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Abstract: Defining an objective boundary for a city is a difficult problem, which remains to be 

solved by an effective method. Recent years, new methods for identifying urban boundary have 

been developed by means of spatial search techniques (e.g. CCA). However, the new algorithms are 

involved with another problem, that is, how to determine the characteristic radius of spatial search. 

This paper proposes new approaches to looking for the most advisable spatial searching radius for 

determining urban boundary. We found that the relationships between the spatial searching radius 

and the corresponding number of clusters take on an exponential function. In the exponential model, 

the scale parameter just represents the characteristic length that we can use to define the most 

objective urban boundary objectively. Two sets of China’s cities are employed to test this method, 

and the results lend support to the judgment that the characteristic parameter can well serve for the 

spatial searching radius. The research may be revealing for making urban spatial analysis in 

methodology and implementing identification of urban boundaries in practice. 
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1 Introduction 

One of basic measures of a city is its size, which can be evaluated by urban population. Population 

is one of the central variables in the studies on urban evolution (Dendrinos, 1996), and it represents 

the first dynamics of city development (Arbesman, 2012). In order to determine the urban 

population in the proper way, we must determine the urban area. The precondition of determining 

the urban area effectively is to determine the urban boundary objectively. However, for a long time, 

the definition of urban boundary is a hard technical problem. The concept of “urban” differs from 
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country to country (Zhou, 1995). If the areal units of cities are improper, the corresponding city 

population cannot be employed to measure city sizes effectively and test urban regularities such as 

the rank-size rule, allometric growth law, and gravity law. The levels of urbanization in different 

regions are also not comparable with each other. In urban geography, there exist three key concepts 

of cities: city proper (CP), urbanized area (UA), and metropolitan areas (MA) (Davis, 1978; Zhou, 

1995). Generally speaking, the definition of “city” refers to the urbanized area. A new trend seems 

to be that urbanized area will be replaced by urban agglomeration, but the method of identifying the 

boundary of an urban agglomeration is a problem. 

Geographical phenomena fall into two groups: one is with characteristic scale (scaleful group), 

and the other, without characteristic scale (scale-free group). The former can be described with 

characteristic length such as average value, standard deviation, and eigenvalue, while the latter 

should be described with scaling exponent such as fractal dimension (Chen, 2021). Generally 

speaking, it is easy to find characteristic scales for simple systems, but it is often difficult to find 

characteristic scales for complex systems. On the other, a complex system many follow scaling law, 

but it sometimes bear simple sides with some type of characteristic scales. Geographical systems 

comprise both scaleful and scale-free processes and patterns, which are woven into each other. If 

we can find the simple side and work out the corresponding characteristic scales for spatial 

measurement, maybe we find an effective approach to defining urban boundaries. The boundary 

curve of a city is termed urban envelopes (Batty & Longley, 1994; Longley et al., 1991). Based on 

remote sensing images, at least three approaches have been developed to determining urban 

envelopes for cities. The first is the city clustering algorithm (CCA) proposed by Rozenfeld et al. 

(2008; 2011), the second is the method of clustering street nodes/blocks advanced by Jiang and Jia 

(2011), and the third is the fractal-based method presented by Tannier et al. (2011). Among these 

methods, CCA is based on raster data, while street network clustering is based on vector data. The 

two methods are involved with the technology of automated spatial search based on digital maps. 

The key lies in how to determine the characteristic searching radius.  

An interesting finding is that the relationship between the searching radius of CCA and the 

number of clusters of an urban agglomeration follows a negative exponential law. A characteristic 

length can be found from the exponential distribution. Based on the finding, this paper is devoted 

to exploring the methods of definition of urban boundary using the characteristic length. It should 
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be clear that this study is based on two geographical laws: one is the distance decay law of urban 

density (e.g., Batty & Longley, 1994; Bussiere & Snickars, 1970; Chen, 2009; Clark, 1951; 

MacKinnon, 1970; Smeed, 1963; Tobler, 1970), which guarantees the feasibility of spatial search 

technique; and the other is the allometric scaling law of urban size and shape (e.g., Batty, 2008; 

Batty et al., 2008; Batty & Longley, 1994; Bettencourt, 2013; Bettencourt et al., 2007; Chen, 2010, 

2014; Chen et al., 2019; Lee, 1989; Lo, 2002; Lo & Welch, 1977), which suggests that urbanized 

area can be employed to represent city population. By means of empirical analysis based on 

observational data, we will show how to calculate characteristic searching radius. The other parts of 

this article are organized as follows. In Section 2, the principle of spatial search for urban boundary 

is illuminated, and the mathematical models for characteristic scale analysis are presented. In 

Section 3, two sets of Chinese cities are employed to make case analyses to show how to find the 

characteristic radius for spatial search. In Section 4, several related questions are discussed. Finally, 

the discussion is concluded by summarizing the main points of this work. 

2 Models and methods 

2.1 Mathematical models 

The CCA and its variants can be employed to determine an urban boundary line, and thus a set of 

spatial measurements such as area, perimeter, and cluster number can be counted. In this paper, a 

cluster implies the group of urban elements which are linked with one another in a digital map or 

remote sensing image. Changing the searching radius yield different values of spatial measurements, 

including urban area, street length, and number of street nodes. Many measurements increase with 

the increase of searching radius, but the numbers of clusters are special and decrease over searching 

radius. In the process of CCA, the larger the searching radius, the larger the urban area, but the more 

urban elements are merged at the same time. As a result, the number of urban clusters decreases. 

Using the datasets from spatial searching, we can find a functional relationship between the 

searching radius and cluster numbers. If the relationship follows a power law, we will be unable to 

find a characteristic length directly for the searching radius, and thus cannot determine an objective 

urban boundary through a simple way. If so, we cannot find an objective urban boundary in theory. 

On the contrary, if the relationship satisfies a function with a characteristic scale, we will be able to 

find a characteristic length for the searching radius, and thus determine an objective urban envelope. 
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This type of functions can be treated as scale functions. The scale functions include exponential 

function, normal function, logarithmic function, logistic function, and so on. A scale-free function 

such as power function follows scaling relation, while a scale function is not.  

By trial and error based on observational data, we find that the number of urban clusters is most 

likely an exponential function of the searching radius. This is a scale function with characteristic 

length. According to the research of Chen et al (2019), in many cases, there is an exponential 

relationship between searching radii and corresponding measurements. So, the hypothesis to be 

testified in this work is that the number of clusters in a city is an exponential function of searching 

radius. The basic model is an exponential relation as below 

0/
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where s denotes the length of searching radius, N(s) refers to the number of clusters, N0 is a 

proportionality constant, and s0 is the scale parameter indicating some characteristic length. Another 

possible function is the normal function, that is 
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which is in fact the variant of Gaussian function and can be treated as a quadratic exponential 

function. The symbols are the same as in equation (1). In practice, the exponential function and the 

normal function can be unified into a general form as follows 
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 ,                               (3) 

where σ denotes a latent scaling exponent, which comes between 1/2 and 2 (Chen, 2010). Equation 

(3) can be regarded as a fractional exponential function. If σ=1, we will have an exponential function; 

and if σ=2, then we will have a normal function. In above equations, the scale parameter s0 represents 

characteristic length of the searching radius. In theory, the scale parameter s0 is related to the average 

value of the searching radius. If we find the s0 value, we will find the most appropriate searching 

radius for defining an urban boundary. As a result, the most objective urban envelopes can be 

identified from digital maps by means of GIS technology. 

2.2 The method of spatial search for urban envelope 

In this work, the study object of CCA is remote sensing images of urban agglomerations in China. 

The general idea of city clustering is to aggregate land patches within a distance threshold s. 
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Although the data used in this study are vector files, the algorithm itself can be formulated in raster 

format. If the distance of two patches is smaller than s, the two patches will be identified as in the 

same cluster. The larger the distance threshold s, the less the formed clusters. Number of clusters 

will be reduced to 1 if the threshold is larger than the radius of study area. Since the clustering needs 

to be done in a set of different radii, iteratively joining nearby polygons could be too 

computationally intensive, especially in a large study area. We implemented an efficient method to 

identify clusters. Firstly, we calculated distances between patches. But instead of computing every 

pair of them, we filtered out those which distances were larger than the maximum distance threshold 

using spatial indexing. This generated a sparse matrix M with its element dij denoting the distance 

of patch i to patch j. We then performed clustering over a series of distance thresholds. For each 

distance threshold s, we constructed a network which nodes were patches and two nodes (patches) 

were connected if their distance is smaller than s. The network would have many isolated sub-

networks and nodes (patches) in each sub-network were identified as in the same cluster.  

3 Empirical results 

3.1 Material and methods 

The datasets are the land-use patches interpreted from Landsat satellite imagery of China. The 

images were classified into X categories, from which the built-up areas are extracted for our study. 

First of all, 24 Chinese cities are employed to show how to find a characteristic length of searching 

radius to define urban boundary. These 24 cities are scattered on all over China (Figure 1). The 

typical regions consist of National capital (i.e., Beijing), Yangtze River Delta (e.g., Hangzhou, 

Nanjing, Shanghai, Wuxi), Pearl River Delta (e.g. Guangzhou), Central Plain (e.g., Kaifeng, 

Luoyang), Central south China (e.g., Changsha), Shandong Peninsula (Rizhao), northeast China (e.g. 

Changchun, Fuxin, Liaoyuan), northwest China (e.g., Changzhi, Yinchuan), southwest Chian (e.g., 

Chengdu, Kunming). Where urban hierarchy is concerned, these cities comprise megacities 

(megalopolis), large cities (metropolis), medium-sized cities, and small cities (Table 1). The 

selection of cities is similar to zoning and stratified sampling. In terms of space, this sampling should 

ensure that different places in China are involved. In terms of hierarchy, the sampling should ensure 

the different size levels of cities are represented. A Zipf’s distribution of cities proved to be 

equivalent to a self-similar hierarchy of cities with cascade cities (Wang and Chen, 2021). The 24 
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cities were choose from different size classes of urban hierarchy by taking places in space into 

account. The original remote sensing images are of vector format and belong to 2000 and 2010, 

respectively. The spatial datasets were extracted and processed by ArcGIS from the digital maps of 

urban land use (see attached Files S1 and S2). 

 

Figure 1 A spatial sample of 24 Chinese cities which are taken as examples of characteristic 

radius analysis 

 

A set of searching radii can be given to generate datasets of boundary curves of a city. Based on 

an urban boundary, three measurements can be obtained, that is, number of clusters, the area of the 

largest cluster, and the total area of all the clusters. We can write a computer program of ArcGIS to 

perform the search and design a cycle to control the searching radius. By repeated tests, the 

minimum searching radius is taken s=50 meters, and the step length of radius change is set as ∆s=10 

meters. The maximum searching radius (smax) depends on urban shape, network pattern, map layout, 
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and so on. For each selected city, we use the method descripted in the above section to perform the 

spatial searching. Where the national capital of China is concerned, the larger searching radii leads 

to larger urban clusters (Appendix 1). The cases of other cities are similar to Beijing (Figure 2). The 

cluster number, cluster area, and the area of the largest cluster can be automatically extracted by the 

computer program during each searching cycle. Thus we will have three datasets for a series of 

variable urban boundaries of each city. 

 

Table 1 The 24 cities as a sample from the hierarchy of Chinese cities 

Size level Cities (6 ones in each level) Size  

Megacity Beijing, Chengdu, Guangzhou, Hangzhou, Nanjing, Shanghai >5000 

Large city Changchun, Changsha, Kunming, Luoyang, Wuxi, Yinchuan 1000-5000 

Medium city Changzhi, Fuxin, Kaifeng, Rizhao, Shangqiu, Xinyang 500-1000 

Small city Huixian, Leping, Liaoyuan, Lishui, Mengzi, Tianchang <500 

Note: The unit of city size is thousand people. 

 

The linear regression analysis based the least squares method can be employed to estimate the 

values of parameters. Taking natural logarithms on both sides of equation (3) yields 

0
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in which the parameters are a=lnN0 and b=1/(σs0
σ), respectively. Thus, the characteristic radius can 

be given by 

1/

0 ( )s b   .                                   (5) 

If σ=1 as given, then equation (4) will return to an ordinary linear relation such as 

0
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Thus we have s0=1/b. If the relation between the searching radius and cluster number follow the 

exponential decay law, we can use the linear regression analysis based on equation (6) to evaluate 

the characteristic radius s0. If the relation follow the fractional exponential law, we can find the 

value of the latent scaling exponent σ by means of the cut-and-try method. As soon as the σ value is 

determined, we can use equation (4) to make a linear regression analysis and find the characteristic 

radius s0. 
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Figure 2 The sketch maps of the spatially identified results of the 24 Chinese cities 

[Note: The area of a city depends on the searching radius. Longer searching radius results in larger urban area.] 
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3.2 Results 

The exponential function and the fractional exponential function can applied to the spatial 

searching processes of Chinese cities. Concretely speaking, equations (4) and (6) can be fitted to 

the datasets of the 24 Chinese cities. For example, for Beijing in 2010, the relation between 

searching radii and cluster numbers can be well described by the common exponential function. By 

the least squares computation, the model can be built as follows 

0.0017ˆ ( ) 2416.8043 sN s e ,                             (7) 

where the hat “^” indicates that the result is a predicted value rather than an observed value. The 

coefficient of determination is about R2=0.9992. The decay coefficient is b≈0.00173992, thus the 

characteristic radius of spatial search is estimated as s0=1/b≈574.7391 (Figure 3). In contrast, fitting 

power function to the same dataset, the goodness of fit is about R2=0.8863. The scattered points 

cannot be well matched with the trend line based on power law relation. Among various possible 

scale functions, the negative exponential function is a very good model for the relationship between 

searching radius and cluster number. Where the spatial searching is concerned, all the 24 cities can 

be approximately modeled by the negative exponential function (See Files S1 and S2). Thus the 

characteristic searching radius can evaluated by the least squares regression based on equation (1). 

According to the exponential model, for the 24 cities in 2000, the average characteristic searching 

radius is about ŝ0(2000)=479.4751; for these cities in 2010, the average value is about 

ŝ0(2010)=463.0777 (Table 2). Here ŝ0 refers to the mean of the characteristic searching radii of 

different cities. 

 

Table 2 The regression coefficients, characteristic searching radii and the goodness of fit of the 24 

Chinese cities based on exponential function 

City 2000 2010 

b s0 R2 b s0 R2 

Beijing 0.002058 485.8544 0.9944 0.001740 574.7391 0.9992 

Changchun 0.003046 328.3512 0.9576 0.002994 333.9824 0.9511 

Changsha 0.001528 654.5316 0.9819 0.001522 656.9094 0.9805 

Changzhi 0.001195 836.5261 0.9822 0.001694 590.2909 0.9990 

Chengdu 0.003978 251.3687 0.9471 0.003887 257.2394 0.9487 

Fuxin 0.001527 654.8017 0.9879 0.001480 675.8264 0.9773 

Guangzhou 0.001895 527.6015 0.9941 0.001684 593.8842 0.9951 
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Hangzhou 0.001779 562.1262 0.9799 0.001746 572.7869 0.9810 

Huixian 0.002493 401.1521 0.9579 0.002462 406.1788 0.9797 

Kaifeng 0.004095 244.1824 0.9498 0.004308 232.1424 0.9582 

Kunming 0.001070 934.3961 0.9870 0.001001 998.9711 0.9899 

Leping 0.001868 535.2374 0.9978 0.001910 523.6562 0.9974 

Liaoyuan 0.002257 443.0955 0.9714 0.003078 324.8578 0.9634 

Lishui 0.001375 727.5108 0.9865 0.001552 644.4254 0.9821 

Luoyang 0.002181 458.4779 0.9956 0.002598 384.8996 0.9928 

Mengzi 0.000825 1211.5485 0.9734 0.000866 1155.3882 0.9503 

Nanjing 0.005397 185.2854 0.9972 0.005248 190.5499 0.9973 

Rizhao 0.002173 460.1001 0.9624 0.002654 376.7287 0.9776 

Shanghai 0.003404 293.7530 0.9959 0.003276 305.2242 0.9976 

Shangqiu 0.008037 124.4241 0.9845 0.007993 125.1165 0.9747 

Tianchang 0.003609 277.1104 0.9979 0.003709 269.6406 0.9976 

Wuxi 0.004816 207.6537 0.9975 0.004290 233.0953 0.9954 

Xinyang 0.004204 237.8845 0.9871 0.004117 242.8776 0.9846 

Yinchuan 0.002153 464.4294 0.9971 0.002250 444.4543 0.9976 

Average 0.002790 479.4751 0.9818 0.002836 463.0777 0.9820 

 

 

   a. Beijing 2000                               b. Beijing 2010 

Figure 3 The exponential decay relations between the searching radii and the numbers of clusters 

of Beijing city 

(Note: For Beijing in 2000, the negative exponential function is not the best model, the most probable model is a 

fractional exponential model with a latent scaling exponent σ=1.25. However, in 2010, the common negative 

exponential function is the most advisable model for Beijing city. Power function cannot be well fitted to the two 

datasets. The goodness of fit for power function is R2=0.8423 for 2000 dataset and 8863 for 2010 dataset, 

respectively. The results are seriously biased. ) 

 

However, not all cities can be well described with the common exponential decay function at all 
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times. For example, the cities of Changchun and Kaifeng satisfy the normal function. Great majority 

of cities follow the fractional exponential decay law. Where Beijing in 2000 is concerned, it should 

be described with the generalized exponential function such as 

1.250.0004ˆ ( ) 2610.4595 sN s e ,                            (8) 

where the latent scaling exponent is about σ=1.25. The goodness of fit is about R2=0.9992. The 

decay coefficient is b≈0.0003507, thus the characteristic radius of spatial search is estimated as s0 = 

(1.25*0.0003507)(-1/1.25) ≈ 485.8737. Luoyang city in 2010 is similar to Beijing city in 2000 (Figure 

4). According to the fractional exponential model, for the 24 cities in 2000, the average characteristic 

searching radius is about ŝ0(2000)=528.7216; for them in 2010, the average value of typical searching 

radii is about ŝ0(2010)=569.6380 (Table 3).  

 

Table 3 The regression coefficients, characteristic searching radii and the goodness of fit of the 24 

Chinese cities based on fractional exponential function 

City 2000 2010 

σ b s0 R2 σ b s0 R2 

Beijing 1.250 0.000351 485.8737 0.9992 1.000 0.001740 574.7391 0.9992 

Changchun 1.900 0.000006 408.6553 0.9990 2.000 0.000003 419.5907 0.9991 

Changsha 0.600 0.029259 843.3116 0.9982 0.600 0.029174 847.3903 0.9983 

Changzhi 1.500 0.000036 704.3982 0.9995 1.000 0.001694 590.2909 0.9990 

Chengdu 0.333 0.680013 85.8640 0.9960 0.350 0.573566 98.2707 0.9969 

Fuxin 1.400 0.000091 604.6122 0.9977 1.600 0.000022 606.1060 0.9989 

Guangzhou 1.000 0.001895 527.6015 0.9941 1.000 0.001684 593.8842 0.9951 

Hangzhou 0.600 0.034105 653.2190 0.9983 0.600 0.033453 674.5782 0.9984 

Huixian 1.850 0.000007 451.2435 0.9966 1.500 0.000073 435.0433 0.9978 

Kaifeng 2.000 0.000004 358.5174 0.9994 1.800 0.000016 330.5710 0.9985 

Kunming 0.700 0.009580 1273.5779 0.9957 0.750 0.006170 1296.7000 0.9958 

Leping 1.000 0.001868 535.2374 0.9978 1.000 0.001910 523.6562 0.9974 

Liaoyuan 1.700 0.000017 469.7532 0.9997 1.800 0.000012 398.8178 0.9993 

Lishui 1.250 0.000234 671.0777 0.9914 1.400 0.000093 597.3745 0.9936 

Luoyang 1.000 0.002181 458.4779 0.9956 1.250 0.000443 403.1791 0.9983 

Mengzi 0.700 0.007392 1844.5408 0.9828 0.500 0.036380 3022.2644 0.9773 

Nanjing 1.000 0.005397 185.2854 0.9972 1.000 0.005248 190.5499 0.9973 

Rizhao 1.800 0.000008 483.8662 0.9989 1.600 0.000040 420.6628 0.9992 

Shanghai 1.000 0.003404 293.7530 0.9959 1.000 0.003276 305.2242 0.9976 

Shangqiu 1.250 0.001370 163.3755 0.9896 1.500 0.000238 198.5161 0.9911 

Tianchang 1.000 0.003609 277.1104 0.9979 1.000 0.003709 269.6406 0.9976 
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Wuxi 1.000 0.004816 207.6537 0.9975 1.000 0.004290 233.0953 0.9954 

Xinyang 1.000 0.004204 237.8845 0.9871 0.750 0.025384 196.7128 0.9909 

Yinchuan 1.000 0.002153 464.4294 0.9971 1.000 0.002250 444.4543 0.9976 

Average 1.160 0.033000 528.7216 0.9959 1.125 0.030453 569.6380 0.9962 

 

 

   a. Beijing 2000                              b. Luoyang 2010 

Figure 4 The fractional exponential decay relations between the searching radii and the numbers 

of clusters of Beijing city (σ=1.25) 

(Note: For both Beijing in 2000 and Luoyang city in 2010, the most probable latent scaling exponent is σ=1.25.) 

 

There are two ways of defining boundaries for cities. One is for an individual city, and the other 

is for all cities in a region (country). If we want to find the most advisable boundary for a particular 
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average value is not often stable. A solution to this problem is to remove the outliers in a sample 

using the double standard derivation before computing the average value. Based on the significance 
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double standard deviation and average value minus double standard deviation, that is 
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the standard deviation. Otherwise, we have 95% of confidence level to treat the s0 value as an outlier. 

After removing the outliers step by step, we can find an acceptable ŝ0 value.  

The effective average value of the characteristic searching radii can be approached step by step. 

Taking the dataset of the 24 cities in 2000 based on exponential model as an example, the procedure 

of finding a stable average value is as follows. Step 1, calculate the average value ŝ0 and the standard 

deviation sd. If s0
(k)< ŝ0-2sd or s0

(k)> ŝ0+2sd, remove it (k=1, 2,…,24). In this step, the characteristic 

searching radius of Mengzi city is an outlier and should be removed (Figure 5(a), Table 4). Step 2, 

recalculate the average value ŝ0 and the standard deviation sd. If s0
(k)< ŝ0-2sd or s0

(k)> ŝ0+2sd, remove 

it (k=1, 2,…, 23). In this step, the characteristic radius of Kunming city is an outlier and should be 

deleted (Figure 5(b), Table 4). Step 3, recalculate the average value ŝ0 and the standard deviation sd 

once again. If s0
(k)< ŝ0-2sd or s0

(k)> ŝ0+2sd, remove it (k=1,2,…,22). In this step, the characteristic 

radius of Changzhi city is an outlier and should be eliminated (Figure 5(c), Table 4). Step 4, repeat 

above calculation. If s0
(k)< ŝ0-2sd or s0

(k)> ŝ0+2sd, remove it (k=1,2,…,21). In this step, all the 

characteristic radii of the 21 remaining cities fall into the range from ŝ0-2sd to ŝ0+2sd, and the final 

average value and standard deviation are 405.9491 and 170.3990 (Figure 5(d), Table 4). 

 

Table 4 An example of removing outliers by average values and double standard deviations of the 

24 cities in 2000 (common exponential model) 

Statistics\Step Step1 Step2 Step3 Step4 

Average value 479.4751 447.6458 425.5208 405.9491 

Standard deviation 260.8192 213.7735 189.9480 170.3990 

Lower limit (mean-2*sd) -42.1634 20.0988 45.6247 65.1512 

Upper limit (mean+2*sd) 1001.1136 875.1929 805.4169 746.7470 

Outlier 1211.5485 934.3961 836.5261 No outlier 

Exceptional City Mengzi Kunming Changzhi No excepted city 

 

Based on the two models and two years, we have four datasets. Using the similar method, we can 

address all these datasets (Table 5). The other results are as below. For the dataset of 2010 based on 

exponential decay model, the average value and standard deviation are 407.2503 and 170.3565 (the 

outliers are Mengzi and Kunming); For the dataset of 2000 based on fractional exponential decay 

model, the average value and standard deviation are 415.6138 and 176.5345 (the outliers are Mengzi, 

Kunming and Changsha); For the dataset of 2010 based on fractional exponential decay model, the 
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average value and standard deviation are 404.9980 and 166.6497 (the outliers are Mengzi, Kunming 

and Changsha). The most advisable characteristic searching radius can be regarded as about 410, 

and the corresponding standard deviation is about 170.  

 

Table 5 The final average values, standard deviations, and the lower and upper limits of the 

characteristic searching radii 

Statistics\model Exponential decay Fractional exponential decay 

2000 2010 2000 2010 

Average value 405.9491 407.2503 415.6138 404.9980 

Standard deviation 170.3990 170.3565 176.5345 166.6497 

Lower limit (mean-sd) 235.5502 236.8938 239.0793 238.3482 

Upper limit (mean+sd) 576.3481 577.6067 592.1483 571.6477 

 

 

a. Step 1: Mengzi                         b. Step 2: Kunming 

 

c. Step 3: Changzhi                         d. Step 4: No outlier 

Figure 5 The process and patterns of removing outliers by average values and double standard 

deviations of the 24 cities in 2000 

(Note: The model is common exponential decay function. In step 1, the city of Mengzi is an outlier; in step 2, 

Kunming is an outlier; in step 3, Changzhi is an outlier; in step 4, no outlier, and the process is over.) 
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The basic properties of geographical systems are spatial heterogeneity and hierarchical 

heterogeneity. The spatial heterogeneity implies spatial nonstationarity, that is, different places bear 

different probability structure. Similarly, the hierarchical heterogeneity indicates hierarchical 

nonstationarity, that is, different hierarchical levels bear different probability structure. Probability 

can be described by average values, standard deviation, covariance and other statistics. This suggests 

that different places and different size levels bear may different characteristic searching radii for 

defining urban boundaries. Our sample size is too small, only, 24 cities. It is not proper to examine 

the spatial difference of characteristic radii through this small sample. But we can preliminarily 

estimate the average values of different size levels in terms of Table 1. The results are shown in 

Table 6. Based on exponential model, the characteristic radii differences at different size levels and 

in different years seem to be not significant. Based on fractional exponential model, the 

characteristic radii values show a trend of decreasing over time and with the growth of city sizes. 

This suggests that the fractional exponential model is suitable for finding the characteristic searching 

radii for individual cities, while the exponential model is more suitable for finding the average 

characteristic radius approximately for a system of cities in a geographical region. 

 

Table 6 The average values of the characteristic searching radii at different size levels 

Size level Based on exponential model Based on fractional exponential model 

2000 2010 2000 2010 

Megacity 384.3315 415.7373 371.9328 406.2077 

Large city 422.6888 410.6682 384.8041 375.0799 

Medium city 344.2785 373.8304 425.4423 390.4766 

Small city 476.8212 433.7518 480.8844 444.9065 

Mean of means 407.0300 408.4969 415.7659 404.1677 

Standard deviation of means 56.4771 25.1443 49.0375 29.9853 

Note: The means of four groups were calculated after removing outliers in Tables 2 and 3. The last two lines represent 

the means of means and the standard deviation of the means. 

 

3.3 Further application to an system of cities 

The above calculations and analyses are based on a sample of 24 Chinese cities. These cities have 

no significant relation to each other. Now, the characteristic length method can be applied to a 

system of cities in China, Jing-Jin-Ji region, from which we can obtain new insight in urban 

definition. Jing-Jin-Ji region is also termed Beijing-Tianjin-Hebei, including Beijing Municipality 
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(ab. “Jing”), Tianjin Municipality (ab. “Jin”), and part of Hebei Province (ab. “Ji”). The Jing-Jin-Ji 

urban system comprises 35 cities in 2010 (Appendix 2). The original images are of raster format, 

differing from the previous example. Using variable searching radii such as 20, 25, and 30, we can 

abstract different urban agglomerations for each city in 2000, 2005, and 2010. The relationships 

between searching radii and cluster numbers of all these cities follow exponential decay law, and 

can be modeled or approximately modeled by the negative exponential function (Appendix 3). The 

scale parameter suggests the characteristic searching radius, s0. A finding is that the characteristic 

searching radius becomes shorter and shorter along with urban growth. The average searching radii 

are 539.9886 m for 2000, 510.9694 m for 2005, and 476.9993 m for 2010, respectively. After 

removing the outliers from the datasets by average values and double standard deviations, the 

average values become 490.368 m for 2000, 471.9630 m for 2005, and 443.0722 m for 2010, 

respectively. Urban growth implies space filling, and thus urban density increases over time. For a 

city, the higher the urban density is, the shorter the characteristic searching radius will be.  

Another finding is that the characteristic radius depends on the format of remote sensing image 

and the method of data processing. In both the sample of 24 Chinese cities and the population 

(universe) of 35 Jing-Jin-Ji cities, the patterns of Beijing city in 2000 and 2010 are taken into 

consideration. However, the results for 2010 are significantly different. The former result is 

574.7391 (increase), while the latter result is 366.3731 (decrease). The first results are based on 

vector data (Table 2), while the second results are based on raster data (Appendix 3). For the first 

results, the searching radii are s=50, 60, 70, …, 1000, and the step length is ∆s=10; For the second 

results, the searching radii are s=20, 25, 30,…, 500, and the step length is ∆s=5. This suggests that 

only based on the same data format and the same data processing method, comparable results can 

be gained for the definition of urban agglomerations and urban boundaries. 

4 Discussion 

The key to define an objective urban boundary is to find a characteristic searching radius. In fact, 

scientific research should proceed first by describing a system and later by understanding the 

mechanism (Gordon, 2005; Henry, 2002). The precondition of effective description is to find the 

characteristic length of a thing. If an urban pattern follows power laws, it has no characteristic scale, 
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and cannot be simply described with the traditional method; if an urban pattern satisfies an 

exponential distribution, it has a characteristic length, and can be effectively described in a simple 

way. Fortunately, a power law can be decomposed into two exponential laws, from which we may 

find characteristic length to define urban boundaries (Chen et al, 2019). As indicated above, the 

scale parameter of an exponential distribution model is just the characteristic length indicating the 

average value. In this paper, we reveal a generalized exponential relation between the spatial 

searching radii and the numbers of clusters consisting of land patches. In this case, the scale 

parameter s0 give the characteristic searching radius. Based on the characteristic radius, we can 

define a relatively objective urban boundary. Thus, urban area and city size can be objectively 

determined by the objective urban envelope. For individual cities, the characteristic radii can be 

calculated one by one; for a system of cities, the average characteristic radius can be computed step 

by step using average values and double standard deviations. 

The novelty of this paper is to reveal that the characteristic length of spatial searching radius can 

be utilized to define urban boundaries objectively. The significant shortcoming of this study lies in 

that only exponential decay and fractional exponential decay are taken into account. Geographical 

systems are different from classical physical systems. Geographical laws are not iron laws, and a 

geographical process or pattern can be modeled with more than one mathematical equation. Several 

functions can be employed to describe the relationships between the searching radii and cluster 

numbers, but the exponential function is the basic one and the most probable one. There are many 

types of spatial and probability distributions with characteristic lengths such as exponential 

distribution, logarithmic distribution, normal distribution, lognormal distribution, and so on. The 

scale-free distributions are mainly power-law distributions and latent power-law distributions. 

Among various distribution functions with characteristic scales, the exponential function is the 

simplest one. In fact, many distribution functions with characteristic scales can be transformed into 

an exponential function (Table 7). Normal distribution can be treated as generalized exponential 

distribution. The inverse function of logarithmic function is just an exponential function. It is easy 

to convert a sigmoid function into an exponential function.  

 

Table 7 Three functions and the corresponding characteristic searching radii (examples) 

Function Transformation Characteristic Parameter 
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radius 

( ) ln( )N s a b s   ( )/N s b

bs s e  
/ 1

0

a bs e   a, b, sb=exp(a/b) 

max( )
1 bs

N
N s

ae



 

max 1
( )

bsN
ae

N s
   0 1/s b  a, b, Nmax 

( ) bs cN s ae s   ( ) c bsN s s ae  0 1/s b  a, b, c 

…… …… …… …… 

 

This paper is devoted to exploring the method of urban boundary identification based on scale 

functions instead of power law. If the spatial distribution follows a power law indicative of the 

scaling process without breaking, we will be unable to find an objective urban agglomeration or 

urban boundary in principle. However, in practice, we have at least three ideas to solve the problem. 

First, scaling decomposition. A power law can be decomposed into two exponential laws. Maybe 

one of exponential laws can be applied to defining urban boundaries (Chen et al, 2019). Second, 

scaling breaking. In the real world, few complete power law relations can be found. Many power 

laws break down when scale is too large or too small (Bak, 1996). In this case, a scaling range 

always appears in a log-log plot for a scaling relation. And thus, a fractal approach based on 

Minkowski’s dilation curves can be employed to identify the urban boundaries (Montero et al, 2021; 

Tannier et al, 2011; Tannier and Thomas, 2013). Third, self-affine relation. Sometimes, a scaling 

breaking in a power-law distribution implies a self-affine process and pattern and thus takes on a 

pseudo exponential distribution (Chen and Feng, 2012). In this case, we can use both exponential 

distribution and scaling breaking point to find characteristic searching radius. These approaches will 

be explored and the related questions will be discussed in a future research. 

5 Conclusions 

The basic algorithm of defining urban boundary has been developed, but how to find an objective 

searching radius is a pending problem. Fractal approach proved to be suitable for determining urban 

envelope for bi-scaling patterns of urban form. In this paper, the characteristic length of spatial 

search is proposed to define urban boundary. If we can reveal an exponential relationship between 

searching radius and corresponding measurements, or if we can decompose a power law based on 

searching radius into two exponential functions, we can find a characteristic length from the scale 
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parameters. The main conclusions can be reached as follows. First, the scale parameter of the 

exponential model represents the characteristic searching radius for definition of urban 

boundary. Generally speaking, the relation between spatial searching radii and the numbers of land 

patch clusters follows exponential decay law. The reciprocal of the decay coefficient is regarded as 

the scale parameter, which is just the characteristic length of spatial search. Using the characteristic 

radius, we can determine an urban agglomeration or define urban boundary more effectively and 

objectively. Second, the average value and double standard deviation can be employed to find 

average characteristic searching radius for a system of cities. Different cities at different times 

have different characteristic searching radius. For individual cities, we can use the characteristic 

radius of a concrete city. For a system of cities in a region, however, we must find a common 

characteristic radius by averaging after removing outliers. If a characteristic radius of a cities is less 

than the average value minus double standard deviation or greater than the average value plus double 

deviation, it should be deleted as an outlier. Step by step, we can eliminate all the exceptional values 

and calculate the final average characteristic radius. Third, other models of spatial search with 

characteristic length can be transformed into exponential model to give the characteristic 

searching radius. Not all the cities follow the exponential decay law in the process of city clustering. 

If the relation between searching radii and cluster numbers follow the power law with single scaling 

process, the urban boundary cannot be found objectively. If the relation satisfy a function with 

characteristic scale, e.g., normal function, logarithmic function, lognormal function, gamma 

function, and so on, we can convert the function into the form of an exponential function and find 

the characteristic searching radius. As soon as the characteristic radius is worked out, an urban 

agglomeration or urban boundary can be determined in a proper way. 
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Appendix 1—Beijing clusters based on different searching radii (2010) 
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Figure A1 The clusters of Beijing’s urban agglomeration based on different searching radius 

(separated patterns) 

 

 

Figure A2 The clusters of Beijing’s urban agglomeration based on different searching radius 

(Superimposed pattern) 

 

Appendix 2—The systems of cities and towns in Jing-Jin-Ji region of 

China 
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Appendix 3—The decay coefficients, characteristic searching radii, 

and goodness of fit of Jing-Jin-Ji system of cities 

City 2000 2005 2010 

b s0 R2 b s0 R2 b s0 R2 

Anguo 0.002091 478.2194 0.9815 0.002074 482.0655 0.9826 0.002131 469.3131 0.9828 

Baoding 0.001881 531.6702 0.9984 0.001940 515.4485 0.9984 0.001990 502.6293 0.9985 

Bazhou 0.001647 607.0195 0.9910 0.001750 571.5378 0.9878 0.002188 456.9559 0.9808 

Beijing 0.002119 471.9511 0.9994 0.002368 422.2940 0.9984 0.002729 366.3731 0.9984 

Botou 0.001680 595.2899 0.9967 0.001738 575.3568 0.9971 0.001845 541.9359 0.9974 

Cangzhou 0.001772 564.4511 0.9969 0.001801 555.3676 0.9971 0.001917 521.7741 0.9974 

Chengde 0.001124 889.6798 0.9992 0.001165 858.2158 0.9992 0.001181 846.5634 0.9993 

Dingzhou 0.002082 480.2106 0.9908 0.002134 468.5543 0.9922 0.002196 455.3302 0.9895 

Gaobeidian 0.002093 477.6993 0.9576 0.002189 456.7534 0.9629 0.002411 414.7853 0.9621 

Gaocheng 0.002150 465.0345 0.9934 0.002266 441.2548 0.9943 0.002441 409.7140 0.9928 
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Handan 0.001846 541.8339 0.9966 0.002006 498.4697 0.9966 0.002189 456.7426 0.9967 

Hejian 0.001709 585.2021 0.9957 0.001767 565.9756 0.9959 0.001749 571.7135 0.9965 

Hengshui 0.001887 529.8914 0.9957 0.001987 503.1921 0.9956 0.002079 480.9873 0.9977 

Huanghua 0.002321 430.9048 0.9817 0.002325 430.1719 0.9830 0.002439 410.0397 0.9860 

Jinzhou 0.002445 408.9475 0.9961 0.003038 329.1444 0.9981 0.003219 310.6132 0.9972 

Jizhou 0.001348 741.8193 0.9952 0.001375 727.2594 0.9941 0.001341 745.9429 0.9923 

Langfang 0.001711 584.5939 0.9960 0.001737 575.8528 0.9967 0.001965 509.0170 0.9967 

Luquan 0.003048 328.0825 0.9986 0.003268 305.9994 0.9983 0.003595 278.1609 0.9990 

Nangong 0.001392 718.4533 0.9933 0.001537 650.4204 0.9903 0.001597 626.2028 0.9907 

Qian'an 0.003069 325.8163 0.9951 0.003589 278.5973 0.9964 0.004004 249.7421 0.9966 

Qinhuangdao 0.001747 572.4701 0.9992 0.001856 538.8632 0.9985 0.002063 484.7142 0.9984 

Renqiu 0.002329 429.3267 0.9950 0.002356 424.4385 0.9945 0.002325 430.0616 0.9937 

Sanhe 0.003514 284.5509 0.9970 0.003654 273.6597 0.9969 0.004335 230.6794 0.9939 

Shahe 0.002423 412.7810 0.9925 0.002597 385.0894 0.9930 0.002764 361.8166 0.9928 

Shenzhou 0.001286 777.4866 0.9927 0.001456 686.9067 0.9954 0.001731 577.7408 0.9956 

Shijiazhuang 0.002038 490.7084 0.9967 0.002115 472.7405 0.9974 0.002341 427.2531 0.9966 

Tangshan 0.002686 372.3012 0.9990 0.002752 363.3882 0.9990 0.002959 337.9401 0.9987 

Tianjin 0.002806 356.4120 0.9977 0.003201 312.4214 0.9977 0.003383 295.6242 0.9971 

Wuan 0.002269 440.7886 0.9853 0.002367 422.4660 0.9889 0.002616 382.3133 0.9794 

Xingtai 0.001518 658.9464 0.9975 0.001612 620.3984 0.9978 0.001732 577.4773 0.9973 

Xinji 0.001684 593.9871 0.9969 0.001709 585.1828 0.9964 0.001933 517.2225 0.9957 

Xinle 0.001739 575.0715 0.9953 0.001792 558.0866 0.9974 0.002047 488.5642 0.9972 

Zhangjiakou 0.000789 1266.9277 0.9994 0.000836 1195.6389 0.9990 0.000872 1146.7506 0.9990 

Zhuozhou 0.002178 459.0393 0.9908 0.002253 443.8220 0.9944 0.002272 440.0895 0.9928 

Zunhua 0.002212 452.0322 0.9972 0.002571 388.8955 0.9906 0.002687 372.1908 0.9916 

Average 0.002018 539.9886 0.9937 0.002148 510.9694 0.9941 0.002322 476.9993 0.9934 

Stdev 0.000567 182.6956 0.0077 0.000645 175.5432 0.0069 0.000737 172.8801 0.0075 

Average* 0.002110 490.3683 0.9932 0.002244 471.9630 0.9937 0.002343 443.0722 0.9930 

Stdev* 0.000413 88.3327 0.0083 0.000583 108.1967 0.0071 0.000488 82.5355 0.0080 

Note: The notation is as follows: b—decay coefficient, s0—characteristic searching radius, R2—goodness of fit. 

Stdev means “standard deviation”. The average values and standard deviations with asterisk “*” are based on the 

datasets from which the outliers are removed. 

 

 


