
Submitted for review in Computers in Industry

Agent-based Model for Managing Composite Product

Information

Kary Främling*, Timo Ala-Risku**, Mikko Kärkkäinen** and Jan Holmström**

*) Department of Computer Science and
Engineering

Helsinki University of Technology
PO Box 5400, FIN-02015 HUT, Finland

**) Department of Industrial
Management and Engineering

Helsinki University of Technology
PO Box 5500, FIN-02015 HUT, Finland

Abstract

The importance of product information management during the whole lifetime of the

product has increased due to the technical sophistication of products as well as stricter

governmental regulations for lifecycle management. Just sending the relevant product

information downstream in the supply chain does not solve the challenges of product

information management of complex products due to difficulties in updating the

information and a risk of information overflow in the supply chain. This article

describes an agent-based information management model that can be used for

managing the information of complex products at a component level in a distributed

manner. Further the paper presents an information management platform that can

achieve information management requirements by using seven distinct messages.

Keywords: Product information management, product lifecycle management, product

assembly, product agent, middleware

Corresponding author: Kary.Framling@hut.fi, Tel.:+358-50-5980451,

Fax: +358-9-451 3293.

This research has been supported mainly by Tekes, the National Technology Agency of Finland. We

also thank the companies who have contributed in the financing and validation of the methods

described here. Finally, the authors greatly appreciate the feedback from the anonymous referees that

helped us improve the original paper.

 2

1. Introduction

The importance of solid product information management practices and systems is

increasing due to the intensifying technical sophistication of products, as well as the

governmental regulations demanding efficient product lifecycle management

(Töyrylä, 1999; Hamilton, 2001; Kärkkäinen et al., 2003c). Recent developments in

information transfer and data storage capacities enable distributing vast amounts of

product and component information forward in the supply chain and thus overcoming

the problems associated with paper-based data transfer. However, in complex

products this can lead to information overflow in the downstream supply chain, when

the amount and sophistication of product components increases. Another challenge is

to maintain the information up-to-date for the relevant supply chain members during

the products’ lifecycle (Kärkkäinen et al., 2003c). Therefore, Beulens, Jansen and

Wortmann (1999) (as cited in van Dorp, 2002) have proposed that the supply chain

should contain an information decoupling point. They argue that all information

should not be sent forward in the supply chain. In (Jansen-Vullers et al., 2004), the

concept of information decoupling point is developed further in the context of

traceability and quality control in the food industry, introducing the notion of

traceability decoupling point. At the traceability decoupling point the product data is

aggregated together behind a label, such as “environmentally kind” or “animal

friendly”. After the traceability decoupling point, the detailed information can be

retrieved using the label as a reference.

“Product centric information management” in which information regarding a product

is retrieved over information networks when needed using unique product identities as

references is one solution type complying with the information decoupling point

principle (McFarlane et al., 2002; Wong et al., 2002; Kärkkäinen et al., 2003c).

However, until now articles discussing product centric information management

practices have focused on the principles of maintaining and updating information

under a single product identity. The challenges associated with information

management of complex products with complicated bills-of-material have remained

unanswered.

In this paper, we will present in detail an information system architecture and

components that enable the management of the lifecycle information of complex

 3

products. The system components are simple to produce using already available

technology. The system follows the principles of “product centric information

management” but is operational also on the component and bill-of-materials level.

In the first section of the article we will present the current practices of product

information management. Basic principles of software agents and their relevance to

the challenges of product information management are presented in the second

section. In the third section, an agent-based information management platform called

Dialog is presented in detail. The final section proffers concluding remarks and

directions for future research.

2. Challenges of managing the information of

complex products

Current practices of managing product information in supply chains are reviewed in

this section. The information about product information management presented here is

based on a telephone survey of 36 Finnish firms from the industrial and retail sectors.

The technologically most advanced firms were included in the survey sample. The

firms were selected based on presentations at trade seminars and the knowledge of

technological experts at the Finnish National Technology Agency (TEKES). The

most relevant information from the survey is summarized here (see Kauremaa et al.,

2004 for detailed results of the survey).

A typical technologically advanced product is processed by several different

companies during its lifecycle. The most traditional way of managing product related

information is conveying the information to the next downstream partner in the supply

chain. 92% of the surveyed companies distributed product information to their

customers. Only 30% of these companies relied still solely on paper-based

information transfer. In a typical industrial supply chain, the information passes

through a multitude of companies before reaching the final user of the product.

Processing printed information in several nodes of the supply chain requires manual

work and is prone to errors (Töyrylä, 1999). This is why most of the advanced

companies have replaced printed information with digital data transfer means (70% of

the companies conveying product information to their clientele).

 4

The chronologically first possibility of conveying product information in electronic

format was using EDI messages or some file-transfer protocol (Angeles and Nath,

2001). It was still used by 13% of the respondents. The logic of using EDI messages

to convey product information is similar to the paper-based transfer, the information is

sent to the next downstream supply chain partner (i.e. the primary customer).

Handling product information with electronic or paper-based messaging is

problematic due to the following reasons:

Many companies in the supply chain may not need the information for their own

activities but they still have to be able both to receive and transmit the information to

all their partners.

All companies have to be able to communicate with each other. If one of the

companies of the supply chain is unable to receive and transmit the information, then

the information flow is interrupted.

The product information that is sent and stored at various downstream companies is

difficult to keep up-to-date. The producer of new information may not know what

parties to inform about updates and thus companies with outdated information risk

making decisions based on wrong information (Kärkkäinen et al., 2003c).

Transmitting all product information downstream may cause information overflow

downstream in the supply chain (Beulens et al., 1999). This is especially true with

complex products, in which the information related to the components of the product

has also to be managed.

EDI communication is usually expensive and takes long to set up between two

partners, so it makes collaboration links more rigid than they would otherwise need to

be (Johnston and Yap, 1998).

Integrating current EDI-based solutions is too expensive for most small companies

(Timm et al., 2001), therefore limiting the participation of small companies in the

supply chain information exchange (Kärkkäinen and Ala-Risku, 2003).

The most popular way of overcoming these problems has been the use of Internet and

Extranet technologies for transferring product information (45% of the respondents

used these technologies to transmit product information to their customers). In

practice, forerunner companies have developed portal applications through which

 5

their customers can download the product information. Portals are Internet based

services that can represent information from various systems in a single place, through

a browser (Linthicum, 2001). Portals have proved to be efficient in making the

product information available to supply chain participants and have thus grown

increasingly common. However, portals are just the user interface representing the

information to the consumer of the information. The issues related to the management

of information, e.g. linking information to specific product items and handling the

bill-of-materials of products, demand additional solutions.

The challenge of how to link the relevant information residing in several different data

systems together while avoiding data overflow in the supply chain remains

unanswered.

3. An agent-based approach to information

management

During the review of current practices it was noticed that it is a formidable challenge

to link the product related information to the products themselves (Kärkkäinen et al.,

2003a; 2003c). Making the information of all the product components easily

achievable without the risk of downstream information overflow proved to be

especially challenging. Software agents were seen as one possible answer to these

challenges.

Moving from the traditional model of product information management to the agent-

based model is analogous to the big paradigm shift in computer programming during

the 1980’s. The old procedural programming paradigm changed into an object-

oriented paradigm. A main reason for this was that object-oriented programming

makes it easier to manage data and functionality of a program by concentrating them

around the object-concept. This means that anyone (usually another object) that has a

reference to the object can access information about the object through methods

declared in the object’s public interface, while hiding the object’s implementation

(this is called encapsulation). In software engineering, object-oriented programming

has become the dominant paradigm. As shown in (Främling et al., 2004), many of the

key concepts of object-oriented programming also apply to agent-based product

 6

information management. This is why we believe that similar gains can be expected

by moving to agent-based product information management.

In the following parts of this section, we will first review the current use of software

agents in industrial contexts and their linkage to physical products and then we will

present the basics of how software agents can be used in product information

management.

3.1 Software agents and the supply chain

Agent-oriented methods have been proposed for handling information in dynamic

supply chains (Fox et al., 2000). There is no universal agreement on what an agent is

but common aspects to most definitions seem to be that an agent should be

autonomous, social, reactive and pro-active (Wooldridge and Jennings, 1995;

Jennings and Wooldridge, 1998). Autonomy signifies that agents operate without

direct intervention of humans or others. Social ability means that agents interact with

other agents via some communication language. In order to be reactive, agents

perceive their environment and respond in a timely fashion to changes that occur in it.

Finally, agents do not simply act in response to their environment; they are also able

to exhibit goal-directed behaviour by taking the initiative (pro-activity).

Agents have been used for representing various functions in the supply chain, e.g.

order acquisition agents, logistics agents, transportation agents, scheduling agents etc.

(Fox et al., 2000). The purpose of the agent architecture is typically to model,

simulate and analyse supply chain operations in order to achieve better control over

the entire process (Scholz-Reiter and Höhns, 2003; Szirbik et al., 2003). Agents have

also been successfully applied to manufacturing processes (Gou et al., 1998; van

Brussel et al., 1999; Brandolese et al., 2000; Cavalieri et al., 2000; Langer and Alting,

2000; Huang et al., 2002). Agents in applications for these purposes often have some

physical counterpart, such as a machine in a factory simulation model (Gou et al.,

1998). Therefore, it is quite natural to extend agent-oriented thinking to the

management of information related to individual products (Jennings and Wooldridge,

1998; Langer and Alting, 2000).

Software agents as a technology have a major strength over regular software objects,

when connectivity across organisations is required. Objects are usually accessible

 7

only inside a computer program, while agents are usually implemented as distributed

services that communicate through some public protocol like RMI (Sun

Microsystems, 2002b, 2003), Corba (Orfali et al, 1997), SOAP (W3C, 2000), ebXML

(ebXML, 2003) or Jini (Oaks and Wong, 2000). All of these protocols make agents

accessible through the Internet, which allows the information managed by such agents

to be available for all parties in multi-company networks (Främling and Holmström,

2000; Aerts et al., 2002; Goncalves et al., 2003). Dedicated agent communication

frameworks like FIPA (Foundation for Intelligent Physical Agents) (FIPA, 2003;

Helin, 2003) also exist but they are mainly used in academic environments.

3.2 Linking agents to products – the ID@URI concept

The agent-based approach to product information management has received growing

attention lately (Holmström et al., 2002; McFarlane, 2002; Wong, 2002; Kärkkäinen

et al., 2003c). A fundamental issue in this approach is how to associate the software

agents with their physical counterparts. For creating this connection each physical

product has to have a unique identity, which can be used as a reference to locate the

product’s agent on the Internet. Several possible solutions have been proposed.

One notable proposal is the EPC (Electronic Product Code) (Brock, 2001), combined

with the Object Name Service (ONS) infrastructure (Oat Systems & MIT Auto-ID

Center, 2002) developed by the Auto-ID Centre (www.autoidcenter.org). However, it

is based on a naming service not yet available and the coding scheme is based on

central allocation of codes, which may make the system rigid and give problems

especially to small companies (Kärkkäinen et al, 2003c).

Another option is an infrastructure capable of dynamically generating globally unique

identities (Järvinen, 2002). The Jabber protocol for chatting applications

(www.jabber.org) is an example of this kind of infrastructure. Jabber Id’s (JID) are

automatically generated and their uniqueness is assured by the Jabber server

infrastructure. But, since this approach is based on a well-established server

infrastructure, it requires a notable initial investment in order to be useful.

While the above identification schemes are also applicable, we propose using item

coding of the format ID@URI (Främling, 2002; Huvio et al., 2002; Kärkkäinen et al.,

2003b), where the URI is an Internet address of the server where the product agent is

 8

located and the ID part is a product identity that is unique inside that server. This

identification is, by definition, globally unique. The uniqueness of the URI part is

guaranteed by the Domain Name System (DNS) used on the Internet, while the

manufacturing company should be able to guarantee the uniqueness of the ID part.

This makes the allocation of the codes simple and, as current product codes can be

used, the coding is potentially very easy to integrate to current information systems.

Existing standards, such as the Global Trade Item Numbers (GTIN) (EAN

International, 2001) can also be used for the ID part, as well as EPC numbers. The

Global Location Number (GLN) (UCC, 2002) is also globally unique and provides a

standard means to identify legal entities, trading parties and locations. GLN cannot

directly be used as a reference to a product agent, but it is useful for identifying

physical locations in tracking applications, for instance.

ID_1@URI_1

URI_1

Electric motor, last

maintenance on

xx/xx/xxxx,

performed by N.N., …

Retrieve information

ID_1;Electric motor, ...

ID_2;Pump, ...

ID_3;Valve, ...

ID_4;Gauge, ...

…

Database

Figure 1. Accessing product information through ID@URI.

In agent-based solutions utilising the ID@URI notation, the product information can

be made available everywhere where Internet access is available, without developing

additional information registries. The URI part of the product identity directly tells

where to find the information, while the ID part tells what physical product item the

information is asked for (illustrated in Figure 1). Therefore ID@URI is a “label” in

the sense given in (Jansen-Vullers et al., 2004), i.e. it allows retrieving the original

data aggregated at a traceability decoupling point. The software component at the

given URI can therefore act as the product agent of the particular product item and

maintain the product data and links towards other sources of information on the

product item. Therefore, the link between the physical product item and the

corresponding agent plays a critical role in the system.

3.3 Agent-based model for managing information of products

In the agent model, product related information is retrieved and/or updated using the

product-specific reference and only when needed as in Figure 2. The retrieved

 9

information depends on the party asking for the information and the specifications of

the request. Therefore only data that is useful and for which access and usage rights

exist for the inquirer is transmitted. It is important to note that some data are related to

groups of similar physical products (such as user instructions for products of the same

model), while other data are specific to an individual physical unit (such as

maintenance records). Both of these can be handled efficiently with the agent model,

and in particular, a piece of information that is common for several products is easier

to keep up-to-date as it needs to be stored in only one place.

Information fetched when needed

Figure 2. The "agent model" for real-time access to product information.

In product information management, information access can be split into two main

functions:

1. Accessing product data, i.e. the ability to read and review specific information

regarding a product. Examples of product data that need to be accessed are user

instructions, maintenance records, assembly instructions etc.

2. Updating product data, i.e. the ability to append or amend the information

regarding a product. Typical updates concern maintenance records, status

monitoring of machines etc.

The division of these functions is important, as they demand different functionalities

and often also different security settings. These functions can be handled by

traditional means in a single-company setting but become challenging in a multi-

company setting (Luckham, 2002). With the agent model, there is no difference

whether it is applied to a single- or multi-company setting. All information requests

for a given physical product item are performed with equal methods over the Internet

and the information availability depends on the security class of the information and

the authorisation codes of the inquirer. Each product’s agent can manage the access

rights as required.

 10

3.4 Managing Information of Complex Products

Most sophisticated products, especially industrial equipment, are constructed of parts

that come from many different companies. This signifies that physical product items

become parts of each other, so the information related to them becomes

interconnected. Often the constructed product forms a tangled hierarchy, the bill-of-

materials, in which a product individual consists of a set of other product individuals.

Such relations are handled by the concept of composite products
1
 (Aerts et al., 2002;

Främling, 2002), where the constructed product is at the top of a product containment

hierarchy as illustrated in Figure 3. The principles of managing composite products in

agent-based information management approaches are presented in this section.

Factory

Paper machine

Pump
Made by company A

Delivered by company C

Made by company B

Figure 3. Example of composite product hierarchy.

When there is a need for product information management during the product’s life

cycle, it is essential to identify who has the responsibility for maintaining the life

cycle data. Most likely, it is the brand-owner of the product (e.g. an original-

equipment-manufacturer (OEM)) that has the main interest for information

management as a part of its after-sales services. In most technically advanced

products, different parts of the product come from different manufacturers, i.e. the

product is a composite product. The providers of the various sub-parts should agree

with the brand-owner on who has the responsibility of creating and managing the

1
 It could be argued whether ”composite” or ”aggregate” is the appropriate term (see for instance

Fowler, 1997, p. 80 for a discussion on this). Destroying the “whole” of an aggregate does not destroy

the parts, while parts are destroyed along with the “whole” for a composite. However, “composite”

seems to be more commonly used in this context. The corresponding Design Pattern used in software

engineering for this kind of object relations is also called “composite” (Gamma et al., 1995).

 11

information of each part and how the information is disseminated. The company who

has the responsibility for a part can then define the identity of the part and link it to

his product information system. This procedure is illustrated in Figure 4.

Company A

subcontractor

Company B

manufacturer

Company C

purchaser

Company D

buyer/user

product x

-ID number

-URI

product x

product y

product z

product XYZ

Project and product

data flow

Figure 4. Example of how a composite product is created along the supply chain.

The notion of composite products could also be useful for tracking and tracing as

defined in (van Dorp, 2004), where backward traceability determines the composition

of an item and forward traceability determines all end products having consumed a

component of particular interest. Keeping a link to the product information of all parts

of an assembly is important through the whole lifecycle of the product, i.e. for

maintenance operations like replacing a part with another. When a part is replaced

with a part manufactured by another company than the original one, it is sufficient to

change the product containment hierarchy. Containment hierarchies should be built

bi-directional, which means that parts know what other parts they are composed of

and parts also know what composition they belong to. Bi-directionality makes it

possible to perform an information request or update for the whole composite product

by reading the identifier of any part of the composite product.

Bi-directional links are also useful when changing parts of the composite product or

when breaking it up completely. Updating the information structure can be done

implicitly or explicitly. An example of the implicit update can be found in the

transportation context: reading the identifier of a part that is not at the top of the

containment hierarchy can be interpreted to indicate that the part has been taken out of

the transportation unit higher up in the containment hierarchy. In contrast, in a

maintenance context, changing a part into a product will normally require doing an

explicit update of the containment hierarchy.

 12

4. The Dialog system

In this section, we present the software implementation that we developed for testing

the concepts described in the previous section, called Dialog. In the first part, we

present how product information can be accessed and updated in Dialog. The second

part briefly explains implementation and installation issues, while the final part

focuses on security issues. Even though messages for agent communication are

presented in detail here, we do not have the intention to provide a formal software

specification for messages in this article. The message formats presented here

correspond to the current Dialog implementation, which is mainly used for research

and piloting purposes. Therefore the messages as well as their contents are still

subject to change. The Unified Modeling Language (UML) (Fowler, 1997) is used for

illustrating the system structure by class diagrams while sequence diagrams illustrate

agent interaction.

4.1 Agent communication

In this section we first present how information is accessed and updated in the Dialog

platform: through direct information access, and accessing information through links.

Then we proceed to present the currently implemented messages, and how they are

used to provide the functionalities of composite products.

4.1.1 Access to product information

In the Dialog system, product information is accessible through methods in the

product agent interface (Figure 5). The methods update() and getProductInformation()

are used to append and retrieve information, respectively, while

getCompositeInformation() relates to managing product and component hierarchies.

Figure 5. Product agent interface.

 13

Information about a product item can be obtained and updated in two ways:

• Direct information: product information is sent directly as text, Hypertext

Markup Language (HTML), eXtended Markup Language (XML) or some

other application-dependent format.

• Link to information: URI where the information can be accessed. This would

normally be the address of an existing web page or service, which can also be

used for updating the information.

The two different ways were designed to accommodate various uses of the

information. Direct information is useful in item-level applications, such as retrieving

the expiry date of a specific item or retrieving the delivery address of a shipment.

Information provision via a link is usually more effective for information that is

shared by several physical units, whereas it would be wasteful to create a separate

web page for every product item if the product agent can retrieve it directly from a

database. When product information is provided by a link to an Internet address, it is

possible to use existing web pages and web-based user interfaces also in other

organisations. The advantage of this approach comes not only from using existing

infrastructure but also from the fact that authentication and other security aspects can

be handled by each organisation separately, if deemed necessary.

4.1.2 Agent messaging

Information exchange between agents is performed by messages (Monson-Haefel and

Chappell, 2001). All current messages are described in Figure 6. The basic messages

InformationUpdate and IdentifierLinkMsg have been used in two industrial pilots on

item tracking (ISI Industry Software, 2003; Kärkkäinen et al., 2004a)
2
.

The InformationUpdate message is used for direct information updates. It contains the

product identifier (ID@URI), a timestamp and a location. It also contains a free-

format data field for updating information about the product item. Free-format data

2
 The current implementation ensures message persistence, i.e. that messages do not get lost even

though the receiver is not directly available. Messages are buffered until successfully received by the

receiver’s update() method. This is essential in applications like tracking and tracing.

 14

here signifies that it can be text, HTML text, an XML document containing links to

other documents or even binary data.

Figure 6. Class hierarchy of message objects. Methods are omitted because they

are not a part of the actual messages.

IdentifierLinkMsg is used to link the ID part in ID@URI to existing reference

numbers used in the owning company’s business applications. The ID may have to be

linked to several company internal references (e.g. project number, part number, order

number, …) in order to be useful. This would typically be done when the ID is created

for the physical product item. The IdentifierLinkMsg contains the same information

as a InformationUpdate and a list of company internal reference numbers that the ID

should be associated with.

Access to product information is requested by a GetProductInformation message and

transmitted by a ProductInformation message. ProductInformation returns the product

information either directly as free-format data (text or HTML if it is intended for

visualisation) or as a link to where the information can be accessed by the client itself

or by an Internet browser. The product information also contains a field that indicates

if it is a composite product, i.e. if it has a containment hierarchy below it. Finally, if

the product itself is a part of a composite product, then the ID@URI of the “parent”

product is returned.

The messages GetCompositeInformation, CompositeComponentsInformation and

CompositeUpdateMsg in Figure 6 deal with composite products. Figure 7 illustrates

 15

how composite products are handled in the Dialog platform with ID@URI identities.

The whole containment hierarchy (bill-of-material) of a composite product can be

managed through ID@URI identifiers, which greatly reduces the need to modify

existing business applications or other information systems.

 10056754@comp4.com

1034@comp3.fi

261@comp1.com 262@comp1.com 263@comp1.com

1035@comp3.fi

264@comp2.com 261@comp2.com 266@comp2.com

Figure 7. How composite products are handled in the Dialog system.

Figure 8 illustrates how an information update, e.g. location update, is propagated

through the containment hierarchy of the composite product in Figure 7. In many

instances when making product information updates, it is most convenient to use only

the identity of the “outermost” part for the information request or update. There is a

strong analogy to a shipment tracking application (note, that the containment

hierarchy of transport packages is fully equivalent to bill-of-materials of products

from a systems perspective). It may be difficult to obtain the identities of products that

are inside a transport container to update their locations but if the container has been

built as a composite product, the outermost container’s agent has sufficient

information to access the products’ agents inside it. This makes it easy to propagate

the location update to all the parts of the containment hierarchy, even though the

different parts might have different “owners”.

Figure 8. Propagation of information updates through the composite hierarchy

by InformationUpdate messages.

In the Dialog platform, composite product hierarchies can be created with a

CompositeUpdateMsg-message with the operation to perform as a parameter, i.e. add

 16

or remove components. In addition to the information included in InformationUpdate

messages, CompositeUpdateMsg contains a list of ID@URI identifiers to add to the

containment hierarchy of the product or to remove from it, depending on the

operation parameter.

The GetCompositeInformation message makes it possible to browse downwards

through the containment hierarchy of composite products as shown in Figure 9. This

information could also have been included in the ProductInformation message but

that would cause transfer of useless data in cases where containment information is

not interesting for the client.

Figure 9. Fetching product information for the composite product in Figure 7

(only first two levels shown here for clarity).

4.2 Implementation

The functionalities presented in this paper are implemented with two software

components, which are some tens of kilobytes each (i.e. same size as a typical small

picture on a web page). They are written in Java, so a Java-enabled platform needs to

be available for installing the components. The software components and their

installation instructions are available at the Dialog web site “dialog.hut.fi”. An Open

Source community developing the Dialog platform also operates on the web site.

 17

The first software component is called the client. A client component is used for

reading product identifiers and connecting to the product agent whose Internet address

is indicated by the ID@URI product identifier. The second software component is

called the server and it implements the product agent functionality. A server

component has access to a database through Java Database Connectivity (JDBC) (Sun

Microsystems, 2002a), which enables it to communicate with virtually any existing

database product, including those used by most business applications.

Messages for communication between the software components can be implemented

either as objects or as method calls. The current product agent implementation (Figure

5) is a mixture where the messages GetProductInformation and

GetCompositeInformation have a corresponding method, while all other messages are

sent as objects to the update() method. It is usually preferable to implement messages

as objects than as methods because it simplifies the adding or modification of

messages. However, the choice is also a compromise between other factors such as

ease of implementation, performance etc.

For the client component, the only mandatory set-up information is the physical

location, which is entered by the user when the client is started for the first time.

Server component set-up only requires indicating the JDBC connection parameters for

connecting to the database to use. Server set-up can also automatically create all

needed database tables (currently four). Product location updates and support for

composite products is immediately operational when starting the server component.

Access to product information is operational as soon as the information has been

inserted into the database. Since these two software components implement the whole

chain “product identifier” � “product agent” � “database”, there is no need for any

further components for implementing the functionality described in this paper.

Altogether, installation and set-up of both client and server can be done in less than

five minutes.

The URI part of the product identifier can also contain a protocol part. The current

implementation can use both Java RMI messaging (Sun Microsystems, 2002b, 2003)

and XML-based communication through the SOAP protocol (W3C, 2000). In order to

make the system as open as possible, a major challenge is to standardise these

messages so that any software producer could implement them and communicate with

 18

each other successfully. Supporting different protocols is currently necessary because

it seems unlikely that a single protocol could be defined and accepted for all

application areas in the near future. We will try to propose such standards ourselves

and take into use such standards as soon as they emerge.

4.3 Security issues

The security considerations associated with product information depend largely on the

application area. For instance, information such as user instructions of a product may

well be available without any validation of the product’s identity or the identity of the

person asking for the information. More restrictive authentication mechanisms are

needed when updating product information in the system. Update of the product’s

maintenance records is an example of a situation where both the identity of the

physical item and the person doing the update should be validated. Due to these

differences, we have selected to keep the implementation as open as possible instead

of imposing a specific security model. Therefore application-specific security

protocols can be used without creating a need to modify the Dialog system itself.

Several technologies for implementing the desired level of security exist and can be

used in our approach. It is, for example, possible to encrypt the data being transmitted

using standard Secure Sockets Layer (SSL) connections (Netscape, 1996). However,

obtaining a high level of security also means managing encryption keys, Public Key

Infrastructure (PKI) certificates and other security-related information (Biennier,

2003).

A minimal validation of the identity of a physical item is possible by checking that the

indicated URI owner has indeed issued the given ID. In applications where

supplementary validation is needed, two-key validation can be used as provided by

RSA, DSA (NIST, 2002) and other encryption systems. The main problem is that one

encryption key needs to be stored with the physical item itself. Especially the

increasing use of RFID (Radio Frequency Identification) tags (Kärkkäinen et al.,

2004b) could facilitate the implementation of such validation techniques.

Validating the identity of the party asking for or updating information can also be

done using two-key validation, possibly combined with a PKI based solution. Another

 19

approach is to list and register the identities of the reading devices, which are

authorized to access product information.

5. Discussion and conclusions

Currently, product data is often partially duplicated into many different places, which

makes it difficult to access the data and keep it up-to-date. Using the agent model for

accessing information about tangible products avoids this by concentrating the

information to the product agent. The ID@URI identifier can be compared to an

object reference in an object-oriented program, because it is a reference to the product

agent that corresponds to the physical product item. An object-oriented program is

essentially built up by object references and communicating objects and the ID@URI

identifier and communicating agents uses the same approach in a multi-organisational

context.

Agent-based computation has already proved that it is a good solution to the

information handling needs in supply chain management. The Dialog platform has

proved its functionality in two industrial pilots (ISI Industry Software, 2003;

Kärkkäinen et al., 2004a), in which it was used for tracking international deliveries.

Still, the choice of distributed architecture has some problems associated when one

wants to ensure access, usage, availability and integrity over time. This is one of the

main reasons for identifying parallels with object-oriented programming, which

addresses many of these questions. The composite model proposed here corresponds

to a Design Pattern, i.e. a well-known reference solution in object-oriented software

engineering (Gamma et al., 1995). Other design patterns could be more applicable in

other contexts than discrete products, e.g. tracking and tracing in the context of multi-

echelon food supply chains (van Dorp, 2004; Jansen-Vullers et al., 2004). Food is not

an aggregate of discrete parts, so it is impossible to attach information to physical

subassemblies.

The proposed system is open. This means that solutions based on the methods

presented here can be built without need to pay licence fees or offend any patents

known by the authors. Furthermore, the concepts presented here do not require the

involvement of any third-party actors in order to be usable. It is therefore easy for

companies of all sizes to start using these concepts.

 20

In practice, effective methods for data communication between organisations are

needed not only due to the potential economical benefits but also due to changes in

legislation concerning traceability of raw materials and product lifecycle management

in general. The model presented here addresses those needs. The biggest challenge on

the way might be to achieve a shift in the general viewpoint on service provision and

information management.

References

Aerts, A.T.M., Szirbik, N.B., Goossenaerts, J.B.M., 2002, A flexible, agent-based ICT

architecture for virtual enterprises, Computers in Industry, Vol. 49, No. 3, 311-327.

Angeles, R., Nath, R., 2001, Partner congruence in electronic data interchange (EDI)-

enabled relationships, Journal of Business Logistics, Vol. 22, No. 2, 109-128.

Beulens, A.J.M, Jansen, M.H., Wortmann, J.C., 1999, The information de-coupling

point, in: Global Production Management, IFIP WG5.7, Int. Conf. on Advances in

Production Management Systems (Kluwer Academic Publishers, Boston) 51-58.

Biennier, F., 2003, Security Integration in Inter-Enterprise Business Process

Engineering, in: Jagdev, H.S., Wortmann, J.C., Pels, H.J., eds., Collaborative Systems

for Production Management (Kluwer Academic Publishers) 207-217.

Brandolese, A., Brun, A., Portioli-Staudacher, A., 2000, A multi-agent approach for

the capacity allocation problem, International Journal of Production Economics, Vol.

66, 269-285.

Brock, D.L., 2001, The Electronic Product Code (EPC) - A Naming Scheme for

Physical Objects, MIT Auto-ID Center White Paper, January 2001, available online

(December 13
th

, 2002): http://www.autoidcenter.org/research/MIT-AUTOID-WH-

002.pdf

van Brussel, H., Bongaerts, L., Wyns, J., Valckenaers, P., van Ginderachter, T., 1999,

A Conceptual Framework for Holonic Manufacturing: Identification of

Manufacturing Holons, Journal of Manufacturing Systems, Vol. 18, No. 1, 35-52.

 21

Cavalieri, S., Garetti, M., Macchi, M., Taisch, M., 2000, An experimental

benchmarking of two multi-agent architectures for production scheduling and control,

Computers in Industry, Vol. 43, 139-152.

van Dorp, K.J., 2002, Tracking and tracing: a structure for development and

contemporary practices, Logistics Information Management, Vol. 15, No. 1, 24-33.

van Dorp, C.A., 2004, Reference-data modelling for tracking and tracing, PhD thesis,

Wageningen University, Netherlands.

EAN International, 2001, Global Trade Item Numbers (GTIN), Application

Guideline, EAN International, available online (January 8
th

, 2002): http://www.ean-

int.org/

ebXML, 2003, ebXML - Enabling A Global Electronic Market, available online

(October 14
th

, 2003): http://www.ebxml.org/

FIPA, 2003, Foundation for Intelligent Physical Agents, available online (November

7
th

, 2003): http://www.fipa.org/

Fowler, M., 1997, UML Distilled (Addison-Wesley, Reading, Massachusetts).

Fox, M.S., Barbuceanu, M., Teigen, R., 2000, Agent-Oriented Supply-Chain

Management, International Journal of Flexible Manufacturing Systems, Vol. 12, 165-

188.

Främling, K., Holmström, J., 2000, A Distributed Software for Collaborative Sales

Forecasting, in: Proceedings of the Management and Control of Production and

Logistics MCPL'2000 conference, 5-8 July 2000 (Binder, published by IFAC

Publications, Elsevier Science Ltd).

Främling, K., 2002, Tracking of material flow by an Internet-based product data

management system (in Finnish: Tavaravirran seuranta osana Internet-pohjaista

tuotetiedon hallintaa), Tieke EDISTY magazine, No. 1, 2002 (Tieke: Finnish

Information Society Development Centre, Finland).

Främling, K., Kärkkäinen, M., Ala-Risku, T., Holmström, J., 2004, Managing Product

Information in Supplier Networks by Object Oriented Programming Concepts, in:

 22

Taisch, M., Filos, E., Garello, P., Lewis, K., Montorio, M., eds., Proceedings of IMS

International Forum, Cernobbio, Italy, 17-19 May 2004, 1424-1431.

Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995, Design Patterns: elements of

reusable object-oriented software (Addison-Wesley, Reading, Massachusetts).

Goncalves, G.M., de Sousa, J.B., Pereira, F.L., Dias, P.S., Santo, A., 2003, A

framework for e-cooperating business agents: An application to the (re)engineering of

production facilities, in: Jagdev, H.S., Wortmann, J.C., Pels, H.J., eds., Collaborative

Systems for Production Management (Kluwer Academic Publishers) 189-204.

Gou, L., Luh, P.B., Kyoya, Y., 1998, Holonic Manufacturing Scheduling:

Architecture, Cooperation Mechanism and Implementation, Computers in Industry,

Vol. 37, 213-231.

Hamilton, J., 2001, The European Union’s consumer guarantees directive, Journal of

Public Policy & Marketing, Vol. 20, No. 2, 289-296.

Helin, H., 2003, Supporting Nomadic Agent-based Applications in the FIPA Agent

Architecture, PhD thesis, Dep. of Computer Science Report A-2003-2, University of

Helsinki, Finland.

Holmström, J., Främling, K., Tuomi, J., Kärkkäinen, M., Ala-Risku, T., 2002,

Implementing Collaboration Process Networks, International Journal of Logistics

Management, Vol. 13, No. 2, 39-50.

Huang, B., Gou, H., Liu, W., Li, Y., Xie, M., 2002, A framework for virtual enterprise

control with the holonic manufacturing paradigm, Computers in Industry, Vol. 49,

299-310.

Huvio, E., Grönvall, J., Främling, K., 2002, Tracking and tracing parcels using a

distributed computing approach, in: Solem, Olav, ed., Proceedings of the 14th Annual

Conference for Nordic Researchers in Logistics (NOFOMA'2002), Trondheim,

Norway, 12-14 June 2002, 29-43.

ISI Industry Software, 2003, Consignment Tracking for Heavy Industry, available

online (October 16
th

, 2003): http://www.isiindustrysoftware.com/news/kvaerner.html

 23

Jansen-Vullers, M. H., Wortmann, J. C., Beulens, A. J. M., 2004, Application of

labels to trace material flows in multi-echelon supply chains, Production Planning &

Control, Vol. 15, No. 3, 303-312.

Jennings, N. R., Wooldridge, M. J., 1998, Applications of Intelligent Agents, in: N. R.

Jennings and M. Wooldridge, eds., Agent Technology: Foundations, Applications,

and Markets (Springer Verlag) 3-28.

Johnston, R. B., Yap, A. K. C., 1998, Two-Dimensional Bar Code as a Medium for

Electronic Data Interchange, International Journal of Electronic Commerce, Vol. 3,

No.1, 86-101.

Järvinen, V.P., 2002, Language independent software communication in distributed

applications, M.Sc. Thesis, University of Helsinki, November 2002.

Kauremaa, J., Auramo, J., Tanskanen, K., Kärkkäinen, M., 2004, The use of

information technology in supply chains: transactions and information sharing

perspective, in: Logistics Research Network Annual Conference, Dublin, Ireland,

September 9–10, 2004, available online (22
nd

 October, 2004):

http://www.tuta.hut.fi/logistics/publications/The_use_of_IT_in_supply_chains.pdf

Kärkkäinen, M., Holmström, J., Främling, K., Artto, K., 2003a, Intelligent products -

a step towards a more effective project delivery chain, Computers in Industry, Vol.

50, No. 2, 141-151.

Kärkkäinen, M., Främling, K., Ala-Risku T., 2003b, Integrating material and

information flows using a distributed peer-to-peer information system, in: Jagdev

H.S., Wortmann J.C., Pels H.J., eds., Collaborative Systems for Production

Management (Kluwer Academic Publishers, Boston, USA) 305-319.

Kärkkäinen, M., Ala-Risku, T., Främling, K., 2003c, The product centric approach: a

solution to supply network information management problems?, Computers in

Industry, Vol. 52, No. 2, 147-159.

Kärkkäinen, M., Ala-Risku, T., 2003, Facilitating the integration of SME’s to supply

networks with lean IT solutions, in: eChallenges e-2003 conference proceedings, 22-

24 October, Bologna, Italy.

 24

Kärkkäinen, M., Ala-Risku, T., Främling, K, 2004a, Efficient Tracking for Short-

Term Multi-Company Networks, International Journal of Physical Distribution and

Logistics Management, Vol. 34, No. 7, 545-564.

Kärkkäinen, M., Holmström, J., Främling, K., 2004b, Wireless item identification: a

solution for e-commerce fulfilment problems, International Journal of Electronic

Business, Vol. 2, No. 1, 108-120.

Langer, G., Alting, L., 2000, An Architecture for Agile Shop Floor Control Systems,

Journal of Manufacturing Systems, Vol. 19, No. 4, 267-281.

Linthicum, D.S., 2001, B2B application integration: e-business-enable your enterprise

(Addison-Wesley, Boston).

Luckham, David, 2002, The Power of Events (Addison-Wesley, Boston, USA).

McFarlane, D., Sarma, S., Chirn, J.-L., Wong C.Y., and Ashton, K., 2002, The

Intelligent Product in Manufacturing Control and Management, in: Proceedings of

IFAC World Congress, Barcelona.

Monson-Haefel, R., Chappell, D.A., 2001, Java Message Service

(O’Reilly&Associates, Sebastopol, USA).

Netscape, 1996, SSL 3.0 Specification, available online (December 2
nd

, 2003):

http://wp.netscape.com/eng/ssl3/index.html

NIST, 2002, Digital Signature Standard (DSS) and Secure Hash Standard (SHS),

(National Institute of Standards and Technology), available online (December 13
th

,

2002): http://csrc.nist.gov/cryptval/dss.htm

Oaks, S., Wong, H., 2000, Jini in a Nutshell (O’Reilly&Associates, Sebastopol,

USA).

Oat Systems & MIT Auto-ID Center, 2002, The Object Name Service, available

online (December 5
th

, 2002): http://www.autoidcenter.org/research/MIT-AUTOID-

TM-004.pdf

Orfali, R., Harkey, D., Edwards, J., 1997, Instant CORBA (John Wiley & Sons, New

York).

 25

Scholz-Reiter, B., Höhns, H., 2003, Agent-based Collaborative Supply Net

Management, in Jagdev, H.S., Wortmann, J.C., Pels, H.J., eds., Collaborative Systems

for Production Management (Kluwer Academic Publishers) 3-17.

Sun Microsystems, 2002a, JDBC™ Data Access API, available online (December

13
th

, 2002): http://java.sun.com/products/jdbc/

Sun Microsystems, 2002b, RMI Specification, available online (December 13
th

,

2002): http://java.sun.com/products/jdk/1.2/docs/guide/rmi/spec/rmiTOC.doc.html

Sun Microsystems, 2003, Java Remote Method Invocation (RMI), available online

(October 14
th

, 2003): http://java.sun.com/products/jdk/rmi/

Szirbik, N.B., Wagner, G.R., La Poutré, J.A., 2003, A generic framework for

simulation of supply networks with bargaining agents, in: Jagdev, H.S., Wortmann,

J.C., Pels, H.J., eds., Collaborative Systems for Production Management (Kluwer

Academic Publishers) 323-339.

Timm, I.J., Woelk, P.-O., Knirsch, P., Tönshoff, H.K., Herzog, O., 2001, Flexible

mass customisation: Managing its information logistics using adaptive co-operative

multiagent systems, in: Pawar, K.S.;Muffatto, M., eds., Logistics and the Digital

Economy, Proceedings of the 6th International Symposium on Logistics, Salzburg,

Austria, 227-232.

Töyrylä, I., 1999, Realising the potential of traceability – A case study research on

usage and impacts of product traceability, Finnish Academy of Technology, Espoo.

UCC, 2002, GLN Implementation Guide, Uniform Code Council inc., available

online (October 22
nd

, 2004): http://www.uc-council.org/ean_ucc_system/pdf/GLN.pdf

W3C, 2000, Simple Object Access Protocol (SOAP) 1.1, available online (October

14
th

, 2003): http://www.w3.org/TR/SOAP/

Wong, C.Y., McFarlane, D., Zaharudin, A.A., Agrawal, V., 2002, Intelligent Product

Driven Supply Chain, in: Proceedings of IEEE SMC 2002, Tunisia.

Wooldridge, M., Jennings, N.R., 1995, Intelligent Agents: Theory and Practice,

Knowledge Engineering Review, Vol. 10, No. 2, 115-152.

