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Abstract

This paper introduces OMOD (OpenStreetMap Mobility Demand Generator
), a new open-source activity-based mobility demand generation tool. OMOD
uses a data-driven approach, calibrated with household travel survey data, to
generate a population of agents with detailed daily activity schedules that state
what activities each agent plans to conduct, where, and for how long. The tem-
poral aspect of the output is wholly disaggregated, while the spatial aspect is
given on the level of individual buildings. In contrast to other existing models,
OMOD is freely available, open-source, works out-of-the-box, can be applied
to anywhere in Germany with the ambition to widen the scope to other coun-
tries, and only requires freely available OpenStreetMap (OSM) data from the
user. With OMOD, it is easy for non-experts to create realistic mobility de-
mand, which can be used in transportation studies, energy system modeling,
communications system research, et cetera. This paper describes OMOD’s ar-
chitecture and validates the model for three cities ranging from 200,000 to 2.5
million inhabitants.

Keywords: Activity-based model, Daily activity pattern, Mobility demand,
Micro-simulation, Open-Source, Transport modeling

1. Introduction

Models of human mobility are traditionally used by transportation research-
ers to design efficient transport systems [1, 2, 3, 4, 5, 6]. However, such models
are useful beyond transportation research and are increasingly common in other
fields like homeland security policy research [7], epidemiology [8], or communica-
tion systems research. In communication systems research, models that include
human mobility patterns are utilized to test and optimize networking schemes
for ad hoc networks [9], device-to-device communication [10, 11], or vehicle-to-
vehicle communication [12]. To this end, random movement models are often
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used [9, 11, 12]. However, these do not accurately depict the cyclic [13] and
highly predictive [14] aspects of human mobility behavior and, consequently,
might come to false conclusions about real-world performance.

Another field where human mobility models become increasingly relevant is
energy system modeling. In light of the tremendous numbers of electric vehicles
projected to be on the streets in a decade [15], grid operators face the difficult
task of ensuring grid stability. To adequately design grid expansions, it is nec-
essary to understand the newly emerging electricity demand of electric vehicles.
This demand is determined by when and where electric vehicles charge. Since
the vehicles will move with their owner, accurate models of mobility behavior
are necessary [16, 17, 18].

With this increasing interest in mobility behavior, it becomes essential to
have mobility demand models that are applicable in a wide variety of research
fields, can be applied to a wide range of locations, are easy to use, and, most im-
portantly, do not require access to proprietary data from the end user. A model
fulfilling these conditions allows researchers in other fields to generate realistic
mobility demand for their studies without requiring knowledge of transportation
modeling and access to data that is inherently connected with privacy concerns.
On the other hand, this exchange allows modeling approaches developed in the
transportation field to be tested under a changed point of view and with different
performance metrics, which invariably leads to new insights.

This paper introduces the OpenStreetMap Mobility Demand Generator
(OMOD), an open-source1 activity-based simulation tool. The main contribu-
tion of OMOD is that it fulfills all the state requirements for interdisciplinary
use described above by being applicable to anywhere in Germany, being open-
source, useable out-of-the-box, and not requiring any proprietary data on the
user side. OMOD is designed such that a rapid application to other countries is
possible when a detailed household travel survey is available, and the location
is sufficiently mapped in OSM. Furthermore, OMOD adheres to the best prac-
tices learned in transportation research and, therefore, significantly improves
upon the models currently used in fields like communication systems research
or energy system modeling.

Under mobility demand generation, we understand the steps of population
and activity generation (similar to trip generation and distribution steps in four-
step models). Mode and route choice are left undetermined for other software
like SUMO [19] or MATSim [20]. Therefore, OMOD determines what a person
would like to do on a given day or week if they had the necessary means of
transportation.

This paper is structured as follows. First, we review related work in mobility
demand modeling, focusing on open-source tools (see Section 2). Then, we
describe the architecture of OMOD (see Section 3). The calibration process
we applied to arrive at the default parameterization is described alongside the
model’s architecture. Finally, we validate the model by comparing its output

1Available on GitHub https://github.com/L-Strobel/omod under the MIT license.
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to the German national household travel survey Mobilität-in-Deutschland 2017
(MiD) [21] (see Section 4).

2. Related Work

In transportation research, travel models are typically created with a specific
region in mind. Examples include, TASHA [22, 23], an activity generation and
scheduling model for the Greater Toronto Area, SACISM [24], a model devel-
oped for the Sacramento area, FAMOS [25], an activity-based travel demand
forecasting system for the State of Florida, or the official transport demand
model for Flanders used by the Flemish Authorities [2]. Many more examples
of these models (primarily focusing on the US) can be found in the review by
Davidson et al. [26]. Here, the new generation of activity-based models is com-
pared to conventional four-step models. They describe a persistent gap between
recent research focusing on activity-based models on the one hand and practi-
tioners relying on conventional models on the other hand. Additionally, they
show several examples where more modern approaches have been implemented
successfully in practice. They highlight three features that the new generation
of models has, which are also present in OMOD:

• activity-based: The models derive mobility demand from the desire of
each person to conduct daily activities (instead of directly determining
trip numbers by extrapolating surveys).

• tour-based: The models use tours2 as the basic unit of travel demand.
Using tours ensures that trips are self-consistent, i.e., every trip leav-
ing home must eventually lead to a trip returning to the home location.
OMOD goes one step further by using daily activity schedules, meaning
that an individual’s entire day must be consistent.

• micro-simulation: The mobility demand is modeled on the fully-disaggregate
level of persons and households.

Shiftan and Ben-Akiva [28] conduct a similar analysis to Davidson et al.
[26]. They determine best practices that can be learned from the ”best” practi-
cal activity-based models, particularly regarding the trade-off between realism
and model complexity. Among other things, they find that the analyzed models
generally: model interactions across tours (i.e., use day patterns or daily activity
schedules to model an entire day consistently), disregard household interactions
in favor of the simplicity of independent individuals, and determine trip desti-
nations sequentially, using a random subsample of all traffic assignment zones
as choice set.

These models aim to create policy-sensitive forecasting tools for the mobility
demand in specific regions. Significant work is put into fine-tuning the model.

2A tour is a sequence of trips starting and ending at the same location [27].
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Consequently, these models work well for their purpose, but applying them
to other regions is often difficult, especially for non-experts. Additionally, in
many cases, the models are not open-source and rely on private data. Notable
exceptions to the issue of limited transferability are the activity-travel pattern
simulator CEMDAP [29] and the activity-based transport demand modeling
framework FEATHERS [30]. In both cases, the software architectures have
been constructed with transferability in mind. However, both models are still
geared towards transportation researchers and require the user to collect and
format various data sets for the area of interest, which might or might not be
publicly available. For example, CEMDAP requires the user to provide zone-
to-zone transportation system level-of-service characteristics by time of day.
As stated in the introduction, more and more use cases for mobility demand
models can be found in other research fields where no transportation experts
and access to proprietary data exist. OMOD tries to provide a model for these
use cases while simultaneously adhering to the best practices learned in the field
of transportation study.

The obstacle that proprietary data represents for the transferability and ver-
ifiability of transport models is well-known in transportation research. Various
authors have proposed synthetic population creation pipelines that rely only on
public data. Notable examples are the work of Agriesti et al. [31], Felbermair
et al. [32], and Hörl and Balac [33]. In each case, the authors demonstrate
good results for a specific case study (Tallinn, Carinthia in Austria, and Paris).
However, they all use a wide range of public data sets, complicating the trans-
fer of their approaches because a substitution has to be found for each used
data set, which might be difficult or impossible depending on the area of in-
terest. For example, they all rely on detailed commuting origin-destination
matrices. OMOD, on the other hand, requires only OSM data (available for
almost anywhere) when applied to a region where a suitable calibration exists
(i.e., anywhere in Germany). Household travel survey data is necessary to cal-
ibrate OMOD to new regions. However, since the calibration process does not
need to store any survey records (as opposed to [33]), sharing calibrations is less
problematic, even for non-public surveys.

Other existing models set out to provide mobility demand models that can
be applied to any area. Isaacman et al. [34] introduce the WHERE model
that simulates movement patterns of individuals in a given region and outputs
them in the form of synthetic Call Detail Records. Their work is extended by
Darakhshan et al. [35], who add noise to the output to improve privacy, and
by Smolak et al. [36], who enhance the temporal component of WHERE and
restrict the movement of agents to an elliptic activity space that encompasses
their home and work location. These models require detailed movement tra-
jectory data as input in the form of Call Detail Record traces or synthesized
from census data. They rely heavily on the quality of that data, as they do not
include GIS data from the modeled area.

The transportation simulators TRANSSIMS [37] and SUMO [19] (called
activitygen) include basic mobility demand generators. The former expects a
household travel survey as input, the latter only common census data. Fur-
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thermore, tools have been developed in the SUMO community to improve upon
activitygen [38, 39]. Of these, especially noteworthy is SAGA [39]. Like OMOD,
SAGA requires the user only to provide an OSM file as input. The destination
choice process is similar to that in [36]. Secondary locations are restricted to
an elliptic area defined by the home, primary location, and user-defined radius.
Home and primary locations are sampled independently based on the weighted
probability of each traffic assignment zone, where the weight is the number of
buildings, points of interest (POIs), and infrastructure objects (i.e., streets) di-
vided by the area of the traffic assignment zone. While SAGA can be used
solely with an OSM file, proper usage requires significant parameterization by
the user. Most notably, the user must provide which activity chains are possible,
with what probability they occur, and for how long each activity lasts. SAGA
does not offer a set of precalibrated default values like OMOD. For this reason,
it is more suited as a tool that reduces overhead for experts rather than a tool
that can be used out-of-the-box.

In energy system modeling, several open-source models of electric vehicle
mobility exist [40, 41, 42]. The most prominent among them is emobpy by
Gaete-Morales et al. [42]. These models are built upon household travel surveys,
but only vencopy [41] requires the user to have access to the survey itself. The
other two models [40, 42] ship the underlying probability distributions of the
survey with the model. Therefore, the user does not have to provide any input
data. Although the primary output of these models is the electric demand of
a fleet of electric vehicles, they work by creating trip chains for a synthetic
population of agents, and it is possible to obtain these chains directly. However,
none of these models include a destination choice model. Instead, locations are
usually only described abstractly, like home or work, without providing actual
coordinates, limiting their usefulness for purposes other than electric vehicle
demand. Additionally, it hinders them from being used to analyze local electric
grid congestion effects, even in energy system modeling.

Currently, no mobility demand simulator exists that adheres to the best prac-
tices of activity-based modeling, works out-of-the-box without requiring expert
knowledge or proprietary data on the user side, and outputs fully disaggregated
and spatially referenced mobility profiles. With OMOD, we plan to provide
exactly that, hoping the model will find users in various fields. OMOD aims to
achieve this goal by relying on the OSM ecosystem for locations of buildings,
POI, land use information, and routing. This approach significantly increases
the transferability of the model. Nonetheless, we still rely on household travel
survey data for model calibration. Once the model has been calibrated to a
specific region, the model can be used by anyone without access to the origi-
nal household travel survey. Together with this paper, we publish a calibration
that applies to Germany. We aim to steadily increase its scope to more and
more countries to ultimately achieve the goal of a broadly applicable model
that requires only OSM data to run.
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Data Preparation

Input
Necessary: OpenStreetMap data
Recommended: Census data

List of buildings

Population Creation:

Sample
socio-demographic

features

Determine home
location

Determine
work/school location

For every agent

Activity Schedule Generation

Mobility demand

Determine activity
chains

Determine locations

Determine dwell time

Figure 1: Architecture of OMOD

3. Architecture

The following section will describe OMOD’s architecture and the methodol-
ogy that lead to the default parameterization. The parameterization process of
each model step is explained directly after its description.

The mobility demand generation process consists of three steps. The first
step is creating a model of the user-specified area (see Section 3.1). This step
involves parsing the OSM file into a list of locations where activities can be
conducted. The second step is the creation of the population (see Section 3.2).
Here, the agents are assigned socio-demographic features, and their inflexible
locations (home, school, workplace) are determined. The third and last step
handles the activity schedule generation (see Section 3.3). Here, the model
determines what activities, where, and for how long every agent conducts on
a given day. This is the most complex step and takes up most of OMOD’s
runtime.

Figure 1 depicts a high-level overview of OMOD’s architecture.

3.1. Data Preparation

The data preparation process parses the OSM file and combines it with
optional census data to create a list of building instances characterized by the
features depicted in Table 1.
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Features:

coordinates
area
population
landuse
number of shops
number of offices
number of schools
number of universities
In focus area?

Table 1: Building features determined in the data preparation step. These features are parsed
from the OSM input data, except for population, which is parsed from census data.

Firstly, OMOD determines the geometry of the area of interest (from here
on called focus area) from a user-specified GeoJSON file3. Since people living
in the immediate surrounding often significantly impact the mobility demand
in the area of interest, it is good practice to model the surrounding as well [27].
For this purpose, OMOD implements the option to buffer the focus area by a
given distance. From here on, the additional area created this way will be called
buffer area. Figure 2 shows an example of the area definition process.

Once the area is defined, OMOD parses all OSM objects that intersect that
area, utilizing the Osmosis4 tool. Objects with the building tag are added to the
building list. The coordinates and area of each building are directly computed
from the OSM objects. The remaining features are determined by combining
the geometry information of each building with other OSM information in the
following manner:

To determine the land use feature, we check whether each building intersects
with a land use zone in the OSM data. The land use of the building is then that
of the intersecting land use zone or none, if none intersects. Four land use classes
are considered: residential, industrial, commercial, and none. Residential and
industrial are equivalent to the respective OSM land use values. Commercial
combines the OSM land use values commercial and retail. None represents all
other possible values in OSM and no specified land use.

We determine the features number-of-shops and number-of-offices by count-
ing the intersecting OSM objects with the tag shop or office. Similarly, the at-
tributes number-of-schools and number-of-universities are determined by count-
ing the intersecting OSM objects where the amenity tag has the value school or
university, respectively.

The population of each building is extracted from the optional census data.
This data must be formatted as a GeoJSON file containing a list of geometries

3Such a file can be easily created with tools like https://geojson.io.
4https://github.com/openstreetmap/osmosis
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Focus area
Buffer area
Condsidered buildings

Figure 2: Example focus and buffer area in OMOD. Depicted is Gerbrunn in Germany (OSM
id: 163738), with a buffer distance of 500m.

and their populations. For example, in Germany the Zensus 2011 [43] can be
used, where the population is given on the level of 100 m2 cells. The population
of each census geometry is distributed uniformly across all intersecting buildings.
The population is assumed to be zero for buildings with no census data. If
no census data file is provided, OMOD will not make assumptions about the
number of inhabitants in each building.

3.2. Population Creation

The population creation step creates a user-specified number of agents and
defines their invariable attributes. These include each agent’s home location,
workplace, and socio-demographic features.

Socio-demographic features. First, the socio-demographic features are deter-
mined. For every agent, a set of categorical features is sampled from a user-
provided distribution. If none is provided, the model defaults to setting the
features to undefined. This can be understood as defining the distribution to be
the same as in the calibration survey.

It is assumed that one distribution of socio-demographic features is valid for
the entire modeled area (i.e., the socio-demographic makeup of the population
does not differ significantly from district to district.). The socio-demographic
features considered by OMOD are:

• Age. Possible values: {0-40, 40-60, 60-100, or undefined}

• Homogenous group. Possible values: {working adult, non-working adult,
student, or undefined}
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• Mobility group. Possible values: {full car user, mixed car user, no car user,
or undefined}

These socio-demographic categories are chosen based on the analysis of
Schlund [40] and Joubert et al. [44], who determined that these features have
the largest explanatory value for the mobility demand patterns observed in Ger-
many and South Africa. We use this somewhat limited number of categories be-
cause our approach for dwell time estimation (further explained in Section 3.3.2)
needs a sufficient number of samples for every combination of socio-demographic
features. With an increasing number of features, combinations increases expo-
nentially, and the maximum number of features that can be included is quickly
reached.

Home location. Each agent’s home location is sampled from the list of build-
ings obtained in the data preparation step (Buildings). The probability that
building (i) is the home location of the agent is the population of the building
(POPi) divided by the total population in the modeled area:

P (i = HOME) =
POPi∑

∀j∈Buildings

POPj
(1)

If no census data is provided, the home location is determined using the
destination choice model of OMOD (see Section 3.3.3).

Work/School location. The work and school location sampling process depends
on the realization of the home location. With a given home location, we de-
termine the workplace/school location with a multinomial logit model (MNL)
[45] that will also be used to choose flexible destinations (such as shopping lo-
cations). The exact methodology will be explained in Section 3.3.3. Broadly
speaking, the model follows a disaggregated gravity model approach as described
in [27]. The model comprises an attraction value estimated from building prop-
erties (see Table 1) and a deterrence function based on the distance between
the workplace/school and the home location.

3.3. Activity Schedule Generation

The mobility demand generation step produces daily activity schedules for
every agent in the population. These schedules specify the number of activities
the agent conducts on the day in question, as well as their category, location, and
duration (dwell time). An example of such a schedule is depicted in Figure 3.

OMOD first samples a chain of activities. Then, the dwell times and loca-
tions are determined conditionally on the outcome but independently of each
other.

OMOD uses a data-based approach to determine the activity chain and
dwell times. This simplifies the modeling process compared to traditional MNL
models but limits number of socio-demographic features that can be included.
The destination choice model is implemented as a disaggregated gravity model

9



"activities": [

{
"type": "HOME",

"stayTime": 327.073,

"lat": 53.6157,

"lon": 10.1072,

"inFocusArea": true

},
{

"type": "WORK",

"stayTime": 591.966,

"lat": 53.5256,

"lon": 9.8951,

"inFocusArea": true

},
{

"type": "HOME",

"stayTime": null,

"lat": 53.6157,

"lon": 10.1072,

"inFocusArea": true

}
]

Figure 3: Example of an activity schedule produced by the activity schedule generation step.
type states the activity category. stayTime describes how long (in minutes) the agent stays at
the activity. lat and lon indicate the location. inFocusArea states whether the activity was
conducted inside the focus or buffer area (see Figure 2).
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(framed as an MNL). Therefore, it is easily expandable with additional explana-
tory features.

The activity schedule generation is calibrated with the German household
travel survey MiD [21]. The MiD is a large-scale reoccurring household travel
survey published by the Federal Ministry of Digital and Transport. We utilize
the survey conducted in the year 2017. This survey is distributed in the form
of four data sets that differ based on spatial resolution and the level of detail
of personal information. For privacy preservation, the dataset with the highest
spatial resolution contains the least detailed personal information and vice versa.
Of these datasets, we utilize the data set B3 with the highest spatial resolution
but the least detailed personal information. This data set contains information
from about 300,000 respondents from 150,000 households. For each respondent,
the data set includes socio-demographic features, access to different mobility
options, place of residence, and a trip diary for one day in 2017. In total,
the dataset includes 1,000,000 trips. For 500,000 of these, the start and stop
locations are known with a resolution of 5km2, and for 100,000 with the highest
resolution of 500m2.

3.3.1. Activity Chain

The first step of the activity schedule generation process is sampling each
agent’s daily activity chain. An activity chain describes the sequence of activities
an agent undertakes on a given day. For example, the chain (home,work,
shopping, home) states that the agent started his day at home, went to work,
then went shopping, and, finally, returned home. Possible activity categories
are home, work, school, shopping, and other.

We sample these activity chains directly from empirical distributions. These
are obtained by first filtering the MiD for each socio-demographic feature and
weekday combination and then calculating the probability of each activity chain
based on its frequency in the filtered dataset. An example of such a distribution
is depicted in Figure 4 for the case where all socio-demographic features and
the weekday are undefined.

For certain combinations of socio-demographic features, only a few samples
exist. For example, students above the age of 60 are uncommon. Therefore,
we must ensure that the empirical distributions are based on adequate sample
sizes. We handle this issue by introducing a threshold for the minimum number
of samples in the distribution. The threshold is set to 30, based on the common
rule of thumb [46]. If a distribution has a smaller sample size than this threshold,
we set individual socio-demographic features, or the weekday, to undefined until
an adequate sample size is reached. This is done in the following order:

Age → Mobility group → Homogenous group → weekday

I.e., first, the age is set to undefined ; then, if the new distribution based
upon this less restrictive set of conditions also has too few samples, the mobility
group is set to undefined, and so on. Since the entirely unrestricted distribution
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has enough samples, this process will always return a distribution with adequate
sample size.

The same threshold is applied to the minimum size of each activity chain.
This is necessary because later on, for each activity chain, a distribution of dwell
times is created (see Section 3.3.2) that again needs an adequate sample size. If
an activity chain does not have the necessary sample size, it is removed from the
empirical distribution. Approximately 10% of the samples must be discarded
through this process. After the removal, OMOD includes 560 unique activity
chains. The longest remaining chains consist of up to 14 consecutive activities.

Since longer activity chains are more complex, they are less likely to have
enough samples, causing an underestimation of the number of daily trips. To
combat this problem the probabilities of each activity chain are calibrated so
that the total probability of all chains with a given length is equal to the prob-
ability of that length-group in the original dataset.

For consecutive days, an additional condition on the distribution is that each
day must start with the same activity the previous day ended with. The first
activity of the next day represents a continuation of the day’s last activity.

3.3.2. Dwell Time

With the activity chain for each agent determined, the time they spend on
them can be sampled.

Similar to the process of activity chain sampling, the dwell times are sampled
from distributions fitted to the MiD’s subset where the corresponding socio-
demographic features and weekday are present. In this case, however, the subset
depends not only on the combination of socio-demographic features and weekday
but also on the specific activity chain. In other words, one distribution exists
for each socio-demographic feature, weekday, and activity chain combination.

Previous work often chose methodologies where the dwell times of activi-
ties are sampled conditionally only on the dwell times at prior activities and
not subsequent ones [40, 42]. This underestimates how holistically individuals
plan their entire day. To combat this issue, OMOD samples dwell times from
a multidimensional distribution, where each dimension encodes an activity of
the activity chain. This way, all dwell times are sampled conjointly, and the
temporal information of each daily activity schedule is coherent. This multidi-
mensional distribution is modeled as a Gaussian Mixture.

For each feature combination we filter the MiD’s accordingly and fit a Gaus-
sian Mixture to the filtered dataset using the scikit-learn python library. The
number of Gaussians/components in the mixture is determined by increasing
the number of components until the Bayesian Information Criterion score stops
decreasing.

The MiD does not specify when the last activity of a day ends. We address
this missing information by assuming that it lasts until midnight. Therefore,
the dwell time at the last activity is wholly determined by those of the other
activities, reducing the dimensionality of each mixture by one. In the rare case
that the last activity begins after midnight, its duration is zero.

13
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Figure 6: Destination choice: Architecture of the disaggregated gravity model.

Figure 5 shows examples of Gaussian Mixtures resulting from the described
process. For example, the Gaussian depicted in Figure 5a describes the proba-
bility distribution for dwell times in the H→S→H chain. A likely sample drawn
from this distribution would be [10.5, 1.3], meaning that the agent in question
stays at home for 10.5 hours (i.e. until 10:30 AM), then goes shopping for 1.3
hours, and finally stayes at home again for the remainder of the day.

3.3.3. Destination Choice

The destination choice step determines where agents conduct activities.
OMODs method for destination choice is based on the gravity model concept
described by Ortuzar and Willumsen [27]5. However, there are two key differ-
ences.

Firstly, instead of aggregated traffic assignment zones, the set of possible
destinations comprises all buildings in the focus and buffer area. Each time an
agent has to choose a destination, the entire set is considered. Secondly, OMOD
can not rely on aggregated origin-destination information like [27] because the
user is not required to provide survey data. Therefore, we have to substitute
this information. This is done with the attraction value Ai. The attraction
governs the probability that a building is chosen when the agent’s location is
taken into account. It can be seen as the suitability of a building for a given
purpose. OMOD determines this value based on land use and POI information.
For example, a building is more suitable for shopping if it contains shops. Con-
sequently, a building with shops has a higher attraction value for shopping trips
than one without. The distance to the building is factored into the decision
process through a deterrence function f(d) in the same manner as in [27].

All taken together, the following equation describes the probability that
building i is chosen as the destination:

P (i) =
Ai · f(dx,i)∑

∀j∈Buildings

Aj · f(dx,j)
(2)

5Section 8.3.3
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or equivalently framed as an MNL:

P (i) =
eVx,i∑

∀j∈Buildings

eVx,j
(3)

with

Vx,i = ln(Ai) + ln(f(dx,i)) (4)

The distance (dx,i) is calculated in reference to x, which is either the home
location when the fixed locations (workplace and school) are determined or the
agent’s current location. This distance refers to the routed distance by car6,
calculated with the open-source router GraphHopper7.

If the user provides no census data, the home location is also determined
with this model. In that case, the value of the deterrence function is set to 1,
and only the attraction value of each building is relevant.

The parameterization of the deterrence function and each building’s attrac-
tion depends on the activity conducted at the destination. We call this activity
the purpose of the trip from here on. For example, a building has a different
probability of being the agent’s workplace than being the destination of a shop-
ping trip. The weekday and the socio-demographic group do not influence the
deterrence function and attraction value.

We obtain the parameterization of deterrence function and attraction values
with the MiD, utilizing the methodology described in the following paragraphs.

Attraction. The attraction of each building is estimated with the linear function
depicted in Equation (5) as inputs serve several OSM features. They can be
separated into two groups. The first group is comprised of the variables denoted
by an a. This group combines the area and land use of a building. Depending
on the land use, one of these variables equals the area of the building, while the
others are zero. For example, if the building is in a residential area, aResidential

equals the building’s area and aIndustrial, aCommercial, and aOther are zero.
The second group comprises the variables denoted by an u and describes the
number of POI associated with a building. These can be shops, offices, schools,
and universities. Additionally, depending on the land use, either uResidential,
uIndustrial, uCommercial, or uOther equals one and the others zero.

6In this regard, OMOD neglects the aspect of mode choice. Some individuals prefer modes
of transport other than the car, and some destinations are more easily reached with public
transportation. In these cases, OMOD’s deterrence associated with a particular location is
falsely represented in OMOD, leading to a misrepresentation of their probability. This problem
is somewhat offset by the popularity of cars and the fact that currently, most destinations
are most quickly reached by car [21]. Nonetheless, these errors will be significant for studies
that want to evaluate populations that are less car-dependent. In future versions, we plan to
incorporate this aspect of mode choice.

7https://github.com/graphhopper/graphhopper
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Ai = 1 + θ0 · aResidential + θ1 · aIndustrial + θ2 · aCommercial+

θ3 · aOther + θ4 · uOffice + θ5 · uShops+

θ6 · uSchools + θ7 · uUniversities + θ8 · uResidential+

θ9 · uIndustrial + θ10 · uCommercial + θ11 · uOther

(5)

We determine the coefficients θk (k ∈ {0, 1, ..., 11}) of Equation (5) through
maximum likelihood estimation. The attraction value Ai describes the proba-
bilistic weight that a building i is the destination for a trip under the condition
that the agent’s location is unknown. Therefore, the probability that a trip with
an unknown origin ends at building i is:

P (i) =
Ai∑

∀j∈Buildings

Aj
(6)

The set Buildings describes all possible locations that an agent could have
chosen as a destination. Since the MiD is a Germany-wide study, Buildings is
comprised of all buildings in Germany. However, the MiD only specifies trip
destinations at a resolution of 500 m2. Therefore, we aggregate all the features
in Equation (5) on the level of the 500 m2 cells and consider all of these cells as
suitable destination choices. This aggregation is possible due to the linearity of
the attraction equation.

With the choice set defined, we can find the parameters θk of Equation (5)
that maximize the probability of the observed trip destinations in the MiD for
the trip purpose. The L-BFGS-B solver implementation of the python package
SciPy is used to determine the maximum of the likelihood function8.

We set the lower bounds of θk to zero. This means that each OSM feature
can only attract but never deter. The introduction of these bounds has two
main benefits. Firstly, they ensure that Equation (6) always yields positive
non-zero probabilities for every building. Secondly, they introduce a level of
regularization to the model, reducing the number of variables.

We further reduce the number of features with the following methodology.
First, we fit the model several times, each time using all features except one,
meaning that the coefficient θ of one feature is fixed to zero. Then we compare
the likelihood of these iterations and create a ranking of features based on how
much their absence worsened the results. After that, we build a model with
only the most important feature, then one with only the two most important
features, and so on, until no significant increase in likelihood is observable. The
last set of features that improved the model is then chosen.

Table 2 shows the resulting θk for each trip purpose. Since a building without
any features has a fixed probability weight of one, the results can be interpreted
as how much more likely a building with a specific POI is compared to a generic
building. For example, a building with a shop is 350 times more likely to

8https://docs.scipy.org/doc/scipy/reference/optimize.minimize-lbfgsb.html
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Activity θ0 θ4 θ5 θ6 θ7

home 0.0327 0 314.09 1679.18 0
work 0 727.14 280.69 611.39 0
school 0 339.04 132.36 2115.64 3061.74
shopping 0 0 348.44 0 0
other 0.0370 2789.23 2179.04 1966.55 0

Table 2: Coefficients of the attraction function. See Equation (5) for the OSM feature corre-
sponding to each θk. θs that are not shown are zero.

be a shopping destination. Similarly, we can interpret the coefficients of the
residential area variable (θ0), which states how the probability increases with
the area of the building (unit: square meter).

The results indicate that primarily POI data increases the attraction of a
building, suggesting that these features have higher explanatory value for pre-
dicting trip destinations. However, during the model creation phase, we tested
several different architectures for the attraction function. Land use and area
features were more important for many similarly well-performing iterations.
Therefore, we can not definitively say which features are the most relevant.
Presumably, the high correlations between features on the aggregation level of
500 m2 are responsible for the inconclusiveness of our results.

Some artifacts of the aggregation can still be seen in the results for the
home activity, where shops and schools have a significant impact. Note that the
model for the home purpose is only chosen in the absence of census data. These
artifacts are the main reason for introducing the feature reduction processes
described above. Overall, however, the coefficients take reasonable values. The
school purpose in the MiD includes apprenticeships. Therefore, the non-zero
coefficient of shops and offices is not unreasonable.

Deterrence function. For the parameterization of the deterrence function we
evaluate the following functional forms for f(dx,j):

exponential (E) f(dx,j) = exp(βdx,j)
power & exp. (PE) f(dx,j) = dnx,j · exp(βdx,j)

lognormal (L) f(dx,j) = 1
dx,jσ

√
2π

exp(− (ln(dx,j)−µ)2

2σ2 )

lognormal & exp. (LE) f(dx,j) = 1
dx,jσ

√
2π

exp(− (ln(dx,j)−µ)2

2σ2 ) · exp(βdx,j)

The first two functional forms are commonly used in related work [27]. The
lognormal form is evaluated because it closely resembles the trip distance distri-
bution in the MiD. Finally, the combined lognormal and exponential distribu-
tion is an attempt to introduce better tail behavior to the lognormal functional
form.

In Equation (3), the deterrence function always occurs inside a logarithm.
Therefore, we can significantly simplify the parameterization step of the deter-
rence function by directly fitting the logarithm.
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If we take the natural logarithm of the functional forms, we get:

E ln(f(dx,j)) = βdx,j
PE ln(f(dx,j)) = βdx,j + nln(dx,j)

L ln(f(dx,j)) = − 1
2σ2 ln

2(dx,j) + ( µ
σ2 − 1)ln(dx,j) + µ2

2σ2 − ln(σ
√

2π)

LE ln(f(dx,j)) = − 1
2σ2 ln

2(dx,j) + ( µ
σ2 − 1)ln(dx,j) + µ2

2σ2 − ln(σ
√

2π) + βdx,j

If we disregard constant terms and aggregate the coefficients of each linear
term to individual independent parameters, we get the following linear forms:

E ln(f(dx,j)) = ϑ0dx,j
PE ln(f(dx,j)) = ϑ0dx,j + ϑ1ln(dx,j)
L ln(f(dx,j)) = ϑ0ln

2(dx,j) + ϑ1ln(dx,j)
LE ln(f(dx,j)) = ϑ0ln

2(dx,j) + ϑ1ln(dx,j) + ϑ2dx,j

These are less constraint versions of the original functional forms that are
significantly easier to handle in the parameterization step.

For each functional form, we find the parameters that maximize the likeli-
hood of trip destinations in the MiD, assuming that each destination’s proba-
bility is governed by Equation (3). The parameters of the attraction function
are already determined in the previous step and assumed constant here.

Similar to the parameterization of the attraction function, we consider all
buildings in Germany as possible destinations and have to aggregate their attrac-
tion to 500 m2 cells. Additionally, we need the distance between the trip’s origin
and all possible destinations. We utilize GraphHopper to determine the routed
distance (by car) between every cell centroid and every other cell centroid.

This routing computation is very time intensive; even then, we leverage the
ShortestPathTree API of GraphHopper. Therefore, the distance matrix has to
be precomputed and stored in memory to reach reasonable optimization times.
However, the memory consumption would be unacceptable with a distance ma-
trix of the size (1.5 · 106)2 (the number of 500 m2 cells in Germany squared).
For this reason, three simplifications are necessary. Firstly, we only determine
the distance between cells that enclose buildings, halving the number of cells.
Secondly, we introduce a distance limit of 300 km. If the routed distance be-
tween two cells is above this limit, we do not route. Instead, we substitute with
a beeline calculation fast enough not to require precomputation. Thirdly, we
digitize the distance information into the 50 m wide bins. The process of this
digitization is described in more detail in Appendix A.

With these simplifications, all the necessary data needed for the maximum
likelihood estimation can be stored in memory, and the optimal parameters of
each functional form are determined. The functional form is chosen for each
trip purpose where the trip distance distribution produced by Equation (3) is
closest to that in the MiD. We use the Kolmogorov-Smirnov test to measure
the goodness of fit.
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Activity Form ϑ0 ϑ1 ϑ2

work EP -0.035 -0.919 -
school LE -0.235 -1.176 0.005
shopping L -0.215 -1.414 -
other L -0.180 -1.067 -

Table 3: Coefficients and functional forms of the deterrence function for each trip purpose
(activity at destination). The unit of distance used in the functions is kilometer.
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Figure 7: Values of the fitted deterrence functions f(dx,j) over the distance from origin to
destination.
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The process results in the deterrence function parameterization depicted in
Table 39. Figure 7 shows how the probabilistic weight of a destination falls
over distance. We can see that the general shape of all deterrence functions is
similar. However, the rate of decline differs significantly between purposes.

Grid. During runtime, Equation (3) has to be evaluated for every building in
the model area each time an agent conducts an activity with no fixed location.
This involves calculating the distance to every building and constitutes OMOD’s
main performance bottleneck.

To speed up this process, we introduce a grid. When an agent makes a
destination choice, first, the probability of each grid cell is determined using
Equation (3), but with the aggregated attraction of all buildings within the
grid cell and the distance from the agent to the centroid of these buildings.
Subsequently, a cell is sampled, and the building inside it is chosen solely based
on its attraction value, disregarding the distance differences of buildings within
the same cell.

This grid can be defined in various ways. The naive approach is a regular grid
where all grid cells are squares of equal size. However, since OMODs runtime
rises quadratically with the number of cells (for every trip with a flexible location
we have to calculate the distance from a cell to every other cell), it is advisable
to introduce a more efficient grid. The error the grid introduces is characterized
by the average distance between a building and the centroid representing its
associated grid cell. This is the case because we calculate the distance from
the origin only to the centroid of each cell, neglecting the positional deviation
between the cell centroid and building location. Therefore, the best grid with k
cells is that where the sum of the within-cell variance of the building positions
is smallest. We can find a suitable grid with the k-Means algorithm.

There are two problems with this approach. Firstly, the runtime of the
standard k-Means algorithm is not insignificant (several minutes in our trials).
Secondly, the number of cells should not be constant but increase with the size of
the model area. We solve both of these issues by using the Bisecting-K-Means
variant of the algorithm. This version results in a slightly higher within-cell
variance but has significantly lower runtimes and has the added advantage that
it can be implemented with a custom stopping criterion. Instead of stopping
once we reach k clusters/cells, we terminate the clustering algorithm once the
average distance between each building and its associated centroid falls below
a fixed threshold, representing the resolution of the grid. Per default, this
threshold is 150 m. In the subsequent validation, we use the default resolution
for all tests. The resulting grid is depicted in Figure 8.

The presented grid creation process greatly reduces the necessary number of
grid cells compared to a regular grid. Nonetheless, for large areas, the number of

9The deterrence function of school has its minimum at 827 km and subsequently increases
again. Since it makes no theoretical sense that probabilities start to rise again at very long
distances, the probability of choices beyond the minimum are set to zero. The minimum can
be explained by the absence of choices with higher distances in the training data.
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Figure 8: Example of the grid. Depicted is Gerbrunn, Germany (OSM id: 163738).

cells can quickly reach limits where the computation time becomes impractical.
This issue is especially problematic since large buffer areas are often necessary
to accurately recreate individuals’ daily driving distances. We combat this issue
by reducing the grid resolution with the distance from the focus area, meaning
that buildings far away from the original focus area are grouped into larger
and larger cells. Specifically, we run the clustering approach described above
separately for groups of buildings. The first group is all buildings in the focus
area; the second is all buildings in the buffer area with a distance of fewer than
10 km to the focus area, then those between 10 km and 20 km, and so on. We are
doubling the grid resolution threshold for every new group of buildings. This
way, we achieve adequate runtimes for large buffer radii.

4. Validation

We validate the model by determining how well the model reproduces the
observations of the German household travel survey MiD [21]. First, we deter-
mine how close the spatial patterns of the mobility demand are reproduced. To
do so, we compare how many trips each zone attracts, the origin-destination
matrices, and the daily driven distances. Secondly, we analyze how well tempo-
ral patterns are reproduced by evaluating the share of persons that conduct a
specific activity over the course of a week.

Please note that this validation is somewhat limited by the fact that the MiD
is our primary source for calibration data. Therefore, the test and train sets are
not strictly separated. However, regarding destination choice, we reduced the
entire information of the MiD to the parameters described in Tables 2 and 3, in
total, 24 non-zero parameters. Consequently, the risk of overfitting is reduced.
The temporal characteristics have a significantly larger number of parameters
that are also less explainable. However, the Gaussian Mixture methodology

22



generally resulted in low numbers of Gaussians and the risk of overfitting to
outliers is small. Regardless, the current parameterization of OMOD can only
reproduce mobility behavior as observed in the MiD.

4.1. Spatial Validation

We evaluate the spatial model performance for three differently sized German
cities. Kassel a smaller city with 200,000 inhabitants, the agglomeration area
of Nuremberg with 1.3 million inhabitants, and Hamburg a large city with 2.5
million inhabitants. We chose these cities because of their populations and
location (north, middle, and south).

Every city is simulated with 100,000 agents for four undefined days, using
data from the German census of 2011 [43] to determine the distributions of home
locations. The administrative boundary of each city defines the focus areas10.
Each focus area is buffered with a distance of 40 km.

4.1.1. Zonal Trip Attraction

This test compares the trip destination distributions between the survey
and model based on the share of trips that end in a given zone, where zones
are cells of grids with 500 m, 1 km, and 5 km resolution (these grids are strictly
for validation purposes and not to be confused with the grid used by OMOD
internally). The results are depicted in Figure 9 for each focus area and with
a resolution of 1 km. In Appendix B, quantitive results are displayed for all
resolutions.

Qualitative results show that OMOD reproduces the overall popularity of
different city districts for all three city sizes. This observation is supported by
the high R2 values of 0.87 to 0.95 on the lowest resolution level. For the medium
resolution (1 km), the model’s performance decreases to 0.61-0.77 and, for the
highest resolution (500 m), to 0.22-0.36. These reductions can be ascribed to
the fact that predicting mobility demand with higher spatial resolution becomes
increasingly difficult.

For each trip purpose, the results show similar performance and a similar
performance decline for higher resolutions as in the overall case. The exception is
home, where the performance declines significantly slower, reaching an R2 value
of 0.5 at the highest resolution. This result is unsurprising, as the validation
uses census data with 100 m resolution. The remaining error is likely because
of the six-year gap between the creation of the census and the household travel
survey. If we do not use census information, we get R2 values of 0.81-0.93 for the
lowest resolution, with a similiar decline in performance at higher resolutions
compared to the other purposes.

10The north sea territory of Hamburg is ignored. For the Nuremberg agglomeration area,
the areas of the cities Nuremberg, Erlangen, and Fürth are combined.
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Destinations MID [%] Destinations OMOD [%] Difference

10 1 100 101 10 1 100 101 0 1 2 3

(a) Kassel

Destinations MID [%] Destinations OMOD [%] Difference

10 1 100 10 1 100 0 1 2 3

(b) Nuremberg

Destinations MID [%] Destinations OMOD [%] Difference

10 1 100 10 1 100 0.0 0.5 1.0

(c) Hamburg

Figure 9: Comparison of the share of trips that end in each 1 km cell between OMOD and the
household travel survey MiD.
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City Resolution R2 MAE [%] Jensen-Shannon

Kassel 5 km 0.956 0.211 0.134
1 km 0.461 0.005 0.506

Nuremberg 5 km 0.715 0.044 0.174
1 km 0.177 0.001 0.576

Hamburg 5 km 0.868 0.017 0.206
1 km 0.025 0.000 0.626

Table 4: Origin-destination evaluation

4.1.2. Origin-Destination Matrix

This test determines how well the origin-destination matrix of the focus area
is reproduced. We use the same methodology as in the trip attraction evaluation,
only here, the probability distributions describe the probability that a trip starts
in one cell and ends in another. While the first test determined whether the
relative popularity of different parts of the city is well represented, this test
determines whether the flows between city parts are realistic. We evaluate
the R2, the mean absolute error (MAE), and the Jensen-Shannon divergence
between the flow distributions of the survey and model. The 500 m resolution
level is not evaluated because, with an average number of 50 buildings per zone
and more than 500 possible destinations (even for the smallest city), we enter the
realm where we would need to predict the behavior of individuals, something
that activity based models are incapable of [26]. The results are depicted in
Table 4.

For all cities the results on the 5 km resolution are good. This is promising
as the origin-destination matrix has n2 entrees, where n is the number of grid
cells. Therefore, it is significantely more complex than the trip destination
distribution.

The model underperforms for Nuremberg, primarily because of a significant
overestimation of trips that start and end in the city center. We can trace this
back to a very high density of POI there. Possibly, at a certain density, the trip
attraction increase of additional POI diminishes, suggesting that the attraction
function could benefit from the addition of saturation effects.

The results on the 1 km resolution suffer from sample size issues. On this
resolution, the survey contains one record for every five origin-destination pairs
in Kassel, one for every twelve in Nuremberg, and one for every 33 in Ham-
burg. Nonetheless, even with limited samples, it seems clear that OMOD could
perform better in this regard. Reproducing origin-destination matrices on this
resolution is difficult, espacially if the model is not fine-tuned to the region in
question. As a way forward, we suspect increasing the number of explanatory
features by adding georeferenced census data in combination with more detailed
socio-demographic features can lead to a significant performance increase. How-
ever, the core use case of OMOD should always utilize data available to any-
one. Therefore, optimizing the model based on optional additional data sources
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City Metric MiD OMOD

Kassel 0.25-quantile 3.837 2.724
Median 12.115 10.478
0.75-quantile 25.650 21.797
Mean 21.869 ± 1.74 18.298 ± 0.06

Nuremberg 0.25-quantile 4.200 3.040
Median 13.320 12.200
0.75-quantile 29.480 28.132
Mean 23.301 ± 0.90 20.668 ± 0.07

Hamburg 0.25-quantile 4.900 3.684
Median 14.400 16.228
0.75-quantile 30.400 36.175
Mean 24.664 ± 0.78 24.990 ± 0.08

Table 5: Daily kilometer comparison with a buffer distance of 40 km

has little priority. Another likely source of error is, neglecting congestion and
modes other than the car (in particular public transportation) in the destination
choice step, which is responsible for a significant misrepresentation of the gener-
alized cost of travel for several origin-destination pairs. Implementing these into
OMOD will be less problematic regarding ease of use because the GTFS format
provides a good de facto standard for public transport timetables. However, an
implementation poses significant runtime issues that need to be addressed.

4.1.3. Daily Driven Distance

Another crucial descriptive metric of mobility demand is the daily driven
distance of individuals.

OMOD does not specify the route an agent takes from A to B. For the
validation, we assign routes with an all-or-nothing approach, always choosing
fastest route by car11 and disregarding congestion effects. This simple assign-
ment strategy certainly comes with its own error that can not easily be separated
from the error inherent to OMOD. The results are summarized in Table 5. Note
that the MiD’s results do not include regular trips conducted during work (for
example, if the person is a postman) or trips conducted while on vacation since
OMOD does not model these kinds of trips.

We can see that for the largest city, the average daily kilometers are very
closely reproduced. However, a slight overestimation of the variance occurs,
meaning that short and long trips occur too often but in such a way that the
average is preserved.

For the smaller cities, we get an underestimation of the average daily kilo-
meters. To some extent, this error is inevitable. Since only buildings included
in the model can be destinations, the average daily distance can not exceed

11As determined by GraphHopper
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Figure 10: Dependency of the average daily driven distance error on the size of the buffer
area.

the average number of trips multiplied by the furthest distance in the model
area. With an increased buffer area, the error should decrease. That indeed
happens, as can be seen in Figure 10. With an increased buffer distance, the
error for Nuremberg and Kassel falls to below 5 %. The error could be reduced
further. However, increasing the buffer area further is increasingly costly due
to the quadratic increase in routing calculations that have to be done (see Sec-
tion 3.3.3).

4.2. Temporal Validation

We have already ascertained the spatial validity of OMOD. Additionally,
the model should reproduce the temporal patterns of real mobility demand. To
validate this, we compare the share of agents conducting a specific activity at
each point in time over a week in OMOD and the survey.

Some notes about our methodology: Firstly, since in OMOD, the first day
for all agents begins at home, we simulate two weeks, the first to let the model
settle and the second to use in the actual comparison. Secondly, trip assignment
is conducted with the same all-or-nothing method as in Section 4.1.3.

Figure 11 depicts the results. Overall, the temporal aspects of the mobility
demand are very well reproduced. At no point did more than 13 % of the agents
conduct the wrong activity. The average error over the timespan is 5 %. This
error is caused almost entirely by underestimating the number of moving agents,
which can be traced back to the trip assignment process used in validation. In
the all-or-nothing assignment process, all trips are conducted by car, only the
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Figure 11: Temporal validation: Depicted is the share of agents conducting a specific activity
over the course of a generic week in OMOD and the MiD household travel survey.
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OSM file:
NUTS - Level Name OSM parsing GraphHopper init

NUTS - 2 Middle Franconia 1min 10s 9s
NUTS - 1 Bavaria 1min 29s 1min 2s
NUTS - 0 Germany 3min 30s 6min 26s

Table 6: Runtimes of OSM parsing and GraphHopper initialization for differently sized OSM
files.

pure driving duration is considered, and congestion effects are disregarded. On
the other hand, the MiD includes all modes of transport, congestion effects,
and inefficiencies like parking spot searches. Because of these factors, the all-or-
nothing approach underestimates travel times, leading to an underestimation
of moving agents and a corresponding overestimation at some other activity.
Additionally, since OMOD does not specify fixed start times for activities the
shorter travel times also mean that activities start and end earlier than they
should, leading to a slight left shift of all activities that is corrected at the end
of each day.

In the MiD time series, discontinuities are visible at midnight. These stem
from the fact that each person is only questioned about one day from waking up
to midnight. OMOD smooths these discontinuities out because it must remain
self-consistent, leading to a discrepancy between the model and survey that
should not be regarded as an error.

5. Runtime

OMODs runtime is mainly influenced by four components of the program.
These are: parsing the OSM file, GraphHopper initialization, the routing ma-
trix’s pre-computation, and the main simulation (where the simulation steps
described in section 3.3 are run for all agents). In this section, we evaluate the
runtime of each of these components for the focus area of Nuremberg, defined
with the same boundaries as in Section 4. All tests are run on an ordinary
scientific laptop (CPU: i7-1165G7 @ 2.8 GHz, RAM: 16 GB).

The runtime of the first two components (OSM parsing and GraphHopper
initialization) is dependent on the size of the OSM file. Table 6 depicts runtimes
for OSM files of three differently sized regions encompassing the example city.
The runtimes of these components are acceptable; OSM files of entire countries
can be parsed in a reasonable time. The results are stored and reused for all
subsequent runs of the same area.

As stated in Section 3.3.3, the main performance bottleneck of OMOD is
repeatedly calculating the routed distance between an agent’s location and all
possible destinations. For this reason, it is helpful to precompute the distances
between all (or the most important) cells to all cells. We call this step the
routing matrix precomputation. Precomputation simplifies the usage of the
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Buffer dist. Area size Routing Main Simulation. #Agents:
Unit: km Unit: km2 matrix init 103 104 105 106

0 3.3 · 102 2min 44s 1s 4s 29s 4min 56s
10 1.7 · 103 8min 42s 1s 4s 36s 6min 9s
20 3.7 · 103 17min 37s 1s 6s 42s 7min 16s
30 6.2 · 103 32min 50s 1s 6s 47s 7min 55s
40 9.3 · 103 52min 10s 2s 7s 49s 8min 27s

Table 7: Runtimes of routing matrix precomputation and the main simulation. The main
simulation is the only component of the runtime that can not be stored and reused on subse-
quent runs.

ShortestPathTree API of GraphHopper, as well as storing and reusing the re-
sults.

The runtime for precomputation of the routing matrix is depicted in Table 7.
These runtimes depend on the size of the model area and, therefore, increase
with the buffer radius. For large model areas the precomputation of the routing
matrix requires significant time. In these cases, it is possible to reduce the spatial
resolution of the routing grid (see Section 3.3.3) or switch the distance metric
to the Euclidean Distance. Switching to the Euclidean Distance completely
removes the need for precomputation, but doing so is only advisable for test
runs, as it skews the results significantly.

The runtime of the main simulation increases linearly with the number of
agents and days. Table 7 depicts the runtime of this component for one day and
1,000 to 1 million agents.

6. Conclusion

In this paper, we introduced the open-source mobility demand generator
OMOD. OMOD determines activity schedules for a population of agents for a
user-specified area of interest. These schedules state what an agent does, where,
and for how long. The what and how long are sampled from probability distri-
butions calibrated with household travel survey data. The where is determined
with a disaggregated destination choice model inspired by the gravity model
concept.

OMOD can be used in many different research fields, like communications
research, energy system modeling, epidemiology, or for prototyping in trans-
portation studies. For example, we use it in a publicly funded project [47]
to determine the benefit of intelligent electric vehicle charging for operators of
distribution grids.

We compare the generated mobility demand of OMOD to the results of
the German household travel survey MiD. This validation led to the following
conclusions:

• The trip destination distribution is satisfyingly reproduced for spatial res-
olutions up to 1 km.
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• Origin-destination matrices are significantly harder to reproduce. The
results are satisfactory up to a resolution of 5 km.

• The average daily driven distance error is negligible if the modeled area
is large enough. For the best results we recommend an area of around
10 000 km.

• The share of agents conducting a specific activity at a each point in time
matches the survey closely. The exception is the number of people cur-
rently moving. Here, a more sophisticated assignment process is necessary
than the all-or-nothing approach used in our validation.

The validation uncovered several aspects in which the model could be im-
proved. These include:

• The introduction of more explanatory variables. Especially spatially re-
solved socio-demographic features.

• The inclusion of non-linear effects of OpenStreetMap features on a loca-
tion’s attractiveness.

• The inclusion of mode choice, public transportation, and congestion effects
in the destination choice step.

• The inclusion of household interactions.

Including these aspects will likely necessitate the inclusion of more input
data sources, such as more detailed census information and public transport
schedules.

The biggest open question regards OMOD’s ability to translate to countries
other than Germany. Technically, OMOD can be executed with a focus area that
can be anywhere on Earth. However, the current parameterization is calibrated
with German household travel survey data and has not yet been validated for
other parts of the world. In future work, we aim to acquire mobility data for
many more regions and will use it to evaluate and improve OMOD’s performance
in as many places as possible.

Open-Source

OMOD is written in Kotlin (a modern JVM language) and is available on
GitHub https://github.com/L-Strobel/omod under the MIT license. To execute
the model, the user only needs to have Java installed on their machine, download
an OpenStreetMap file of the area they are interested in, and define the focus
area as a GeoJSON (for example, with https://geojson.io). See the GitHub
page for a step-by-step description of how to run the model.
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Appendix A. Discrete Distance Destination Choice Function

In this section, we will explain how we reformulated the maximum likelihood
problem described in Section 3.3.3 to reduce the memory costs by digitizing the
distances into the set D of discrete bins.

The original maximum log-likelihood problem is:

arg max
θ

∑
∀(o,t)∈O

ln(P (o, t; θ)) (A.1)

where O is the set of all observed origin-destination pairs in the MiD data
and P ((o, t); θ) is the probability that the building t is the destination of a trip
starting at o:

P ((o, t); θ) =
eln(Ao)+ln(f(do,t;θ))∑

∀j∈Buildings

eln(Aj)+ln(f(do,j ;θ))
(A.2)

If we reformulate Equation (A.1), we get:

∑
∀(o,t)∈O

ln(Ao) + ln(f(do,t; θ)) − ln(
∑

∀j∈Buildings

Aje
ln(f(do,j ;θ))) (A.3)

Ignoring constant terms and introducing Bo,d for the set of buildings that
have the distance d to the origin, we get:∑

∀(o,t)∈O

ln(f(do,t; θ)) − ln(
∑
∀d∈D

(eln(f(d;θ))
∑

∀j∈Bo,d

Aj)) (A.4)

Note, that the term
∑

∀j∈Bo,d

Aj does not depend on optimization variables θ.

Therefore, we can precalculate the term for all distances and observed origins
before running the optimization. If we digitize the distances in 50 m wide bins,
D contains around 2×104 bins. Therefore, with the 105 observations, we have to
precompute and store 2 × 109 values, significantly less then the 9 × 1010 values
initially necessary for the distance matrix (with other simplifications already
applied). The memory consumption of the other terms in Equation (A.4) is
negligible. Therefore, this approach enables us to precompute and store all
necessary information for the deterrence function parameterization in memory,
making the fit on all of Germany possible.
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Appendix B. Zonal Trip Attraction Metrics

This section contains all the quantitive metrics that describe the similar-
ity between the trip destination probability distributions in the MiD and that
produced by OMOD.

Activity Resolution R2 MAE [%] Jensen-Shannon

All 5 km 0.935 1.692 0.073
All 1 km 0.769 0.289 0.210
All 500 m 0.215 0.162 0.407
home 5 km 0.849 2.472 0.139
home 1 km 0.728 0.341 0.236
home 500 m 0.513 0.171 0.408
work 5 km 0.993 0.859 0.073
work 1 km 0.646 0.479 0.326
work 500 m 0.114 0.225 0.532
shopping 5 km 0.820 2.673 0.142
shopping 1 km 0.565 0.478 0.333
shopping 500 m -0.054 0.218 0.529
other 5 km 0.899 2.039 0.102
other 1 km 0.644 0.430 0.286
other 500 m 0.008 0.208 0.485
school 5 km 0.950 2.465 0.168
school 1 km 0.764 0.470 0.370
school 500 m 0.264 0.231 0.522

Table B.8: Kassel: trip attraction metrics
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Activity Resolution R2 MAE [%] Jensen-Shannon

All 5 km 0.874 0.739 0.090
All 1 km 0.641 0.104 0.215
All 500 m 0.290 0.051 0.388
home 5 km 0.927 0.745 0.092
home 1 km 0.796 0.100 0.215
home 500 m 0.576 0.053 0.398
work 5 km 0.909 1.064 0.134
work 1 km 0.524 0.167 0.333
work 500 m 0.169 0.068 0.490
shopping 5 km 0.792 1.125 0.148
shopping 1 km 0.299 0.210 0.372
shopping 500 m 0.052 0.078 0.535
other 5 km 0.862 0.937 0.122
other 1 km 0.529 0.145 0.291
other 500 m 0.145 0.062 0.447
school 5 km 0.866 1.175 0.204
school 1 km 0.533 0.209 0.421
school 500 m 0.142 0.089 0.590

Table B.9: Nuremberg: trip attraction metrics

Activity Resolution R2 MAE [%] Jensen-Shannon

All 5 km 0.950 0.390 0.089
All 1 km 0.613 0.047 0.206
All 500 m 0.359 0.023 0.363
home 5 km 0.907 0.454 0.101
home 1 km 0.765 0.052 0.216
home 500 m 0.572 0.023 0.361
work 5 km 0.873 0.649 0.146
work 1 km 0.562 0.087 0.359
work 500 m 0.309 0.034 0.513
shopping 5 km 0.492 0.876 0.186
shopping 1 km 0.390 0.090 0.358
shopping 500 m 0.202 0.032 0.486
other 5 km 0.919 0.531 0.126
other 1 km 0.458 0.065 0.274
other 500 m 0.128 0.029 0.447
school 5 km 0.771 0.793 0.200
school 1 km 0.381 0.113 0.473
school 500 m 0.153 0.044 0.632

Table B.10: Hamburg: trip attraction metrics
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mand for Paris and Île-de-France based on open and publicly available
data. Transportation Research Part C: Emerging Technologies, 130:103291,
September 2021.

[34] Sibren Isaacman, Richard Becker, Ramón Cáceres, Margaret Martonosi,
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