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Abstract 

The urban morphology is characterised by self-organisation where interactions of multiple agents 

produce emerging patterns on the urban form. Port-urban relationship added to the complexity of 

port cities’ urban form. Most urban cellular automata (CA) models simulate land-use evolution 

through transition rules representing multi-factored local interactions.  However, calibration of CA-

based urban land use and transport interaction (LUTI) models often utilise manual methods due 

to complexity of the process. This limits insights on urban interactions to a few explored 

settlements and prevents applications for planning and assessment of transport policies in other 

contexts. This paper, therefore, addresses three main points. The paper (i) demonstrates an 

improved method for the calibration of CA-based LUTI models, (ii) contributes to a better 

understanding of the urban dynamics in port city systems by quantifying generalizable interactions 

from a wide range of port-urban settlements, and (iii) illustrates how the use of these interactions 

in a simulation model can allow long-term impact predictions of planning interventions. 

These were done by formulating a model in a similar structure as a neural network model to enable 

automatic calibration using an application of the gradient-descent algorithm. The model was then 

used to quantify the dynamics between land-use, geographic, and transport factors in 46 port-

based and 10 non-port settlements across Great Britain, thus enabling cross-sectional analysis. 

Cluster analysis of the calibrated interactions in the study areas was conducted to examine the 

variations of these interactions. This produced two main groups. In the first group, consisting larger 

settlements, connections between ports and other urban activities were weaker than in the second 

group which consisted of smaller port-settlements. Overall, the findings of the research are 

consistent with existing evidence in the port-cities literature but go further in quantifying the 

interaction between urban agents within port-urban systems of various sizes and types. These 

quantified interactions will enable planners to better predict the longer-term consequences of their 

interventions.  
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1. Introduction 

The urban morphology is a complex system characterised by self-organisation where interactions 

of multiple agents produce emerging patterns on the urban form (Batty, 2007). In port cities, this 

is made more complex by the port-urban interactions, which could be mutually beneficial in some 

parts and antagonistic in other parts (Hall and Jacobs, 2012). The effect of the expansion of both 

the port and the urban elements could be a “double-edged” sword to the port city system (Lu et 

al., 2021). The successes of both port and urban developments in port cities are linked through 

the spatial organisation (land-use) and spatial interaction (transport) between the different 

functions in the cities (Merk, 2013). Indeed, tensions between port and urban functions often 

materialise in the forms of transport (congestion) and land use (space limitations and competitions) 

problems (Ducruet and Lee, 2006). In order to plan successful long-term interventions, transport 

and urban planners working in port cities context must have a better understanding of the 

dynamics between different factors within the port-urban system. Generalised insights into these 

individual interactions are therefore critical in successful transport and land-use planning of urban 

settlements as they would allow planners to better predict the long-term outcomes of their plans. 

Cellular automata (CA) models are often used for modelling urban land-use due to their capability 

in replicating self-organisation behaviour (Batty, 1997; Batty, 2007). Most urban CA models 

simulate land-use evolution through transition rules with consideration of multiple factors 

representing the local interactions (Santé et al., 2010). Calibration of urban CA models could be 

seen as a process to measure the effect of each factor. However, measuring these individual 

effects from empirical data is complicated due to their autocorrelation and to the effects of specific 

events occurring in their history (known as path-dependence) on their urban forms (Van Vliet et 

al, 2013b). Due to these complications, manual methods are prevalent in the calibration of urban 

land-use and transport interaction (LUTI) models based on CA (Aljoufie et al., 2013). This limits 

the insights into urban interactions to a few explored settlements. Consequently, the interactions 

measured are often specific to urban dynamics of the few explored settlements as the presence 

of path-dependence prevents generalisation of results from one study area to other areas which 

may not share the same history. 

This limitation presents a considerable hindrance in applying a knowledge gained in certain port 

cities to assess the impacts of certain transport and urban policies in other port cities. This is even 

more problematic when the variability between port cities is considered. Ducruet and Lee (2006) 

proposed a framework with 9 categories of port cities depending on the balance of their centrality 

and their intermediacy. These are concepts used to describe characteristics of transportation hubs 

(Fleming and Hayuth, 1994) which were contextualised as the intensity of their urban (centrality) 

and port (intermediacy) activities compared to the rest of the regions. Beyond this framework, 

there could be variations in the spatial organisations between urban and port functions. Hoyle 

(2000) proposed that western port cities often began with both functions being in proximity to each 

other but the link between them become weaker as the two functions grow. However, other port 

cities may follow the East Asian spatial growth model (Lee et al., 2008) where strong links between 

port and city are maintained as the functions grow, or the Middle Eastern model (Akhavan, 2017), 

where the development of one of the functions lags behind the other function. Furthermore, the 

effect of ports on the urban areas would also vary depending on the nature of the traffic carried 

which would have different impacts on the urban economy through the industry interlinkage 

(Yochum and Agarwal, 1988; Kwak et al., 2005). Due to these variabilities of port city systems, it 

is important for port cities studies to expand beyond specific case studies and put more effort into 

testing the applicability of port city evolutionary models in the more generalised context of port 

cities (Woo et al., 2011; Ng et al., 2014). In particular, in the context of port cities’ urban form there 

is a need to examine the contributions of geographic conditions, transport access and proximity 

to other land uses to the potentials of urban areas in attracting certain types of land use activities 

within different port city settings. 
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The aims of this paper are therefore; to introduce an effective automated calibration method of 

urban CA-LUTI models, to quantify the interactions between urban agents over a wide range of 

port settlements, and to illustrate how these interactions can be used in a simulation model to 

predict long-term impacts of policy interventions. 

 
2. Materials and Method: measurement of urban dynamics 

2.1. Study Area Selection and Data Collection 

In order to measure urban dynamics of port cities, 56 settlements of various sizes in Great Britain 

were chosen as study areas as shown in Figure 1. These consist of 46 port settlements and 10 

non-port settlements as comparison. The population and area sizes of these study areas range 

from a settlement with a population of 650 over an area of 1 km2 (Kyle of Lochalsh) to one with 

over 1.5 million population with a 563 km2 area (Tyneside metropolitan area). Note, however, that 

these selections excluded larger settlements such as Greater London due to computational 

resources limitations.  

 
Figure 1 Map of study areas across Great Britain 
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As mentioned, these study areas also included settlements without ports such as Cambridge and 

settlements where port activity has ceased such as York. Types of ports included highly 

containerised port such as Felixstowe, non-container freight ports such as Grimsby and 

Immingham, mainly passenger ports such as Harwich, fishing ports such as Peterhead, and those 

with mixed traffic such as Dover (ferry passenger and non-containerised freight) and Southampton 

(cruise passenger and containerised freight). These study areas also vary in terms of their form of 

waterfront from coastal settlements such as Dover, estuarial such as Southampton, inland such 

as Wisbech, and smaller island settlements such as Hugh Town. The general patterns of urban 

dynamics are uncovered by comparing results from calibrations of these study areas. 

For these study areas, land use, geographic, transport, and planning restrictions data were 

collected. Land use data were obtained from Ordnance Survey’s AddressBase® Plus dataset1 for 

the year 2018 which contained classed and geo-located addressable properties. Data on 

geographic features and locations of transport infrastructures were obtained from Ordnance 

Survey OpenMap dataset2. These include geographic factors such as terrain types and transport 

factors such as location of roads and railway infrastructures. These datasets are complemented 

with public transport service data from the Traveline National Dataset provided under the Open 

Government Licence3 and terrain slope data obtained from LIDAR Composite Digital Terrain 

Model (DTM)4. High level planning restrictions data were obtained from the Joint Nature 

Conservation Committee’s (JNCC) website5. 

2.2. Agent-based Urban Cellular Automata Model 

This paper made use of an agent-based CA model to represent between urban agents. CA models 

are spatially explicit land use models utilising a lattice of regular and uniformly sized cells to 

represent geographic location (Van Vliet et al., 2012). They simulated the states of cells as the 

result of their own states and the states of their neighbouring cells through a set of transition rules 

(Batty, 1997). Work by Nugraha and colleagues (2020) showed that urban CA models with 

hexagonal cells have consistency advantages over those with square cells. Therefore, the model 

in this paper used hexagonal cells with each cell having an area size of 22,500 m2, which is below 

the maximum recommended size for urban CA models according to Samat (2006). While urban 

CA models can represent self-organisation behaviour (Batty, 1997) by simulating individual 

interactions, calibrating these individual effects from empirical data is complicated due to their 

autocorrelation (Van Vliet et al, 2013b). The neural network research field has developed 

automated calibration approaches for identifying patterns in large data, so it seems beneficial to 

marry a neural network approach and the calibration of urban CA models. 

The approach started with a model loosely based on Metronamica (RIKS, 2010), which uses cell-

potential-based transition rules to simulate cell states (Santé et al., 2010). Rather than employing 

a fully cell-based approach where cells have categorical states, the model used a multi-agent 

approach (as in Van Vliet et al., 2012) where each cell contains information on the levels of 

different land uses agents co-existing within it. The calibration process, which is covered in 

subsection 2.3 of this paper, therefore measured the interactions between these agents, as well 

 

 

 

 
1 Available at a cost from: bit.ly/3kb6nzs  
2 Available freely from: bit.ly/3D31wt2  
3 Available freely from: bit.ly/3APHgJk 
4 Available freely from: bit.ly/3mi4Zh9 
5 Available freely from: bit.ly/3gzES1V 
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as the way these agents react to geographic and transport conditions, which resulted in their 

locational decision within the urban system. The model considered four main components to 

predict the distribution of urban agents into cells. As shown in Equation 1, the potential of a cell j 

in attracting land use activity v (𝑃𝑣,𝑗) is calculated from land use (𝑁𝑣,𝑗), geographic (𝑮𝑣,𝑗), transport 

(𝑻𝑣,𝑗) and institutional (planning policy) (𝑰𝑣,𝑗) factors. 

Cell potential 𝑷𝒗,𝒋 = 𝑰𝒗,𝒋 .  𝑮𝒗,𝒋 .  𝑻𝒗,𝒋 .  𝑵𝒗,𝒋 (Equation - 1) 

 

Land use component 

Within the model, proximity to activities was represented by the land use component. As the main 

aim of model calibration in this paper was to investigate interactions between urban agents, more 

emphasis was given to the land use component as it controlled interactions between urban agents.  

In this agent-based model, the agents were defined as individual unit of activities found in port-

city systems. Land use data from the AddressBase® Plus dataset were projected into cells. These 

points were then classified into five main representations; ‘residential’ (such as houses and flats), 

‘port’ (such as harbour and terminal facilities), ‘manufacturing’ (such as industrial complexes), 

‘consumer-services’ (such as restaurants and shops), and ‘business-services’ (such as offices). 

The number of agents within each cell were then aggregated to measure the levels of different 

urban activities for that cell (Figure 2). 

 
Figure 2 Processing of Land Use Data 
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In this way, the model explicitly represented multi-purpose developments and developments at 

varying density levels. More importantly, the near-continuous cell states of this approach allowed 

an easier adoption of the gradient descent algorithm, which dealt with continuous solution space. 

The land use component allowed the model to measure neighbourhood effect which represents 

the way agents react to the effect of proximity to other land use. This was governed by Equations 

2, 3a, and 3b. 

Neighbourhood Effect 

𝑵𝒗,𝒋 = 𝑺 (∑ ∑ ((𝒁𝒖,𝒊)
λ𝑨,𝒖,𝒗

.   𝑨𝒖,𝒗,𝒊,𝒋 −  (𝒁𝒖,𝒊)
λ𝐑 𝐮,𝒗

 .  𝑹𝒖,𝒗,𝒊,𝒋 )
𝒊 | 𝒊∈𝑵(𝒋)𝒖

) (Equation - 2) 

Attraction 𝑨𝒖,𝒗,𝒊,𝒋 =  𝜶𝑨,  𝒖,𝒗 −
𝜶𝑨,  𝒖,𝒗

(𝟏 + 𝑬𝒙𝒑 (−𝜷𝑨,  𝒖,𝒗 . (𝑫𝒊,𝒋 −  𝜸𝑨,  𝒖,𝒗))
 (Equation – 3a) 

Repulsion 𝑹𝒖,𝒗,𝒊,𝒋 =  𝜶𝑹,  𝒖,𝒗 −
𝜶𝑹,  𝒖,𝒗

(𝟏 + 𝑬𝒙𝒑 (−𝜷𝑹,  𝒖,𝒗 . (𝑫𝒊,𝒋 −  𝜸𝑹,  𝒖,𝒗))
 (Equation – 3b) 

 

Neighbourhood effect of cell j in attracting land use activity v (𝑵𝑣,𝑗) was calculated from the 

attraction and repulsion effects from other activities. A land use activity of type u located at cell i 

would have some potential in both attracting and repulsing a land use type v at cell j (𝑨𝒖,𝒗,𝒊,𝒋 and 

𝑅𝒖,𝒗,𝒊,𝒋). The strength of these attraction and repulsion were dependent on the suitability between 

land uses u and v which were determined by the logistic decay parameters 𝜶𝒖,𝒗, 𝜷 𝒖,𝒗, and 𝜸 𝒖,𝒗 as 

well as the distance between cells i and j (𝑫𝒊,𝒋). The 𝜶 parameters controlled the general potency 

of the attraction or repulsion, the 𝜷 parameters controlled how sensitive that potency changes with 

distance and the 𝜸 parameters controlled the potency at immediate distance. Attraction and 

repulsion were also reliant on the intensity of land use u in cell i (𝑍𝑢,𝑖). This scale effect was 

governed by the parameters λ𝑨,𝒖,𝒗 for attraction and λ𝑹,𝒖,𝒗 for repulsion. 

Geographic and transport components 

Within the model, physical suitability of cell j for land use development v was represented by 

geographic component (𝑮𝒗,𝒋) and accessibility potential of cell j for land use development v was 

represented by transport component (𝑇𝒗,𝒋). Transport component was divided into static transport 

(𝑆𝑇𝒗,𝒋) to represent proximity to transport facilities and dynamic transport (𝐷𝑇𝒗,𝒋) to represent ease 

of accessing activities in other cells.  

Geographic and static transport components were calculated using weighted geometric mean of 

geographic and static transport factor scores. Dynamic transport component was calculated using 

an economic potential transport accessibility measurement as the sum of attraction of all other 

nodes over the friction between a pair of cells (Gutiérrez, 2001). The frictions between cells were 

represented by travel time between them given the transport infrastructure. Origin-destination 

journey time matrices for dynamic transport calculation were obtained using the OpenTripPlanner 

software as in Young (2016). Changes in dynamic transport due to change in activity distribution 

were simulated using a high-level 4-stage transport model. This transport model simulated flows 

and delays based on speed-flow curves along the links. Link classification and speed flow curves 

were based on a regional model for England as shown in Atkins (2009). 

Institutional component 

The institutional component in the model could be used to represent the effect of planning policies 

on the attractiveness of cells. When a cell j falls under the area where development for land use 

type v was not permitted, 𝑰𝒗,𝒋 equalled to 0. In that way, regardless of the potentials from 
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neighbourhood, geographic, or transport components, the total cell potential would be equal to 0 

due to the multiplicative structure of the equation (Equation 1). Where development was permitted 

or uncontrolled, 𝑰𝒗,𝒋 equalled to 1. A value between 0 and 1 was used to represent policies to 

discourage developments while a value larger than 1 represented policies to promote certain types 

of development within the cell. 

2.3. Model Calibration using Gradient Descent Algorithm 

To enable the use of gradient descent algorithm, model calibration was represented as an 

optimisation problem with an objective function that minimises the disagreement between actual 

land use distribution and the predicted cell potentials. Cell potentials were, in turn, calculated from 

a network of differentiable functions. The gradient descent algorithm used partial differentiations 

of the objective function with regards to calibrated parameters to update solutions towards an 

optima. The model has been built and calibrated using the PyTorch machine learning library which 

is available at an online repository6. 

 

Model representation as optimisation problem 

Table 1 in the next page presents the mathematical model containing the four components and 

their intermediate calculations. The equations in Table 1 are tabulated to show the hierarchy of 

the calculation with equations at the higher hierarchy taking inputs from equations in the lower 

hierarchy. Variables colour-coded in red are those requiring calibration. Their ranges are defined 

at the end of Table 1. Meanwhile, variables colour-coded in blue represent input data. Table 2 

presents a glossary for model data inputs. 

As detailed in Section 2.2, the neighbourhood effect was the most complex interaction regulated 

by the most variables. An individual neighbourhood interaction between two land use activities 

was governed by two main constituents, attraction and repulsion. Each was in turn governed by 

the parameters 𝛼𝑢,𝑣 representing the general potency of the effect, 𝛽𝑢,𝑣  representing how sensitive 

that potency changes with distance, 𝛾𝑢,𝑣 representing the potency at immediate distance, and 

𝜆𝑢,𝑣 representing how quickly that potency grows as the neighbour’s presence intensify. 

The effect of a geographic feature 𝑥 on a land use activity 𝑣 was quantified by 𝜇𝑥,𝑣, regulating the 

range of input values 𝜂𝑥,𝑗 where the effect was most sensitive, and 𝜔𝑥,𝑣 , regulating how sensitive 

the land use 𝑣 is to the change in geographic feature 𝑥. The same mathematical structure applied 

to static transport factors 𝑦 with the parameters 𝜐𝑦,𝑣 and 𝜑𝑦,𝑣 regulating the effect of input 

values 𝜌𝑦,𝑗. The effect of dynamic accessibility to a land use activity 𝑢, measured by journey time 

on a specific mode of transport 𝑚, on cell’s attractiveness to land use activity 𝑣 is regulated by 

𝜅𝑢,𝑣,𝑚, which scaled the attractiveness linearly to the intensity of land use activity 𝑢 at the 

destination, and ∂𝑢,𝑣,𝑚, which controlled attractiveness inverse-log-linearly to access time.  

 

  

 

 

 

 
6 https://anonymous.4open.science/r/CA_Based_LUTI_Model-1336/readme.md 
The repository has been anonymised in line with double-blind policy. Some data has been 
modified due to data confidentiality agreement. 

https://anonymous.4open.science/r/CA_Based_LUTI_Model-1336/readme.md
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Table 1. Formulation of model into optimization problem 

Objective function 𝒎𝒊𝒏 ∑ (
(𝒁𝒗,𝒋 − 𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅𝒗,𝒋)

𝟐

𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅𝒗,𝒋
)

𝒋
 

where: 

 
Predicted values 

𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅𝒗,𝒋 =  
𝑷𝒗,𝒋

∑ 𝑷𝒗,𝒋𝒋|𝒋𝝐𝑺𝑨
. 𝑮𝑻𝒐𝒕𝒂𝒍𝒗,𝑺𝑨 

Cell potential 𝑷𝒗,𝒋 = 𝑰𝒗,𝒋 .  𝑮𝒗,𝒋 .  𝑻𝒗,𝒋 .  𝑵𝒗,𝒋 

    Geographic effect     𝑮𝒗,𝒋 = ∏ 𝑩 (𝑭(𝑪( 𝜼𝒙,𝒋 ), 𝝁𝒙,𝒗))
𝝎𝒙,𝒗

𝒙

 

        Bounding function 𝑩(𝜽) =
𝒍𝒐𝒈(𝟏 + 𝒆𝟏𝟎𝜽)

𝒍𝒐𝒈(𝟏 + 𝒆𝟏𝟎 )
 

        Shifting function      𝑭(𝜽, 𝝓) =  (𝟏 − (𝟏
𝝓⁄ )  (𝟏 − 𝜽)) 

        Projection function            𝑪(𝜽) = 𝒄 + (𝟏 − 𝟐𝒄) (𝟎. 𝟗𝟖 (
𝜽− 𝒎𝒊𝒏𝜽

𝒎𝒂𝒙𝜽− 𝒎𝒊𝒏𝜽
) + 𝟎. 𝟎𝟏) 

    Transport effect     𝑻𝒗,𝒋 = 𝑺𝑻𝒗,𝒋 . 𝑫𝑻𝒗,𝒋 

        Static transport  
        effect* 

𝑺𝑻𝒗,𝒋 = ∏ 𝑩 (𝑭(𝑪( 𝝆𝒚,𝒋 ), 𝝂𝒚,𝒗))
𝝋𝒚,𝒗

𝒚    
*this equation also unfolds to 
bounding, shifting, & projection 

functions as Geographic Effect 

        Zone to cell 
        mapping 

𝑫𝑻𝒗,𝒋 = 𝑫𝑻𝒗,𝒋𝒋         𝒇𝒐𝒓 𝒋 ∈  𝒋𝒋 

            Dynamic  
            transport effect 

    𝑫𝑻𝒗,𝒋𝒋 = ∑ ∑ ∑ (
𝜿𝒖,𝒗,𝒎.𝑺𝑻𝒐𝒕𝒂𝒍𝒖,𝒊𝒊

(𝟏+𝑶𝑫𝑻𝑴𝒋𝒋,𝒊𝒊,𝒎)
𝛛𝒖,𝒗,𝒎

)𝒊𝒊𝒖𝒎  

    Neighbourhood  
    effect 

    𝑵𝒗,𝒋 = 𝑺 (∑ ∑ ((𝒁𝒖,𝒊)
λ𝑨,𝒖,𝒗 .   𝑨𝒖,𝒗,𝒊,𝒋 −  (𝒁𝒖,𝒊)

λ𝐑 𝐮,𝒗  .  𝑹𝒖,𝒗,𝒊,𝒋 )
𝒊 | 𝒊∈𝑵(𝒋)𝒖

) 

        Rectifier 𝑺(𝜽) = 𝒍𝒐𝒈(𝟏 + 𝒆𝜽) + 𝟎. 𝟎𝟎𝟎𝟎𝟏 

        Masker 𝒁𝒖,𝒊 = 𝟎     𝒘𝒉𝒆𝒓𝒆    (𝒖 = 𝒗 ) ∩ (𝒊 = 𝒋) 

        Attraction effect 𝑨𝒖,𝒗,𝒊,𝒋 =  𝜶𝑨,  𝒖,𝒗 −
𝜶𝑨,  𝒖,𝒗

(𝟏 + 𝑬𝒙𝒑 (−𝜷𝑨,  𝒖,𝒗 . (𝑫𝒊,𝒋 −  𝜸𝑨,  𝒖,𝒗))
 

        Repulsion effect 𝑹𝒖,𝒗,𝒊,𝒋 =  𝜶𝑹,  𝒖,𝒗 −
𝜶𝑹,  𝒖,𝒗

(𝟏 + 𝑬𝒙𝒑 (−𝜷𝑹,  𝒖,𝒗 . (𝑫𝒊,𝒋 −  𝜸𝑹,  𝒖,𝒗))
 

subject to the calibrated parameters: 

Geographic parameters 𝟎 < 𝝁𝒙,𝒗 ≤ 𝟏 , 𝝎𝒙,𝒗 ≥ 𝟎  

Static transport parameters 𝟎 < 𝝊𝒚,𝒗 ≤ 𝟏 , 𝝋𝒚,𝒗 ≥ 𝟎 

Dynamic transport parameters 𝜿𝒖,𝒗,𝒎 ≥ 𝟎 , 𝛛𝒖,𝒗,𝒎 ≥ 𝟎   

Neighbourhood effect 
parameters 

𝜶𝑨,  𝒖,𝒗 ≥ 𝟎 ,   𝜷𝑨,  𝒖,𝒗 ≥ 𝟎 ,  𝜸𝑨,  𝒖,𝒗 ≥ 𝟎  ,  λ𝑨,   𝒖,𝒗 ≥ 𝟎 

𝜶𝑹,  𝒖,𝒗 ≥ 𝟎 ,   𝜷𝑹,  𝒖,𝒗 ≥ 𝟎 ,  𝜸𝑹,  𝒖,𝒗 ≥ 𝟎  ,  λ𝑹,   𝒖,𝒗 ≥ 𝟎 
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Table 2. Model inputs glossary 

𝒁𝒗,𝒋  Observed land use activity v in cell j 

𝑮𝑻𝒐𝒕𝒂𝒍𝒗,𝑺𝑨  Grand total amount of activity v in study area SA  

𝑺𝑻𝒐𝒕𝒂𝒍𝒗,𝒊𝒊 Sub-total amount of activity v within the zone ii 

𝜼𝒙,𝒋  Suitability of geographic factor x for development in cell j 

𝝆𝒚,𝒋  Distance to transport infrastructure y from cell j 

𝑶𝑫𝑻𝑴𝒋𝒋,𝒊𝒊,𝒎  Journey time from origin zone ii to destination zone jj using mode m 

𝑫𝒊,𝒋  Distance between cells i and j 

 

Solving the optimisation problem 

Calibration for each study area was done by minimising the disagreement between actual and 

predicted land use distributions using an adaptation of the gradient descent algorithm with 

momentum and multiple start points. Table 3 summarises the mathematical functions involved in 

the gradient descent algorithm with momentum (see Ruder, 2016 for a more detailed discussion). 

 

Table 3. The gradient descent algorithm with momentum 

Objective function to optimise 𝒎𝒊𝒏 𝒇([𝒙]𝒕) 

Solution at iteration t [𝒙]𝒕 = [𝒙𝟏 𝒙𝟐
… 𝒙𝒏]𝒕  

Gradient at [𝒙]𝒕 [𝒈]𝒕 = [
𝝏𝒇([𝒙]𝒕)

𝒙𝟏

𝝏𝒇([𝒙]𝒕)

𝒙𝟐
…

𝝏𝒇([𝒙]𝒕)

𝒙𝒏
]

𝒕
  

Solution update at iteration t [𝒗]𝒕 =  𝒓[𝒈]𝒕 + 𝒑[𝒗]𝒕−𝟏  ,                     𝒘𝒉𝒆𝒓𝒆 𝟎 <  𝒑 < 𝟏  

Solution at iteration t+1 [𝒙]𝒕+𝟏 =  [𝒙]𝒕 − [𝒗]𝒕  

 

The parameter r was the learning rate dictating the length of steps taken at every solution update. 

The momentum factor, p, dictated the weight with which updates in the previous iterations are 

considered in current iteration. Each calibration started from 20 randomised initial solutions and 

the best solution at the end of the 2,000th iteration was used as the final solution. After conducting 

a pilot study, a learning rate of 10-6 and a momentum factor of 0.1 were used in model calibrations. 

For a small number of study areas, a finer calibration with a learning rate of 10-7 starting from 

informed solution points was necessary as the model diverged at the higher learning rate.  

 

Clustering of study areas  

Once the model has been calibrated against each study areas, clustering was done to identify 

groups of study areas with similar patterns of urban interactions. The calibration approach has 

been effective in untangling urban form into the individual interactions, which described how an 

average unit of land use development reacted to individual factors (e.g. neighbourhood reaction 

to each type of land use activities, each geographic suitability factors). These individual factors, in 

theory, could be decomposed even further to the effect of individual parameters. The calibration 

approach described in this paper stopped short of untangling these individual parameters’ effect. 

Such endeavour would require a more microscopic analysis likely consisting primarily stated 

preference approach asking individual urban agents how they would react in a series of 

hypothetical situations. While such microscopic examination might contribute to theoretical study 
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of urban system, it would not improve the model’s practical use in planning and would requires 

much more effort, especially considering the number of study areas. 

In other words, the calibration approach in this paper by examining locational revealed preference 

of agents in the urban form was not sensitive to the noise around the exact values of individual 

parameters effect. It was, however, sensitive to the individual interactions which were the 

combined effect of the constituent parameters. Therefore, curves formed by the individual 

parameters for each study area better described these individual interactions than the individual 

parameters’ values. Cluster analysis was therefore conducted using the graph clustering method. 

The graph clustering method grouped similar curves together by taking gauge points along an 

axis. Curves were clustered based on their scores across the clustering variables. In the examples 

given in Figure 3, the 2nd and 3rd curves are more similar and therefore more likely to be clustered 

into the same group than the curve in the 1st instance. Clusters were formed using principal 

component analysis to extract curve(s) that were linearly uncorrelated to one another. Each of 

these principal components represented unique group of urban dynamics. 

 
 

 
 

Figure 3 Illustration of the graph clustering method 

 

3. Results 

3.1. Individual Study Area Calibration Performance 

Performance of model calibration against the actual land use distribution in each study area was 

measured by Pearson correlation index as well as through visual comparison. Table 4 shows the 

Pearson correlation indices for the 56 study areas and Table 5 provides examples of the of visual 

comparison between actual and predicted distributions. The number of cells information are 

provided to indicate geographical size of the study area. 
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Table 4. Pearson correlation indices for the study areas 

Study Areas 
Number 
of Cells 

Residential Port Manufacturing 
Consumer 
Services 

Business 
Services 

Aberdeen 12,747 0.776 0.572 0.466 0.634 0.572 

Amble 727 0.846 0.512 0.445 0.877 0.415 

Barry 1,193 0.791 0.540 0.414 0.409 0.227 

Basingstoke 6,732 0.822 - 0.372 0.502 0.494 

Bath 3,356 0.820 - 0.592 0.749 0.661 

Birkenhead 11,259 0.877 0.479 0.463 0.563 0.362 

Bodmin 708 0.777 - 0.349 0.892 0.333 

Bristol 25,100 0.767 0.257 0.306 0.650 0.582 

Burntisland 265 0.799 0.656 0.282 0.561 0.372 

Cambridge 18,862 0.806 - 0.381 0.650 0.433 

Cardiff 7,516 0.721 0.476 0.309 0.567 0.425 

Cowes 895 0.817 0.246 0.399 0.537 0.840 

Dover 2,262 0.836 0.622 0.332 0.626 0.378 

Dundee 4,977 0.819 0.183 0.393 0.627 0.514 

Durham 4,228 0.807 - 0.387 0.600 0.426 

Edinburgh 6,692 0.773 0.315 0.265 0.450 0.688 

Falmouth 1,937 0.820 0.410 0.246 0.496 0.327 

Felixstowe 1,343 0.821 0.524 0.328 0.437 0.530 

Fowey 426 0.780 0.156 0.353 0.960 0.368 

Goole 3,313 0.832 0.522 0.390 0.714 0.392 

Grangemouth 5,351 0.817 0.482 0.394 0.567 0.270 

Grantham 2,071 0.790 - 0.446 0.684 0.431 

Great Yarmouth 2,761 0.865 0.402 0.389 0.590 0.683 

Grimsby-

Immingham 
5,500 0.872 0.558 0.467 0.603 0.361 

Harwich 801 0.762 0.453 0.318 0.382 0.295 

Hugh Town 292 0.736 0.239 0.402 0.618 0.359 

Hull 8,427 0.836 0.454 0.458 0.556 0.442 

Inverness 3,179 0.809 0.188 0.382 0.709 0.682 

King's Lynn 1,602 0.776 0.297 0.253 0.716 0.426 

Kirkcaldy 1,299 0.755 0.240 0.368 0.635 0.440 

Kyle of Lochalsh 695 0.783 0.388 0.426 0.620 0.532 

Leicester 34,842 0.726 - 0.540 0.718 0.505 

Lerwick 1,291 0.787 0.218 0.393 0.433 0.467 

Liverpool 11,247 0.689 0.389 0.444 0.551 0.689 

Lowestoft 2,636 0.801 0.258 0.318 0.582 0.464 

Milford Haven 3,213 0.838 0.408 0.454 0.651 0.311 

Montrose 500 0.752 0.270 0.342 0.469 0.480 

Newport 5,730 0.821 0.349 0.510 0.564 0.378 

Perth 2,400 0.764 0.216 0.327 0.750 0.802 

Peterhead 1,365 0.807 0.361 0.367 0.620 0.606 

Plymouth 8,671 0.792 0.230 0.380 0.542 0.358 
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Study Areas 
Number 
of Cells 

Residential Port Manufacturing 
Consumer 
Services 

Business 
Services 

Port Talbot 6,602 0.857 0.391 0.271 0.518 0.666 

Portsmouth 4,317 0.812 0.324 0.333 0.457 0.242 

Rye 715 0.685 0.576 0.975 0.901 0.400 

Salisbury 2,428 0.784 - 0.480 0.785 0.612 

Scunthorpe 4,948 0.885 0.431 0.486 0.519 0.578 

Stranraer 633 0.776 0.193 0.337 0.595 0.556 

Southampton 11,233 0.799 0.499 0.431 0.589 0.425 

Swansea 10,795 0.675 0.342 0.332 0.594 0.490 

Swindon 4,906 0.850 - 0.482 0.539 0.414 

Teignmouth 809 0.866 0.424 0.315 0.734 0.563 

Thurso 561 0.829 0.321 0.301 0.691 0.439 

Tyneside 30,647 0.743 0.406 0.462 0.657 0.471 

Ullapool 196 0.731 0.173 0.369 0.543 0.352 

Wisbech 2,249 0.771 0.180 0.457 0.794 0.598 

York 6,905 0.812 - 0.165 0.659 0.477 

 

Table 5. Comparisons of model predictions with actual distributions 

Study Areas* Actual Distribution Predicted Distribution Correlation Index 

Rye 
Consumer Services 

 
Cells: 715 

  

R = 0.901 

Birkenhead (Wirral) 
Residential 

 
Cells: 11,259 

  

R = 0.877 

Edinburgh 
Residential 

 
Cells: 6,692 

  

R = 0.772 

Dover 
Port 

 
Cells: 2,262 

  

R = 0.622 
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Felixstowe 
Business Services 

 
Cells: 1,343 

  

R = 0.530 

Amble 
Manufacturing 

 
Cells: 772 

  

R = 0.445 

Cowes 
Port 

 
Cells: 895 

  

R = 0.246 

*Maps are not to scale 

 

3.2. Settlement Clusters and Their Urban Dynamics 

Cluster analysis discovered two main groups of port cities in the study areas which differed 

especially in their interactions between their urban and port activities: “General Cities” and “Port-

Dependent Cities”. These main groups could be further subdivided into two subgroups. The 

distinctions between the subgroups were attributed more to the effects of manufacturing and 

services activities. Additionally, Cardiff and Felixstowe were singled out as outliers. Figure 4 

describes the overall hierarchy of these clusters.  

 

 

 

Figure 4. Clusters hierarchy from variations in neighbourhood effects 
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Neighbourhood effect 

Some examples of the neighbourhood effect between port and other urban activities within the 

main clusters are presented in Table 6. In the mainstream subgroup, 1A, the biggest subgroup 

with 31 out of 56 settlements and containing all non-port settlements, the net effects of 

manufacturing on housing are negative in small distances and positive around a distance of about 

2km. In the 9 settlements grouped as 1B, while the peak attraction occurred at about the same 

distance, housing developments are not repulsed by being too close to manufacturing activities. 

This was more typical of the urban dynamics between manufacturing and housing in smaller 

settlements in the second group. Meanwhile, the attraction of retail establishments on housing is 

stronger in subgroup 1A than in 1B. The subgroups of the second group, 2A and 2B, were more 

similarly sized at 8 and 6 settlements. In settlements in subgroup 2A, which were of relatively 

larger sizes than subgroup 2B, self-agglomeration behaviour of services activities was more 

prevalent, mimicking the behaviour of services activities in group 1.  

 

Table 6. Examples port-urban interactions observed in the main clusters 

Cardiff General cities Felixstowe Port-dependent cities 

The effect of proximity to ports on housing 

    
The effect of proximity to ports on business services 

    
The effect of proximity to ports on consumer services 

    

 
 

Some interactions, however, were found to be similar across all study areas including the effects 

of port on manufacturing as shown in Figure 5. Finally, Figure 6 summarises neighbourhood 

interactions observed in the model calibration. These star diagrams indicate the overall nature of 

interactions using green line and plus symbol (+) to represent attraction and red line and backslash 

symbol (\) for repulsion. Unbroken lines indicate interactions that are sensitive to distance while 

dashed lines indicate those that are not. The width of the lines indicates the strength of these 

interactions.  
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Figure 5. The effect of proximity to ports on manufacturing 

 

 

Figure 6. Summary of urban interactions in the settlements observed 

 

Geographic and transport effects 

Moving on to transport and geographic effects, these were generally found to be similar across 

the study areas. One of the key findings was that employment activities benefitted from access to 

housing developments although the neighbourhood effects of housing on other land uses were 

found to be generally weak. Consequently, areas with high levels of employment activities were 

generally accessible (due to sensitivity to transport effect), but not necessarily nearby (due to 

insensitivity to neighbourhood effect), from residential areas. Further, access to rail connection 

was found to have a stronger attraction effect on employment activities rather than housing 

developments. An exception to this was on smaller and more compact settlements where housing 

developments clustered more closely to rail stations. This is shown in Figure 7 with the dashed 

line being more sensitive to distance than the unbroken line. 
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Figure 7. The effect of proximity to rail station on cell potentials 

 
4. Discussion 

4.1. Model Performance 

The model generally performed better for predicting residential and consumer services 

distributions which were more dispersed across the study areas and had more cell-to-cell 

variation. However, it should be noted that the Pearson correlation calculation penalised 

misallocation of activities to nearby cells as severe as they do misallocation to further cells. As the 

urban CA model predicts ‘whereabouts’ activities are located rather than their exact location (Van 

Vliet et al., 2013a), misallocation of activities by 1 or 2 cells should have better agreement than 

misallocation by 20 cells. Fuzzy Kappa simulation (Van Vliet et al., 2013a) considers the 

geographical nuances of urban CA model to examine the agreement between two land use maps 

but this was based on categorical cell states rather than the numerical cell states containing 

information of activity levels, as used in the model in this paper. Therefore, in the absence of a 

more suitable index, this paper opted for the Pearson correlation index for its simplicity but 

complemented it with visual comparison. 

The comparisons in Table 5 show that while higher Pearson correlation indices would indicate a 

more precise match between actual and predicted distribution, lower values still indicated an 

approximate match of the activity distributions. This observation supports that the model could 

provide a sensible approximation of the urban interactions within the study areas.  

4.2. Settlement Clusters and Their Urban Interactions 

The efficient calibration process has allowed quantification of urban dynamics in the general 

context of port cities, as opposed to case specific examinations currently dominating the field (Ng 

et al., 2014). The clustering process summarised the calibration results for individual study areas 

by grouping them into clusters. The general cities cluster was populated by non-port settlements 

and relatively larger port settlements. Meanwhile, the port-dependent cities cluster consisted of 

smaller port settlements. In the first group, the attractions of ports to other urban land-use activities 

were either small or negative, while these effects were more positive in settlements in the second 

group. Most cities within the second group were coincidently smaller than general cities. 

Consequently, competition for land between different activities may be less severe.  
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In other words, the presence of port within port-dependent cities attracts more urban development 

than they do in general cities. Additionally, this indicated that the presence of ports was a 

distinguishing factor in the urban dynamics of small settlements, while less prominent differences 

were observed between the urban dynamics of port and non-port settlements in larger study areas.  

Overall, these findings are consistent with existing evidence in the port-cities literature but go 

further in quantifying the interaction between urban agents within port-urban systems of various 

sizes and types. In this regard, the majority of the study areas were classified into the general 

cities cluster while port-dependent cities consisted mainly of smaller port settlements. This 

supports Hall and Jacobs’ (2012) observations that in the system where both port and urban 

components are small, the urban economy relies heavily on activities directly related to the port. 

As the system grows, however, this reliance seems to weaken. This was true even when the urban 

growth has been driven by the port such as in Dover. One explanation is that as ports grow, they 

induce the growth of interlinked industries (Kwak et al., 2005) which may not be directly related to 

port activities such as retail and leisure to accommodate the needs of ports’ labour. These less 

impactful activities, in turn, become more attractive for housing and other forms of urban 

development rather than the port, thus weakening the port-urban interactions in terms of wider 

urban form. 

Felixstowe and Cardiff were found to be outliers. Although, it is possible that there will be other 

global port cities not included in this study that would have similar urban activities to Felixstowe or 

Cardiff. 

Felixstowe appeared to show similar port-urban interactions as port dependent cities but had some 

elements of general cities’ behaviours such as the weaker relationships between port and 

consumer services activities. Port activities in Felixstowe took off in 1967 as the first purpose-built 

container terminal in the UK (Hutchison Ports, n.d.). The nature of container trading and the 

advancement of motoring and rail industry around this time allowed cargo to be easily transported 

to manufacturing or retail facilities elsewhere in the country. Therefore, industrial and retail 

activities relying on Port of Felixstowe’s trade might choose to locate in more attractive centres 

such as the Greater London or the Midlands regions leaving businesses more closely related to 

ports in Felixstowe. This would have alleviated some of the land use competition which Ducruet 

and Lee (2006) argued to cause tension between port and urban developments. 

Meanwhile, Cardiff showed an even weaker port-urban connection than general cities. The 

circumstances of port development in Felixstowe and Cardiff might have contributed to their 

uniqueness. This could be due to the weaker maritime history in Cardiff. Generally, port 

settlements within the general cities cluster have had port in the centre of their urban development. 

Meanwhile, prior to the discovery of coal, Cardiff was a small non-maritime village. The port was 

built during the coal boom in the 19th century away from the then-village-centre and therefore the 

city and the port developed as separate entities (Jenkins, 2007).  

 

4.3. Predicting Policy Impacts in Port City 

In order to demonstrate the application of the urban interaction insights from model calibration as 

tool to assist in planning, the model has been used to simulate urban growth in Southampton 

under different port development policy scenarios. The Associated British Port (ABP), Port of 

Southampton’s operator, has been planning to turn Dibden Bay, a site on the western bank of 

River Test opposite the current port site, into a container terminal to alleviate port capacity and 

congestion problems in the current container terminal closer to the city centre. However, these 

plans have been rejected due to the potentially detrimental impacts of such development on the 

environment. 



 

 

18 

 

 

The long-term effects of such policies are often not straight forward. Lu and colleagues (2021) 

have demonstrated that, expansion of cities can either alleviate or worsen traffic-related air 

pollution depending on the distribution of activities and the available transport infrastructure.  

A simulation LUTI model has used the urban dynamics described in the previous section to predict 

long-term land use and transport impacts of different policy options. The model took 

Southampton’s 2018 activity distribution and simulated 50-year’s growth under restriction policy 

where port development is not allowed within Dibden Bay and promotion policy where port 

development in Dibden Bay is encouraged. A constant annual growth rate was assumed based 

on Southampton’s average growth rate from 2010 to 2020. Some of the model’s results are 

presented in Figure 8. 

 

• Port distribution • Housing distribution Traffic in city centre area 

Restriction of port development in Dibden Bay 

   

Promotion of port development in Dibden Bay 

   

Figure 6. Simulations of long-term development policy impact in Southampton 

 

Promotion policy predictably resulted in the rise of port development in Dibden Bay. However, this 

would also trigger housing developments around the site. This is due to the attraction of access 

to port employment in Dibden Bay, but noticeably this occurred at some distance away rather than 

immediately next to the port as proximity to port is not necessarily attractive for housing. Mainly, 

this resulted in housing densification in existing sub-centres north (Marchwood) and south (Hythe) 

of Dibden Bay, but they also sprawl to greenfield site enveloping Dibden Bay. While this may 

alleviate housing needs near the city centre, there could be additional loss of green spaces nearby 

Dibden Bay. The model could also be used to evaluate complementary policies to prevent this 

such as designating greenbelt around Dibden Bay or more potent high-density development 

policies where further development could only happen within currently developed areas 

Promotion policy also resulted in the current port site nearby the city centre being overtaken by 

retail (not pictured) and residential development. This indicated a similar trend that Liverpool has 

seen in the historic docks and indeed would be continuing an existing trend in Southampton.  

The transport sub-component of the model, based on the traditional 4-stage transport model, also 

detected some changes in traffic conditions between the two policies. By promoting port 

development in Dibden Bay, city centre traffic was alleviated by the removal of port traffic away 
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from the city, but this was replaced by currently suppressed urban traffic, resulted only in minor 

reduction of traffic around the city centre. This meant that additional measures to promote public 

transport and non-motorised transport would be required to lock-in the traffic benefits of the port’s 

migration to Dibden Bay. Additionally, transport infrastructure connecting the new port site to the 

rest of the region would likely need improvement to handle the increased demand. The model 

therefore could contribute to the policy decision-making process. 

 

 
5. Conclusions 

This paper has presented an automated calibration approach to calibrate an urban CA model, thus 

allowing quantification of urban dynamics in the general context of port cities. The findings of this 

paper built on existing port-cities literature but went further in quantifying interactions within port-

urban system of various sizes and types.  

This paper has demonstrated improved methods for the calibration of LUTI models based on CA 

which provide insights into the behaviours of individual interactions between urban agents. Such 

findings provide important insights for future research by contributing to a better understanding of 

the dynamics between port and urban agents within a port city system. By doing so, this paper 

provides the tool to better-predict how urban activities in port cities will react to different policy 

scenarios. These are also invaluable for the transport and urban planning of port-cities as they 

enable planners to better predict the longer-term consequences of their interventions. 

By using a technique from computer science, this paper has examined a large and varied set of 

port-urban settlements and quantified the interactions between urban agents within them. This 

paper, therefore, has expanded what is currently known about the port-urban system both in terms 

of breadth and of depth.  
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