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Characterizing the spatial organization of urban systems is a challenge which points to the more
general problem of describing marked point processes in spatial statistics. We propose a non-
parametric method that goes beyond standard tools of point pattern analysis and which is based
on a mapping between the points and a ‘dominance tree’, constructed from a recursive analysis of
their Voronoi tessellation. Using toy models, we show that the height of a node in this tree encodes
both its mark and the structure of its neighborhood, reflecting its importance in the system. We
use historical population data in France (1876-2018) and the US (1880-2010) and show that the
method highlights multiscale urban dynamics experienced by these countries. These include non-
monotonous city trajectories in the US, as revealed by the evolution of their height in the tree. We
show that the height of a city in the tree is less sensitive to different statistical definitions of cities
than its rank in the urban hierarchy. The method also captures the attraction basins of cities at
successive scales, and while in both countries these basin sizes become more homogeneous at larger
scales, they are also more heterogeneous in France than in the US. Finally, we introduce a simple
graphical representation – the height clock – that monitors the evolution of the role of each city in
its country.

Understanding the organization of urban systems has
always been a central challenge in geography and eco-
nomics [1–3]. On one hand the population sizes of cities
have been extensively discussed since Zipf’s work [4–6],
and have been shown to follow a broad distribution: there
is a hierarchy of cities characterized by many small cities,
a few medium cities and a very few large ones, whose pop-
ulation sizes are much larger than the rest. While this
distribution has been fully characterized and discussed
[6, 7], the spatial distribution of cities has also been an
important subject of debate [8–11].

More generally, this problem of characterizing the spa-
tial organization of urban systems appears often in spa-
tial statistics [12, 13] where the points (cities in our case)
have a position and are described by (at least) one quan-
tity such as the population. In spatial statistics this gen-
eral setting is referred to as a ‘marked point process’ [12],
where each point xi of the process carries extra informa-
tion called a mark mi. The mark can be a random or
a categorical variable, or any other additional informa-
tion about the points. This problem is not only impor-
tant in geography with the study of human settlements,
but is also relevant for many fields ranging from ecology
(positions of plants of different species), to epidemiology
(locations of infected individuals), material science (po-
sitions of defects) or astronomy that is interested in the
location of stars and galaxies. An urban system is an ex-
ample of such marked point process, where the points are
the cities and the mark is their population size. Space is
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obviously important in this system, and has to be con-
sidered jointly with population: if for example two cities
are close to each other, it makes a difference if they have
similar or very different population sizes. Standard tools
developed for the analysis of point processes usually con-
sist in measuring spatial autocorrelations [14], or testing
the null hypothesis of complete spatial randomness with
the K or L statistics which summarize the deviations
from a uniform (Poisson) distribution [12, 13]. These
tools were then extended to marked point processes and
describe deviations from known cases such as the Poisson
process, or intensity and moments measures [15]. A tool
that would go beyond these measures and provide a more
precise characterization of these processes would then be
extremely useful for a wealth of different problems.

To further characterize marked point processes it is
possible to start from geometrical structures constructed
on top of the point pattern. These ‘secondary struc-
tures’ [12] comprise in particular tessellations and net-
works [16]. The Voronoi tessellation is one of the most
relevant structure in computational geometry, and is of
major importance in the resolution of many problems, in
particular in location science [17]. Networks can also be
constructed over a set of points, and useful tools include
proximity graphs (such as the random geometric graph)
or excluded volume graphs (such as the Gabriel graph).
Measures on these secondary structures can then charac-
terize the point process itself, and constructing a spatial
network on top of the point process enables to import all
the networks knowledge into spatial statistics. For exam-
ple, a recent approach uses first-passage times of random
walks on networks constructed over a set of points in
order to quantify correlations in complex systems [18].
However, approaches based on secondary structures are
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in general used to estimate deviations from uniformity,
or the importance of some correlations. In contrast, we
want to construct a tool that helps us understand the
multiscale structure of a system of marked points, and
enable us to compare it to other systems. Such a tool
for characterizing the organization of spatial hierarchies
should thus encode both the spatial information and the
population (in more general terms both the positions and
the marks of the points). The purpose of this tool is not
to describe the deviation from a uniform distribution, but
to compare two systems (such as urban systems in differ-
ent countries for example) and to understand the tempo-
ral evolution of these systems from a non-local, high-level
perspective. We will illustrate the construction of such a
tool by considering the case of urban systems.

Cities are not scattered at random but follow some
logic based on geographical constraints, economical con-
siderations and historical path dependency, and central
place theory [8] has seeked to explain the spatial distribu-
tion of cities of different sizes based on the idea that set-
tlements function as ‘central places’ that provide services
to surrounding areas. The result of consumers’ prefer-
ences is then a system of centers of various sizes, forming
different levels of a hierarchy. A consequence obtained
by Christaller [8] is that the most efficient pattern to
serve areas without overlap is a triangular or hexagonal
arrangement of settlements. Although this idea has been
very successful and inspirational to many scientists, few
works have tried to validate it quantitatively. For exam-
ple, cities have been studied from the correlation point of
view [19, 20], but an important contribution to this prob-
lem is due to Okabe and Sadahiro [21] who showed that
random (uniform) arrangements of cities could explain
Christaller’s findings. To reach this result they had to
define a quantitative tool that captures the spatial dom-
inance of a city on another. They used a tree represen-
tation of the dominance relation between marked points,
and they used it to characterize both a Poisson point
pattern and a real-world case study — market places in
Nishinomiya, near Osaka. They analyzed this tree in the
perspective of testing Christaller’s ideas and in particu-
lar measured the ratio K between the number of nodes
in two consecutive hierarchical levels. However they did
not go further in the characterization of the importance
of each point in the system, and in the following we will
adapt and extend this method in order to construct a gen-
eral tool able to characterize a system of marked points.
First we will describe the dominance tree introduced in
[21], and that will constitute the starting point of our
analysis. We will then introduce different measures to
extract information from this tree. In particular, we will
show that the height of a node in this tree encodes both
its mark and space-related information. For systems of
cities, this means that the height of city in the dominance
tree encodes both its population rank and its location in
space. We will first illustrate this method on toy mod-
els, and then on empirical data, to compare the evolution
of the French and the US urban systems over the 20th

century.

Constructing the dominance tree

The method we propose can be applied to any marked
point process, and we will illustrate it on the case of
cities in a country. We assume that a given country has
N cities and each city i is characterized by its location
xi in some coordinate system, and its population Pi(t)
which can vary over time. In order to characterize this
system we have to define a data structure that encodes
both the spatial information (the location of cities) and
their importance (their population size).

The first step is to construct the dominance tree pro-
posed by Okabe and Sadahiro [21]. The idea is to re-
cursively construct Voronoi tesselations over the set of
nodes (see for example the book [16] and references
therein). The Voronoi cell Vi of a node i is the set
of points that are closer to i than to any other node,
Vi = { x | d(x, xi) < d(x, xj),∀j 6= i}. We show in
Fig. 1(A) an example of a Voronoi tesselation computed
for nodes distributed in the plane. Starting from this
Voronoi tessellation, we identify local maxima or local
‘centers’: a point i is a local maximum if its population
is larger than those of the neighboring Voronoi cells. In
other words, for any point i we define with the help of
the Voronoi tesselation the set of neighbors Γ(i) that are
the nodes whose Voronoi cell is adjacent to Vi. A city i
is then a local center if its population Pi is larger than
the populations of its neighbors: Pi > Pj ∀ j ∈ Γ(i). In
the example of Fig. 1(A), we thus have 3 local maxima
labeled a, l, and m. In a second step, we keep these lo-
cal centers and construct a new Voronoi tessellation over
them (Fig. 1(B)). Cities that do not appear anymore (i.e.
that were not local centers at the previous step) belong
now in the new Voronoi cell of a local center, and are
therefore ‘dominated’ by this city and belong to its ‘at-
traction basin’ (for example, nodes b, c, d, f , g, belong
to the attraction basin of node a). Here again we de-
termine local maxima, i.e. cells that do not have any
neighbor whose population is larger than their own. We
repeat this procedure recursively until only one city is left
(Fig. 1(C)) which, by construction, is the city with the
largest population. We therefore understand that a city
will ‘survive’ many iterations if its population is large
but also if it is well located. A large city located very
close to an even larger one will quickly be absorbed by
this larger city. It is interesting to note that this process
bear some ressemblance to the coarse-graining obtained
by means of real-space renormalization [22]. The domi-
nance tree – shown in Fig. 1(D) for the simple case we
just described – is then some sort of bookkeeping of the
changes of scale and the hierarchical organization of the
marked points: each node has children that correspond
to other nodes which belong to its attraction basin. We
show on Fig. 1(E-H) the Voronoi tesselations that corre-
spond to the successive steps of this process applied to
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US cities. In this case the root is New York City (suc-
cessive Voronoi cells of New York and Los Angeles are
colored) and the depth of the tree, that is the number of
iterations to reach the root, is H = 6.

We thus represent this process by the dominance tree
(Fig. 1(D)) where we keep at each level the remaining
points and where the links denote the spatial dominance
relation. At height zero (the leaves of the tree), we then
have all cities of the system that are locally dominated
by a larger neighbor city. After one iteration of the pro-
cess, we have the local centers, etc. until we reach the
root of the tree which is the city with the largest popula-
tion. Okabe and Sadahiro proposed this construction [21]
and used it to prove that the most important quantita-
tive statements in Christaller’s central place theory were
also observed for a random spatial Poisson point pro-
cess. More precisely, for both the random Poisson point
patterns and their real world case study – marketplaces
in Nishinomiya, Japan – they measured Christaller’s K
indicator, which is the ratio between the number of lo-
cal centers at consecutive hierarchical levels. They also
calculated the statistics of the number of edges of the
Voronoi cells as a function of the number of points in the
point pattern, and for different families of point patterns.
Consequently their characterization of the structure of
the dominance tree was limited, and mainly focused on
geometrical aspects.

.

We can then represent a system of cities by a domi-
nance tree, where the height of a city is the largest it-
eration before it is absorbed by a larger city. Once we
have constructed the dominance tree, each city i has its
height hi. We recall here that, by definition, the height
of a node in a tree is the number of edges between this
node and the furthest leaf going down in the tree. In
other words, it is the length of the longest path (i.e. its
number of edges) from the node to the deepest leaf (in
contrast, the depth of a node in a tree is the distance
from a node to the root). The height of a leaf is then
h = 0, while the root has the largest height (denoted by
H in the following). We will show that, due to the statis-
tical properties of Voronoi tesselations built from spatial
Poisson point processes, H ≈ log6(N) where N is the
number of points in the system, and H is in general of
order 5 or 6 in our empirical analysis of urban systems.
We introduce nf (h) which is the number of cities such
that their final height is h. In contrast, the total number
of cities at a given height h is denoted by ni(h) and we
have the following relation ni(h) =

∑
h′≥h nf (h′).

Once we have constructed the dominance tree, we have
to characterize it. There is a large number of possible
measures, but we will focus here on the height of a city,
and we will discuss it for toy models and for empirical
data. A city i at time t is then characterized by its pop-
ulation Pi(t) (or equivalently by its rank ri(t) when pop-
ulation are sorted by decreasing order), and its height
hi(t) in the dominance tree. This height characterizes
the role of the city in the hierarchical organization of the

urban system. While in the following we analyze urban
systems at the national scale, the method could be ap-
plied at different scales as well, such as the regional or
continental scale.

Toy models

In order to define a toy model we have to specify both
the point distribution and the population distribution.
Different models are possible and we will mainly con-
sider the following variants. First, we will consider that
populations are distributed according to the power law
ρ(P ) ∼ 1/Pα with α = 2. This case corresponds to the
classical result of Zipf and even if recent data show that
this exponent can fluctuate considerably [6, 7], it won’t
affect our discussion here, as the relevant quantity is not
the population size itself, but its corresponding rank in
the hierarchy: indeed, what matters for the construction
of the dominance tree is to know if a city is larger than
its neighbors. In the following, we will thus indifferently
discuss population or rank for characterizing a given city.

For the point distribution we will consider a uniform
distribution (spatial Poisson process) of the xi in the
square [−1,+1]2. We thus have two lists: a list of pop-
ulation sizes Pi and a list of positions xi (i = 1, . . . , N).
In order to define a model we have to specify how to
match these lists, and the resulting correlations encode
in a simple way the spatial organization of the system. To
simplify the description we will assume that the popula-
tions are sorted in decreasing order P1 > P2 > · · · > PN
and that locations are sorted in increasing order accord-
ing to their distance to the center (0, 0): ||x1|| < ||x2|| <
· · · < ||xN ||. We will consider the following three cases:

• The ‘deterministic model’ : we associate the largest
population to the closest point to the center (0, 0):
P1 ↔ x1 and follow the order Pi ↔ xi. This model
mimics in some way a system with a central orga-
nization around the main city.

• The ‘random model’: we associate the largest pop-
ulation to the closest point to the center (0, 0):
P1 ↔ x1, and then associate randomly the rest of
the Pis to the rest of xis. In this case, we have a
central large city but there is no specific organiza-
tion around it.

• Finally, the ‘tunable model’ is less determinis-
tic. We first assign P1 to x1 as before, but
for the remaining N − 1 cities we proceed as
follows. For P2 we choose at random a po-
sition among {x2, x3, . . . , xN} according to the
probability pk = exp(−d(x1, xk)/L)/Z where
d(x1, xk) is the distance between x1 and xk, Z =∑
k=2,...,n exp(−d(x1, xk)/L) is the normalization

and L is a positive parameter that can be inter-
preted as a polarization or interaction distance. We
then proceed in a similar way for P3 with the re-
maining xi left, etc. until the list of populations
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FIG. 1: Construction of the dominance tree. (A) Each point is characterized by a mark/value represented here as the size of
the circle. We first construct the Voronoi tessellation (shown with dotted lines) for these points and we observe that there are
three local maxima: a, l, m, in red and blue. These are the points which do not have any neighbor whose mark is larger than
their own. (B) From step (A) we keep the local maxima only, we construct the Voronoi tessellation over this set, and determine
the local maxima (which is here the node a). (C) At the end of the process, we are left with the node with the largest mark.
(D) The entire process can be described by the ‘dominance tree’: leaves correspond to the points which are not local maxima,
and the children of a given node are the points that belong to its attraction basin. For example, as can be seen in (B), nodes
k, j and e belong to the attraction basin of node l, which is a local maximum at level/height h=1. (E-H) Successive Voronoi
tesselations obtained when applying this ‘decimation’ process for US cities marked with their 2010 population sizes [23] (we
didn’t show the case h = 0 which corresponds to the Voronoi tessellation of all US cities and which is unreadable). After H = 6
iterations, we obtain a single city. By construction, the node with the largest mark will always be the root of the dominance
tree, but for the other nodes their height in this tree will not only depend on their mark but also on their location.

is exhausted. This tunable model is then able
to interpolate between the deterministic case with
L� 1 and the random case with L� 1.

These toy models allow us to explore the effect of var-
ious parameters and to test various aspects of our char-
acterization of spatial hierarchies. We show in Fig. 2(A)
the Voronoi tessellation of 103 points in the square. The
color code represents here the rank of cities according to
their population (the darker, the larger the associated
population). On Fig. 2 we have represented the ‘tunable’
model that interpolates from the deterministic case (on
the left) with a clear ‘monocentric’ pattern with popu-
lation decreasing with the distance to the center, to the
random model (last figure on the right) where there are
no correlations between rank and distance to the center.

Before turning to these specific cases, we first discuss
some general properties about the depth of the tree, and
the number of nodes at a certain level. First, by construc-
tion, the root of the dominance tree is the city with the
largest population. An important quantity is the depth
H of the tree that will measure the number of different
hierarchical levels in the system. In order to estimate H,
we first evaluate the number of cities ni(h) that are left
at the height h. We denote by zh the average number of
neighbors in the Voronoi tessellation at level h, and the

number of cities at level h is then

ni(h) =
N

z1z2 . . . zh
' Ne−h〈ln z〉 (1)

where the brackets 〈·〉 denote the average over all levels.
This expression implies that the number of cities and the
level h are related as follows

lnni = a− bh (2)

where a = lnN and b = 〈ln z〉 ≡ ln zeff . The depth of
the tree H corresponds to the height of its root, at which
there is only city left (ni = 1). Hence we obtain

H =
lnN

〈ln z〉
(3)

In the ‘random’ toy model, cities are uniformly dis-
tributed and we can roughly expect zeff ≈ 6 [16] and
with N = 104 cities we obtain a tree of height H ≈ 5.
In contrast, for the deterministic model, there is essen-
tially a single local maximum leading to a small depth
(see Supplementary Figures S2 and S3)

We consider now the relation between the rank and the
height of a city in the dominance tree, and the result is
shown for the random model in Fig. 2(B) where locations
are fixed and different disorder realizations correspond
to different arrangement of populations sizes on these
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FIG. 2: (A) Initial Voronoi tessellations computed for N =
103 points. From left to right, the tunable toy model in-
terpolates from the deterministic model (the population de-
creases with the distance to the central largest city) to the
random model where distance and population to the center
are uncorrelated. (B) Rank versus height for the random
toy model, computed for N = 104 cities and 200 disorder
configurations. The straight line is a linear fit of the form
〈log(r)〉 = 8.555 − 1.722 ∗ h (R2 > 0.99). The points show
the outliers and the lower and upper sides of the boxes cor-
respond to the second quartile and third quartile respectively
(the boxes therefore contain half of the points). The middle
bar corresponds to the median. (C) Effective connectivity of
the Voronoi tessellation for different values of L in the tunable
model.

fixed locations (in other words, location is the quenched
disorder, while the mark is the annealed disorder). This
plot shows that on average, smaller ranks lead indeed to
larger heights (and eventually the largest city with rank
r = 1 has the largest height h = H). However, we also
observe on this plot that this relation is not univocal, as
there are large fluctuations around the average behavior.
In other words, the rank (or population) of a city does
not determine its height in the tree. This shows that the
height encodes simultaneously the rank of a city in the
urban hierarchy and its location. In particular, we see on
Fig. 2(B) that cities with ranks r ≥ 2 can have different
heights depending on the disorder realization.

For each value of L for the tunable model, using the
general relation Eq. 2, from the measure of ni(h) ver-
sus h, we compute the average number zeff = exp(b) of
neighbors of the Voronoi tessellations obtained in the dec-
imation process (see Fig. 2(C)). For small L values, this
model reproduces the deterministic case where cities are
distributed around the largest one in decreasing order.

In this case in many regions there are no local maxima
and the effective number of neighbors zeff is very large.
As L increases we tend towards the random model where
cities are distributed randomly in the plane. In this case
we expect a regular Voronoi tessellation constructed over
a Poisson point process, with zeff ≈ 6 [16].

We have shown on these simple toy models that the
height of a city in the tree does not depend on its rank
alone, but also on its location and its neighborhood. In
order to illustrate further the effect of the spatial arrange-
ment of cities on their heights, we consider the following
simple situation. We locate the largest city 1 (of rank
r = 1) at the center of the plane and we assign to a point
at distance d(1, 2) the second largest city 2. We then lo-
cate at random all the other cities and measure the height
h2 of city 2 as a function of the distance d(1, 2). We also
record the maximum and minimum height reached by 2
in the random configurations. The resulting plot is shown
in Fig. 3. We see in this plot that the height h(2) of city

A
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4

10−2 10−1 100

d(1,2) 2

<h
(2

)>

FIG. 3: (A) Two different possible configurations: (left)
smaller cities are located between cities 1 and 2 or (right)
no cities are in between. In the former case, the city 2 is
a local maximum, while in the latter, city 2 belongs to the
dominance basin of city 1. (B) Average value of the height
h2 of city 2 as a function of its distance d(1, 2) to the largest
city (P1) in the random model, normalized by the largest dis-
tance possible. Error bars represent here max(h2)−min(h2)
observed over 200 random configurations for the cities.

2 depends strongly on the spatial arrangement of cities
in the space between it and the larger city (1): if there is
a smaller city in between, the city 2 is a local maximum
and has a larger height (Fig. 3(A)). In the opposite case,
city 2 will be absorbed by city 1 at the next iteration of
the decimation process. We test this numerically and the
result is shown in Fig. 3(B). First, as expected we observe
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that the height h(2) is on average an increasing function
of the distance to the largest city. At small distance, the
city 2 has a large chance to belong to the attraction basin
of city 1 and will be quickly ‘absorbed’ by it, leading to
a small height. In contrast, as the distance increases it
will take more steps before the city 2 is in the attraction
basin of city 1, leading to a larger height. In addition, for
a given distance d(1, 2) we observe important fluctuations
of h(2). This clearly shows that the height encodes the
spatial organization of the neighborhood of a city, and in
particular of the space between the city and the closest
larger one. The height is then related to the number of
local maxima in this intermediate space.

These toy models demonstrate the relevance of the
height of a city in the dominant tree for monitoring its
importance in the system. We will now apply these ideas
on empirical data.

Empirical studies: US and French urban systems

The previous section helped us to understand the main
properties of the dominance tree and the factors that
determine the height of a marked point. We will now
use this tool to measure the spatial organization of the
French and the US urban systems, and their evolution
over the last 130 years (see the Data section at the end
for details).

Height fluctuations

We first focus on the height of cities as discussed above.
We show on Fig. 4(A) and (B) the heights, at different
dates, of the 20 cities that are currently the largest ones
in the US and in France.

The root of the tree is by construction the largest city
of the system, which in both countries has remained the
same over the entire period — New York City in the US,
and Paris in France. We observe small height variations
for French large cities, a fact that was already observed
in [27] for the ranks of old European cities in the urban
hierarchy, but with notable exceptions such as Lille. In
the US it is interesting to note that even if the population
of San Francisco grew steadily since its beginning, its
height in the US tree has decreased, signalling a changing
environment and the higher growth of neighboring cities.

We observe that in both countries there are different
cities which at some point of their history reached the
height H − 1 (H is the root): in the US Los Angeles,
Chicago, or San Francisco; and for France, Marseille,
Lyon, Nantes, Bordeaux or Lille. We also observe that
the 20 municipalities that are currently the largest ones
in France have experienced much less height fluctuations
than the 20 largest US cities, some of the latter spanning
3 or 4 different levels in the tree. The height thus cap-
tures ascending and descending city trajectories in the
US that were not observed in France during the last 130

years. Like other countries in Europe, France has ex-
perienced a long-standing urbanization, with a slow and
regular evolution, and a city like Paris was already an
international hub in the Middle-Age. In contrast, the
US is a relatively new country, which experienced suc-
cessive waves of urban development in the last centuries
[28]. The trajectory of a given city in the dominance
tree highlights how the role and the local importance of
this city has evolved in time. It provides a richer infor-
mation that the rank alone [27], because it encapsulates
information not only about the position of the city in the
urban hierarchy, but also about its importance among its
neighbors.

Basin sizes and statistical definition of cities

Basin sizes: Gini and Zipf

Beyond single cities trajectories, the dominance tree
also contains information about the spatial organization
of the urban hierarchy at larger scales. At each step of
the tree construction process, a local maximum – say city
i – contains a number of cities in its Voronoi cell V (i).
We denote by φi the total population of this attraction
basin: φi =

∑
j∈V (i) Pj (the population of the ‘seed’ city

Pi is not taken into account in φi). At each step of the
iterative construction process we thus have a collection
of values of φ, one for each Voronoi cell. We compute
the Gini coefficient G of these values (see for example
[29]): a large value of G (i.e. close to one) indicates that
there are a few very large basins of attraction and all the
others are small, while in contrast a small G (close to
zero) indicates that most attraction basins have roughly
the same population size. On Fig. 4(C) we plot G for
France and the US at different tree levels h, that corre-
spond to different spatial scales, and for different time
periods. There are two remarkable features on this plot.
First, in both countries the Gini is decreasing as we ap-
proach the root, which means that even if we start from
a very heterogeneous situation at small scales (at the ur-
ban agglomeration level), at a large scale the population
sizes of the attraction basins become comparable. Sec-
ond, we observe an important difference between the two
countries. In France the system has evolved towards a
situation where the attraction basins are becoming more
heterogeneous (at all spatial scales), while the data show
the opposite in the US. Surprisingly enough, it seems
that in France, the urban system has not evolved towards
a uniform distribution of important basins, but that in-
equalities in population sizes have increased in the recent
periods, at all spatial scales. Furthermore the fact that
Zipf’s plots of φ for different levels (see Supplementary
Figure S1 and the corresponding section in the SI) are all
well described by power laws, confirms that the hierarchy
of population sizes is preserved at different scales. The
power law fits give exponent values displaying a decreas-
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ing trend, indicating less fluctuations when h increases,
in agreement with the results obtained with the Gini co-
efficient.

Height sensitivity to different statistical definitions of cities

Defining consistent city boundaries is a central issue in
urban studies, especially when the goal is to character-
ize and compare cities [7, 25, 26]. In general, adminis-
trative boundaries such as municipalities fail to capture
meaningful borders, and many statistical definitions of
cities have been proposed. Some are based on morpho-
logical aspects (built-up area), some other on functional
ones (journey-to-work commuting flows, see Supplemen-
tary text in SI for details). While different criteria lead
to different boundaries, key variables that quantify the
importance of a city in the system should not depend
on small fluctuations at finer scales. For example, for
cities that are regional, national or international hubs,
key variables such as their (population) rank in the urban
hierarchy or their height in the dominance tree should
not vary too much for different city definitions. We will
test this robustness for the french case. In 2021, there
were about 2, 400 urban units (morphological definition)
in Metropolitan France, that gathered approx. 7, 500 mu-
nicipalities representing a total population of 50M peo-
ple. Following the functional definition, there were 682
urban areas, gathering 26, 000 municipalities for a total
population of 60M people. For each definition we de-
termine the rank of cities in the population hierarchy,
and then attribute their rank to all the municipalities
that compose the city according to this definition. Since
Paris’ urban unit is the most populated in France, all the

municipalities that are part of Paris urban unit are at-
tributed rank 1, all the municipalities included in Lyon’s
urban unit are attributed rank 2, etc. We do the same
for the urban area definition: we determine the popula-
tion hierarchy of urban areas, and attribute their rank to
all the municipalities that compose the urban area. The
7k+ municipalities that are simultaneously part of an ur-
ban area and of an urban unit thus have two population
ranks ri and r′i, one according to the morphological def-
inition, the other according to the functional definition.
In order to compare these lists of ranks, we compute the
Kendall correlation coefficient τ (see for example [30]).
This quantity τ is equal to one when the order of the
cities is strictly identical in the two lists, and −1 when
the lists have an opposite order. Here, we obtain for these
lists a value τr = 0.28. We then compute the dominance
tree for France according to the two different city defini-
tions, and determine the height of each city in both trees
(we allocate this height to all the municipalities that com-
pose the city according to this definition). For the 7k+
municipalities that are part of a urban unit and also part
of a urban area, we end up with two lists of heights, and
we compute the Kendall τ coefficient between these two
lists. We obtain τh = 0.30, and we thus have τh > τr,
which shows that the height of a city in the dominance
tree is in fact slightly less sensitive to different city defi-
nitions than its rank in the population hierarchy.

Relation between city size and height in the tree

We also investigate the relation between the popula-
tion size of a city and its height in the dominance tree.
In order to quantity this relation, we compute two lists in
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which cities are ranked in decreasing order of (i) popula-
tion sizes and (ii) heights. We compare these lists using
Kendall’s τ correlation coefficient. For both countries we
calculate this quantity for each year available in the data
(see Supplementary Figure S4), and we also calculate it
for the toy models previously discussed. In particular,
we obtain for the ‘random’ toy model the average value
〈τ〉 ≈ 0.43 (represented on Supplementary Figure S4 by
the dashed line). For the determinisc, monocentric toy
model we obtain a value close to 0, and for the tunable
model, τ interpolates between these two values for dif-
ferent L. Overall for the US and France, we observe
relatively small values of Kendall’s τ in these systems,
confirming that the height is not determined by popu-
lation alone, and that the location of a city has its own
importance and effect. Supplementary Figures S5 and
S6 complement this observation, and show that there are
many pairs of cities such as Pi > Pj and hi < hj .

We can understand these different results with the fol-
lowing considerations. When large cities are close to one
another, some are dominated by even larger ones, and
consequently their height in the tree is small. This leads
to a small value of τ as observed for the deterministic
model. In contrast, when the population size and the
location are uncorrelated as in the random model, large
cities can reach higher levels in the tree before being ‘ab-
sorbed’ by an even larger city. In this case, there is a
higher correlation between rank and height, leading to
a larger value of τ . We observe that τ is smaller for
France than for the US, suggesting that the French sys-
tem of cities displays a stronger concentration of popula-
tion within large urban agglomerations. These are com-
posed of large municipalities located close to one another,
in the vicinity of a historical large municipality that is the
core of the agglomeration. In addition, we observe that τ
is decreasing in time for both countries, signalling a de-
crease of the correlation between the height and the rank
in the urban hierarchy. This can be due to two different
effects: smaller cities becoming more important (large h)
due to their strategical location, or in contrast cities with
small h whose population size increased because they are
located near an important city from which they depend.

Height clocks

A city i of population Pi(t) has thus a certain height
hi(t) in the dominance tree which characterizes the im-
portance of its role at a regional level. In contrast, the
leaves of the tree (with height h = 0) do not dominate
any other city and depend directly on a more important
city in their vicinity. In order to characterize the evolu-
tion of the urban system and how different cities can see
their role evolving in this system, we study the temporal
variation of their height. A first approach was shown in
Fig. 4(A,B), but for a better visualization we propose a
‘height clock’, in the same spirit as the rank clock in-
troduced by Batty in [27]. On a polar plot, the radius

is equal to the normalized height max(h) − hi(t) and
the angle is proportional to time. During a time range
[t1, t2], the total height variation for a city i is then given

by ∆i =
∑t2−1
t=t1
|hi(t + 1) − hi(t)| and according to the

dynamics of this variation, we classify cities into four cat-
egories and show some representative examples in Fig. 5
(see Supplementary Figure S7 for the rank clocks of some
selected cities).
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FIG. 5: Height clocks for French (left column) and US mu-
nicipalities (right column). We illustrate here different classes
of possible dynamics with selected cases: stable with fluctu-
ations (top line), increasing height (middle) and decreasing
height (bottom) in the dominance tree. On each plot, we in-
dicate the percentage of cities in the urban system that belong
to that class. The central node corresponds to the root of the
system, i.e. the city with the largest height. The color code
corresponds to the one used in Fig. 4(A) and (B).

The first type of cities display a constant height (‘sta-
ble’ cities, not shown here). For France this is for example
the case of Paris (and New York City for the US), which
was always the most important city in the system since
1880. Toulouse in France has a constant height equal to
4 (H − 2, which can also be seen in Fig. 4), which in-
dicates the steady importance of this city at a regional
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level. This class of cities is by far the most important
for both countries with a share of 86.7% for France and
72.4% for the US. This is an important indication that
the French system reached earlier some kind of more sta-
ble state, compared to the US where more active change
dynamics were observed in the last century.

The second type comprises cities for which h(t1) =
h(t2), but which experienced height fluctuations in be-
tween. This is the case for example of Mulhouse, Nantes
or Lyon in France, or Omaha in the US. As we can see,
Mulhouse saw its height fluctuating between 1870 and
1970 before stabilizing in the last decades. During the
whole period its population grew steadily (except dur-
ing the 2nd world war) and this again shows that the
height analysis encodes more than just the population
dynamics, by considering also the population dynamics
of neighboring cities. The third type correspond to cities
whose height decreased, while the fourth type are cities
whose height increased and which became more impor-
tant in the organization of the system. The proportion
of cities that belong to one of these two categories is
larger in the US than in France, which is consistent with
the urban dynamics observed in both countries during
the 20th century [28]. Obviously these results need to
be replaced in a geographical context, but these observa-
tions prove that non-trivial information can be extracted
through this single quantity h, that can shed light on
the evolution of cities and their importance in the urban
system.

To summarize, the evolution in time of the height of
a point in the dominance tree sheds a light on the evo-
lution of its importance in the spatial hierarchy. This
information is complementary to the time evolution of
its rank according to the value of its mark, as illustrated
by Supplementary Figure S8 that shows the height clock
of three large US cities alongside their rank clock [27].
The height and the rank trajectories of a given city can
even go in opposite directions, as this is the case for ex-
ample for Portland and Dallas.

Discussion

An important problem in spatial statistics is to char-
acterize a system of points that have marks. For cities,
the simplest mark is the population size and the impor-
tance of a city at different geographical scales results from
both its location and its rank in the urban hierarchy, de-
termined by its population size. We presented a simple
tool based on the dominance tree that encodes the spatial
structure of a marked point process.

Starting from an original method proposed by [21],
we have introduced new metrics, toy models, and new
vizualisations for this problem. In particular, we have
conducted a proper analysis of the influence of the spa-
tial distribution of marks in space on the maximal height
a point with a given rank can reach in the tree. We have
introduced φ, the population size of the attraction basins,

and we have also introduced the height clock that allows
to monitor the time evolution of the height of a partic-
ular city. Finally we have also introduced the height vs.
rank, and height vs. population size diagrams (see Sup-
plementary Figures S5 and S6).

The height of a point in this tree appears to be a crucial
information, and its monitoring allows to understand the
dynamics of spatial hierarchies. We have applied this
method to toy models and to empirical analysis of the
evolution of the French and the US systems of cities.
This method however goes well beyond these examples
and could be applied to a wealth of problems, depending
on the nature of points and on the quantity chosen to
characterize them. It allows for the study of spatial cor-
relations in a simple way, and could help in comparing
the dynamics of many different urban systems, discussing
their evolution in time, classifying them, etc. and finally
contributing quantitatively to urban theory thanks to a
shared, non-parametric tool. It could also be useful in
connecting distinct bodies of literature, namely the stud-
ies of the statistical distribution of settlement and city
sizes [6, 7], and those that investigate their spatial distri-
bution on the Earth [11, 35]. Further studies could also
investigate the relation between the height of cities and
socio-economical factors, such as their GDP.

Concerning the application of this method to urban
systems, several lines of future research can be identi-
fied. The first one would be to adapt the method so that
it could be applied not only to points but also to cellular
tissues, by considering the real geographical envelopes
of the geographical units rather than the Voronoi cells
computed from their centroids. Since the set of munici-
palities, departments, regions, etc. in a country naturally
form tessellations, the rest of the procedure would remain
the same: identify the cells that are the local maxima,
aggregate the dominated cells to the one that is a local
maxima, and so on. At a smaller, intra-urban scale, it
could also be applied to capture the dynamical organisa-
tion of hotspots within the city.

Future studies may also further investigate the sensi-
tivity of the method against different definitions of cities,
that would correspond to different marked point pro-
cesses or to different elementary building blocks used for
building the dominance tree. In the same vein, it would
be interesting to measure differences in the tree structure
when considering more elaborated distances than the Eu-
clidean distance. One could for example consider trans-
port networks distances, or average travel times. Such
data are however much harder to obtain for many differ-
ent countries, and for ancient periods of time. Another
direction could be to analyze the sensitivity of scaling
laws exponent for different hierarchical levels in the dom-
inance tree [36].

Beyond urban geography, other problems in spatial
statistics could also be addressed with this simple tool.
As it encodes in a simple way various correlations, it
could shed a new light on the characterization of ran-
dom tessellations and random patterns in two dimen-
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sions, and could help in revisiting important problems
in the physics of foams, such as the Aboav-Weaire and
Lewis laws [31, 32] which in general focus on the distri-
bution of local statistics such as the number of edges,
the neighbor statistics, etc. but not on the global spatial
organization.

Data

We use census population data for France provided
by the French national statistics bureau (INSEE) [24].
These data give the population sizes of approximately
32, 000 French municipalities (administrative bound-
aries) of Metropolitan France for every decade during
the period 1876-2018. For the US, the dataset [23] is a
compilation of US cities populations between 1790 and
2010 (every 10 years). The data come primarily from the
US Census Bureau dataset and contain 7, 500 incorpo-
rated cities which at a certain point of their history had
a population larger than 2, 500 individuals. Other cities
were added from a variety of sources (see [23] for details).
Both datasets are public and can be freely downloaded
(see [23, 24] for the URLs).

We note that the underlying criteria used to delin-

eate cities in space for computing their population size
may influence our results. Here we use administrative
boundaries (municipalities) for France which are known
to be problematic in many ways when comparing his-
torical population data from one city to another, or be-
tween countries [25]. However, the dominance tree is con-
structed in order to highlight the spatial organization of
urban systems at various scales and while most methods
used to determine relevant spatial boundaries for cities
rely on arbitrary thresholds that are different from one
country to another (shares of commuting flows, minimal
distance between consecutive built-up areas, etc.), this
non-parametric method could provide an alternative way
to construct urban agglomerations with Voronoi cells at
different heights, and could constitute an interesting di-
rection for future studies.

Data and source code availability. The data that
support the findings of this study are available for
download at https://github.com/cestastanford/
historical-us-city-populations for the US data,
and at https://www.insee.fr/fr/information/
2414405 for the French data. The source code is available
at https://gitlab.huma-num.fr/tlouail/voronoize.
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