOAs in Cluster 5 are
mainly distributed in inner London and cover regenerated areas such as Hackney, Islington,
Wandsworth, Lambeth and so on(See Figure 13f). The results of the topic extraction show
that recreation and residency are the main functions in this cluster. The EF result suggests
that Recreational and Sports and Entertainment Support Services are representative POI
categories in LSOAs from Cluster 5. Education-related POIs such as Education Support
Services and Primary, Secondary and Tertiary Education also play a notable role in these
neighbourhoods. Charitable Organisations and Headquarters, Administration and Central
Offices also have high weightings in this cluster.
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Table 5: An example of topic extraction with LDA for Cluster 0 (20 POI classes in each topic)

Topics Result (Top 20 POI Classes with weight)

Topic 1 0.065*Hair and Beauty Services + 0.049*Restaurants + 0.046*Property Sales + 0.037*Cafes,
Snack Bars and Tea Rooms + 0.029*Convenience Stores and Independent Supermarkets
+ 0.029*Bus Stops + 0.026*Clothing + 0.025*Pubs, Bars and Inns + 0.023*Fast Food
and Takeaway Outlets + 0.022*Cleaning Services + 0.022*Cash Machines + 0.019*De-
sign Services + 0.013*Alternative, Natural and Complementary + 0.011*Property Letting
+ 0.010*Architectural and Building-Related Consultants + 0.010*Building Contractors +
0.009*Accountants and Auditors + 0.009*DIY and Home Improvement + 0.009*Unspecified
and Other Attractions + 0.009*Places of Worship)

Topic 2 0.061*Bus Stops + 0.047*Design Services + 0.024*Places of Worship + 0.019*Architec-
tural and Building-Related Consultants + 0.018*Photographic Services + 0.016*Marketing
Services + 0.016*Entertainment Services + 0.016*Computer Systems Services + 0.015*Es-
tate and Property Management + 0.015*Tennis Facilities + 0.014*Alternative, Natural
and Complementary + 0.014*Building Contractors + 0.013*Nursery Schools and Pre and
After School Care + 0.013*Playgrounds + 0.013*Mental Health Centres and Practition-
ers + 0.012*Plumbing and Heating Services + 0.012*Unspecified and Other Attractions +
0.012*Business-Related Consultants + 0.012*Property Development Services + 0.012*First,
Primary and Infant Schools

Topic 3 0.096*Bus Stops + 0.040*Hair and Beauty Services + 0.040*Convenience Stores and In-
dependent Supermarkets + 0.034*Unspecified and Other Attractions + 0.021*Pubs, Bars
and Inns + 0.020*Places of Worship + 0.020*Cleaning Services + 0.019*Property Sales +
0.018*Cash Machines + 0.015*Cafes, Snack Bars and Tea Rooms + 0.014*Restaurants +
0.014*Fast Food and Takeaway Outlets + 0.014*Design Services + 0.013*PayPoint Locations
+ 0.013*Ponds + 0.012*Nursing and Residential Care Homes + 0.011*Nursery Schools and
Pre and After School Care + 0.011*Estate and Property Management + 0.010*Alternative,
Natural and Complementary + 0.010*Building Contractors

Topic 4 0.093*Bus Stops + 0.045*Tennis Facilities + 0.028*Nursery Schools and Pre and Af-
ter School Care + 0.023*Accountants and Auditors + 0.022*Hair and Beauty Services +
0.019*Places of Worship + 0.018*Unspecified and Other Attractions + 0.018*Cafes, Snack
Bars and Tea Rooms + 0.018*Cleaning Services + 0.017*Convenience Stores and Indepen-
dent Supermarkets + 0.016*Design Services + 0.015*Pubs, Bars and Inns + 0.014*Build-
ing Contractors + 0.013*Sports Grounds, Stadia and Pitches + 0.013*Cash Machines
+ 0.013*Business-Related Consultants + 0.013*Vehicle Repair, Testing and Servicing +
0.011*Playgrounds + 0.011*Entertainment Services + 0.010*Historic and Ceremonial Struc-
tures

5.3. The evaluation results

Table 6 provides the accuracy results of random forest classifiers with vectors of LSOAs
trained by TF–IDF, LDA, Word2Vec and the model proposed herein (Doc2Vec). The TF–
IDF model transformed POI classes into a sparse matrix of N-gram counts, producing 574-
dimensional features of documents. The LDA model provided a distribution of 10 topics for
all LSOAs and represented each LSOA as a vector of topic proportions. The alpha parameter
was set as 0.5. The Word2Vec model used the same corpus (without LSOA tags) constructed
for the Doc2Vec model. We ascertained vectors for LSOAs by averaging vectors of POI
classes within LSOAs, which is the method most commonly utilised in previous studies (Yao
et al., 2017; Zhai et al., 2019). The dimension of vectors in the Word2Vec model was the same
as that of the Doc2Vec model (20-dimensional). To increase the reliability of the results, we
iterated the evaluation process 100 times. In each iteration, the dataset was randomly split
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into a training set (70%) and a testing set (30%). The result includes out-of-bag (OOB)
scores during the training process, and Overall Accuracy (OA) and Kappa scores during the
predicting process. The OA of the proposed model (training process) had a 9.3% higher
value than that of the TF–IDF model, an 11.5% higher value than that of the Word2Vec
model, and a 20% higher value than that of the LDA model. In the prediction process,
the Kappa score of the Doc2Vec model was more than 10% higher than those of the other
models. The result thus demonstrates that the Doc2Vec model outperforms frequency-based
models, such as TF–IDF and LDA.

Table 6: Accuracy assessment of functional area classifications with different language models

Models Training process Prediction process

OOB score Overall Accuracy Kappa score

Doc2Vec 0.486 ± 0.0106 0.496 ± 0.0086 0.419 ± 0.0100
Word2Vec 0.376 ± 0.0097 0.381 ± 0.0084 0.286 ± 0.0097
TF–IDF 0.370 ± 0.0083 0.403 ± 0.0086 0.310 ± 0.0098
LDA 0.292 ± 0.0090 0.297 ± 0.0067 0.189 ± 0.0077

6. Discussion

The results of calculating the functional similarity between POI classes demonstrates
the diverse and mixed configuration of urban functional use, as well as revealing the corre-
lation between POI classes in Greater London (See Figure 8). For example, we found that
entertainment-related POIs have a strong functional similarity with transport POIs such
as bus stops, subway stations and taxi ranks, and that real estate-related POIs are often
grouped with high-end retail and art shop POIs. By comparing the functional similarity
matrix and predefined POI groups in the POI taxonomy, we discovered that only POIs in
certain groups such as Commercial Services, Manufacturing and Production and Retail ex-
hibit high functional similarities within their groups, meaning POIs in these groups tend
to agglomerate more in the city, compared to those in other groups. Differing from the
POI categorisation that classifies POIs by types, the functional similarity matrix measured
the spatial context of 574 POI classes and revealed how different POIs appear in London,
alongside local characteristics.

The classification results illustrated in Figure 13 identify the city’s vibrant areas, not only
in the commonly known CAZ, but also in a number of central London, such as Canary Wharf,
Richmond, and Wimbledon, where the results reveal similar functional uses, implying that
these areas have a similar function as the city’s vibrant centre; however, contrary to common
perceptions, they are outside of the city’s core, which points to a polycentric structure of
Greater London. Surrounding central London, there is a spatial division of urban functions
between Cluster 0 (affluent neighbourhoods and leisure spaces) and Cluster 5 (regenerated
areas of inner London). Eastern areas of inner London predominantly provide functions such
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as recreation, education, and workplaces for organisations, while western London areas such
as Kensington and Chelsea, Hammersmith and Fulham, Richmond Upon Thames and so on
contain more affluent residential areas and corresponding leisure facilities. In outer London
areas with low POI densities, the results also identify three clusters (Clusters 1, 2 and
4) with different functions, one of which (Cluster 4) functions as the local service centre.
The clustering results presented in Table 6 show that the proposed Doc2Vec model with
POI data can better delineate urban functional use, compared with frequency-based models
(e.g., TF–IDF and LDA) or other neural network embedding models, such as Word2Vec.
The Doc2Vec model performs better because it directly generates vector representations for
urban areas from POIs in different classes, whilst establishing the spatial context as a part
of a vector.

The results of this study also demonstrate that this enhanced neural network embedding
model can be used in exploring the functional similarity between POI classes, outperforming
other commonly used language models which utilise POI data to delineate urban functional
areas across an urban setting. The functional similarity matrix for POI classes in Greater
London (Figure 8) illustrates how 574 POI classes connect with each other, based on their
spatial context. The hierarchical clustering result for vectors of POI classes proves that urban
function is highly mixed in Greater London, which can be intuitively identified by compar-
ison with the POI classification taxonomy (Appendix A). The vectorised POIs provide an
opportunity for exploring the functional similarity between POI classes, while considering
the pattern of their spatial proximity. It proves the capability of neural network embedding
to reveal the spatial relationship better than frequency-based models can. Although explor-
ing the functional similarity for each pair of POI classes is beyond the scope of this study,
this result provides a firm reference from which to explore how different POI classes group
together in cities. The other principal result (See Figure 11c) gives an interpretable and
reasonable classification of urban functional areas in Greater London.

6.1. Linking previous studies

In comparison to the existing literature on detecting urban function, this study is distinct
in two ways. First, it uses POI data to extract urban functional use, because this type
of data provides the most granular level of functional use. The results suggest that POI
data reflect more socio-economic characteristics of urban land use, rather than the remote
sensing data used in previous studies (Hu & Wang, 2013; Joshi et al., 2016; Liu et al., 2017).
Regarding studies using social media check-in data (Cranshaw et al., 2012; Gao et al., 2017;
Liu et al., 2017; Chen et al., 2017; Zhang et al., 2019), although they consider the intensity
of human activity in urban areas, are nonetheless biased due to the digital gaps inherent in
the datasets used. Furthermore, they are not suitable for identifying urban functional use in
metropolitan areas, where outer areas normally have fewer check-in data. Moreover, as POI
data are ubiquitous in cities around the world, the transferability and applicability of this
present studys method to other urban cases increases accordingly. Second, the methodology
proposed in this study yielded results consistent with other studies (Yao et al., 2017; Zhai
et al., 2019; Hu et al., 2020) that have argued that the neural word embedding method offers
greater advantages in learning the spatial contexts of POIs and extracting urban functional
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use than frequency-based methods, such as TF–IDF and LDA (Yuan et al., 2015; Liu et al.,
2017; Gao et al., 2017). This study also demonstrates that the LDA topic model can be
useful in interpreting urban functions from clustered areas with disaggregated POI classes.

6.2. Potential in urban planning and management

From the perspective of urban planning and management, the proposed framework has
significant potential benefits for different stakeholders, including both the public and pri-
vate sectors. First, this study proposes a tool for local authorities (i.e., the Greater London
Authority) to classify urban functional areas efficiently and at different scales, while main-
taining the capability of sensing functional changes in urban areas in a timely manner. For
example, in the recently published planning reform white paper (Ministry of Housing, Com-
munities & Local Government, 2020), the UK government proposed that new local plans
are required to identify three types of land use for urban development in the future. As
the proposed model in this study uses disaggregated POI data with detailed uses of build-
ings/land, it thereby supports planning authorities in extricating functional uses of urban
areas at various scales (e.g., blocks, grids, census units or TAZs), furnishing them with an
up-to-date reference when developing new land-use plans.

The UK also recently further deregulated planning regulations by allowing the conver-
sion of some buildings from one class of use to another (e.g., office-to-residential change)
without planning permission. Although this decision increases the flexibility and adaptabil-
ity of the planning process, thereby helping to resolve issues such as housing shortages and
a high office-vacancy rate, it undoubtedly makes the ability of local authorities to moni-
tor the changes at the micro-level more difficult. The lack of planning permission records
and the unanticipated cumulative effects thereof, may lead to some negative unintentional
consequences, exacerbated by a lack of granular. For example, large numbers of office-
to-residential conversions, in some communities in London, bring with them substantially
increased demand for education, health care provision, parking, and waste disposal, and
other associated services; this is because, concordant with the change of occupants, the
functional use of these buildings has dramatically changed (Ferm et al., 2020). However, it
is difficult for local authorities to plan for these additional demands without applications,
at least not until the demand exceeds the capability of local public services to meet them.
To sense the dynamic change of urban functional use, planning authorities can apply the
Doc2Vec model to London POI datasets in two successive quarters, allowing observations of
changes in urban functions by comparing the classification results shown in Figure 11. For
example, urban areas that are identified as changing from Cluster 3 (vibrant city centre,
mainly referring to commercial and business functions) to Cluster 4 (local service centres
providing services for residential areas) suggest areas which are being the areas impacted
by the office-to-residential policy. Accordingly, local authorities can begin to promptly plan
and implement local policies, such as increasing parking price rates or local council taxes,
before seeing a sudden increase in the public service burden.

For private sector groups such as developers and real estate agents, this framework also
has great potential for providing building/land use recommendations and selecting locations
in terms of functional need. As the Doc2Vec model trains vector representations of POI
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classes from its functional context (i.e., co-occurring POI classes in close proximity), in
practice, it can be utilised to determine the suggested POI classes from the context POIs in
urban areas, such as high streets, commercial centres, communities and so on. For example,
by identifying many POIs (including cafes, restaurants, shoe shops and grocery stores) on
a segment of a high-street in London, developers could calculate a compound vector by
averaging the vectors of those POI classes and comparing them with all vectors of POI
classes to find functionally similar POI classes, which could potentially be added to the
high-street. This POI recommendation can help developers and real estate managers easily
recognise suitable POI classes for assigning a new developments or new uses of property, in
concordance with its functional context.

The above opportunities in urban planning and management, either for the public sector
or the private sector, can be realised not just in London, but also in other metropolitan
cities with highly mixed land use (e.g., Shanghai and Hong Kong), and other regions with
flexible planning policies, such as in Australia and New Zealand (Ferm et al., 2020). It can
help to identify urban functional use from disaggregated and fine-scale POIs, and provide a
tool with which to track functional changes for evaluating and adjusting planning policies.
Given the ubiquity and accessibility of POI datasets, the framework could be easily applied
to help reveal the urban functional use and track its dynamics, enabling a more enhanced,
data-driven support of planning policies.

6.3. Limitations and future work

There are some limitations to the application of this model, data sets and method. First,
this study does not include urban activities as part of exploring urban functions (Crooks
et al., 2015). The underlying idea of using POI data, as with many previous studies, is that
the functional use derived from POI classes represents the preference of urban activities; thus,
urban function can be delineated from the POI dataset. This assumption risks overlooking
the role of human activities in shaping urban function. Second, there exists no perfect
urban functional use dataset for Greater London, by which to evaluate the Doc2Vec model.
The absence of such data explains why the land-use classification (Generalised Land Use
Database) in the UK provides only simplified classifications (e.g., domestic buildings, non-
domestic buildings, roads, green space, water and so on) at the regional level, which is
insufficient as a true indication of granular urban functions, especially in a metropolitan area.
We eventually selected a compound classification (LOAC) as the alternative to evaluate the
classification of urban functional areas in Greater London. The limitations of this dataset
go some way to explain the overall low accuracy of results for all of the models shown in
Table 6, albeit the model proposed herein demonstrates an unambiguous advantage over the
others.

It is worth noting that the reliability of the results of the Doc2Vec model is dependent
on the quality of the POI datasets. Those used in this present study are derived from
the Ordnance Survey, the national mapping service for Great Britain. Previous studies
have used datasets from map services (e.g., Google Place, Baidu Map and Gaode Map),
location-based services (e.g., Foursquare and Yelp) or volunteered geographic databases (e.g.,
OpenStreetMap). This dataset provides POIs with larger coverage, more precise information
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and less inaccurate data, which helps to comprehensively reveal the different urban functions
in Greater London. For instance, it records POI classes such as industries, farming and
infrastructures, which are not normally included in the other POI data sources. Therefore,
this study could identify functions such as municipal facilities and industrial areas in the
results for urban functional areas, which rendering the classification even more robust.

The proposed methodology provides remarkable potential for exploring cross-sectional
and longitudinal urban functions. For developing a better understanding of the similarities
among POI classes, it can be used with selected POI datasets for specific locations or local
characteristics. For example, by training POIs only from deprived or affluent communities
(e.g., in accordance with census data) in the city, researchers can evaluate the relationship
between POI classes and socio-economic characteristics. The results of the classification
of urban functional areas could also be used to investigate their correlation with socio-
demographic characteristics, by combining them with census data. With updated POI
datasets, it would also be possible to develop a tool, utilising the Doc2Vec model, to monitor
changes of functional use in cities.

7. Conclusion

This study proposes a framework for implementing the Doc2Vec model on POI data.
The Doc2Vec model not only vectorises POI classes by considering the spatial relationship
among POIs in cities, but also directly generates vectors representing urban areas; this is
something which previous studies have not provided. The chosen case study of Greater
London demonstrates that the vectors of POI classes can be used to calculate the func-
tional similarity among POIs, and that Doc2Vec model outperforms the TF–IDF, LDA and
Word2Vec models in classifying spatial units as functional areas. The framework estab-
lished in this study provides a bottom-up analysis by efficiently inferring urban functions
from the fine-scale POI uses provided by POI data, with assistance from neural network em-
bedding. It allows authorities and policymakers to monitor the urban dynamics, especially
of metropolitan areas with higher mixed land use, which hitherto has been a challenging
task. Moreover, as ubiquitous POI data becomes more accessible because of the diversity of
the data sources, the methods employed in this study can be applied to a broader array of
cases.
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Appendix A. POI Classification Scheme used by the Ordnance Survey

POI Groups POI Categories

01 Accommodation, eating and drinking 01 Accommodation
02 Eating and drinking

02 Commercial services 03 Construction services
04 Consultancies
07 Contract services
05 Employment and career agencies
06 Engineering services
60 Hire services
08 IT, advertising, marketing and media services
09 Legal and financial
10 Personal, consumer and other services
11 Property and development services
12 Recycling services
13 Repair and servicing
14 Research and design
15 Transport, storage and delivery

03 Attractions 58 Bodies of water
16 Botanical and zoological
17 Historical and cultural
19 Landscape features
18 Recreational
20 Tourism

04 Sport and entertainment 22 Gambling
23 Outdoor pursuits
21 Sport and entertainment support services
24 Sports complex
25 Venues, stage and screen

05 Education and health 26 Animal welfare
27 Education support services
28 Health practitioners and establishments
29 Health support services
31 Primary, secondary and tertiary education
32 Recreational and vocational education

06 Public infrastructure 33 Central and local government
34 Infrastructure and facilities
35 Organisations

07 Manufacturing and production 37 Consumer products
38 Extractive industries
39 Farming
40 Foodstuffs
41 Industrial features
42 Industrial products

09 Retail 46 Clothing and accessories
47 Food, drink and multi-item retail
48 Household, office, leisure and garden
49 Motoring

10 Transport 53 Air
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59 Bus transport
57 Public transport, stations and infrastructure
54 Road and rail
55 Walking
56 Water
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