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Abstract  Services providers, such as public healthcare systems and government agencies, are under tremendous 

pressure to reduce costs and improve service quality. Scheduling is an important managerial component which has 

considerable impact on both the costs and quality of services. Service providers need customers’ availability 

information to improve resource utilization. On the other hand, customers may be of “two minds” about 

communicating their private information. While communicating certain amount of availability might be necessary in 

order to obtain preferred schedules, too much communication place a potential cost due to privacy loss. In this 

paper, we present a bidding-based mechanism which aims at generating high quality schedules and, at the same 

time, protecting customers’ privacy. We show that, under the proposed bidding procedure, myopic bidding is the 

dominant strategy for customers. We also evaluate the privacy and efficiency performance of the proposed 

mechanism through a computational study.  

 

Keyword: Non-commercial services, distributed scheduling, privacy, efficiency, iterative bidding, 

auction 

1. Introduction 

With increasing levels of globalization, organizations no longer compete directly, but rather 

compete based on their respective supply chains. The competitiveness of supply chains largely 

depends on effective information-sharing among supply chain partners. Having accurate 

information about inventory levels, orders, production, and delivery status provides a tremendous 

opportunity to improve the way the supply chain is designed and managed. However, 

information-sharing in a supply chain has proved difficult to implement [1]. The barriers are 

significant due to a lack of trust between trading partners. Companies fear that information 

voluntarily shared will be used against them or will leak to a competitor. Huge potential benefits 

of supply chain collaborations go unrealized due to a reluctance to share private information. 

Privacy becomes an obstacle on the road to achieving greater supply chain management 

efficiency.  
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Various approaches have been proposed to enable supply chain information-sharing under the 

constraint that trading partners have the desire to protect their privacy. One stream of them 

focuses on the design of incentive mechanisms. As the most successful application of mechanism 

design, auction theory has been used to facilitate supply chain collaboration in distributed 

settings [2][3][4]. To optimize the supply chain, auction mechanisms typically provide incentives 

which motivate trading partners to reveal their private information truthfully. In addition to 

auctions, cooperative game theory has also find applications in supply chain collaboration [5]. 

Another line of research looks at the problem from cryptographic perspective. Typically, secure 

multiparty computation techniques [6] are applied in supply chain collaboration settings [7][8]. 

There is also an emerging trend in developing intellectual property protection mechanisms 

against information leakage and reverse engineering in supply chain collaboration [9]. While 

most of the existing supply chain collaboration approaches have been developed for 

manufacturing sector, in this paper, we focus our attention on services supply chain. In 

particular, we study the privacy and efficiency issues arising in services collaboration.  

Unlike more traditional manufacturing supply chains, service capacity in a supply chain is 

usually time dependent and typically cannot be held in inventory. For example, if a certain 

amount of seats on a flight are not booked, the transportation capacity of those seats on this 

particular flight will be wasted and cannot be stored in inventory for future usage. Without 

inventory as a buffer, matching capacity with demand is frequently more challenging in service 

supply chains [10]. In many business services, such as airline tickets booking, hotel room 

reservation, and vacation package booking, companies encourage potential customers to get a 

service time and price “quote” prior to ordering. By quoting different prices on service times, 

service providers can balance the demands throughout a week, a month, or seasons of a year, 

therefore, optimize their resource utilization. However, in non-commercial services industries, 

such as scientific facility services, government services and healthcare services, for social 

economic and political reasons, service providers cannot use dynamic pricing strategies to 

balance the demands along the service timelines. In this paper, we study the scheduling aspect of 

non-commercial service supply chain management. In particular, we are interested in knowing 

how to design effective mechanisms for services scheduling and how privacy and efficiency 

interplay under such mechanisms. We design an auction-based (iterative bidding, in particular) 

scheduling framework under two constraints (1) service providers are restrained from using any 
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price mechanisms to balance the demand and (2) customers are reluctant to share their complete 

availability information due to privacy concerns. The rest of the paper is organized as follows. 

Section 2 introduces the non-commercial services scheduling problem and its privacy 

implication. Section 3 formulates the service provider’s and customers’ decision problems. 

Section 4 presents a bidding-based scheduling framework and provides theoretical analysis on its 

properties. Section 5 evaluates the privacy and efficiency performance of the proposed 

scheduling framework. Section 6 concludes the paper and discusses future improvements. 

2. Non-Commercial Services Scheduling and its Privacy Implication 

The non-commercial service scheduling (NCSS) problem concerns the allocation of limited 

resources to the service activities at specific times. This allocation must obey a set of rules or 

constraints that reflect the temporal relationships between activities and the capacity limitations 

of a set of shared service resources. To motivate the research from a practical perspective, in this 

section, we first describe an example application domain where the proposed approach is needed. 

We then discuss the privacy implication of NCSS. 

2.1. Synchrotron Facility Scheduling 

Canadian Light Sources (CLS: http://www.lightsource.ca/), is a national science research 

laboratory for the production of high intensity synchrotron light from the infrared, visible, and 

ultraviolet to x-ray region of the electromagnetic spectrum and is accessible to scientists and 

researchers from the academic, government and private sectors. Currently, the CLS has about 

3,000 researchers in Canada and other parts of the world as its user community. The CLS has 

two calls for proposals each year resulting in a scheduling cycle of 6 months. Proposals are 

evaluated by a scientific committee composed of researchers from universities and industries 

across the country. Each application is assigned a weight based on its potential contribution to 

the advancement of knowledge and impact on the scientific community. The proposals that are 

approved by the peer review procedure need to be scheduled in the next scheduling cycle. CLS 

needs to improve the utilization of expensive synchrotron resources and, at the same time, 

maximize the overall scientific contributions of the experiments. CLS knows the weight 

(scientific contribution) of each application. However, they do not have direct access to 

customers’ availability information, which is privately held by customers. To compute a 

schedule, CLS relies on the availability information reported by its customers. Within each cycle, 
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CLS first schedule facility development and maintenance shifts which are not available for 

customers’ experiments. After the shifts open to customers are determined, CLS will contact the 

researchers and allocate the open shifts to their experiments.  The scheduling of experiment 

shifts is a multilateral negotiation process mainly done through phone calls and emails. 

2.2. Privacy vs. Efficiency 

NCSS can be modeled as an optimization problem in which private availability information of 

customers constraints the solution space. If all customers report their full availability, the service 

provider can obtain an optimal schedule by solving the optimization problem. However, if, for 

privacy reasons, the customers only reveal partial availability to the service provider, the quality 

of the solution will be compromised.  

The lack of complete availability information can be a major constraint that limits the quality 

of the schedules. High quality schedules maybe determined infeasible given the partial 

availability information from customers. The scheduling problem facing the service providers is 

a decentralized scheduling problem [11] in the sense that the true availability of the customers is 

their private information and may not be known to the service provider. Customers are reluctant 

to reveal their complete availability because a complete revelation exposes too much privacy and 

increases the possibility of being assigned an undesirable time slot. Consider, for example, the 

synchrotron facility scheduling environment mentioned previously. Bob needs to conduct his 

experiment in the facility. He can be available any time from January to August. However, he 

prefers the experiment to be scheduled as earlier as possible because there is a possibility that he 

may go vacation sometime during the summer. Based on his previous experience and his 

knowledge of the profile of current year’s applications, he believes that experiments with similar 

weight of his are likely to be offered a service time slot two months after the originally requested 

dates. Therefore, statistically, if he reports January to April as his available time window, he will 

have much higher chance ending up in June or even sometime earlier. After his calculation, Bob 

may report January to April which is not his complete availability.  

Generating high quality schedules and, at the same time, accommodating customers’ 

preference and privacy concerns is challenging. In addition to dealing with strategic behaviors 

from customers, the administrative workload of collecting customers’ availability information 

and negotiate with them for possible changes can be very heavy due to the large number of 
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customers and a manually managed process.  The proposed approach provides the possibility of 

automating the NCSS procedure and improving the quality of schedules. In the next section, we 

formulate the service provider’s and customers’ decision problems in NCSS.  

3. Formulation of Service provider’s and Customers’ Decision Problems 

Services scheduling is multilateral decision making with the service provider and customers 

as independent decision makers. The service provider needs to decide how to schedule service 

requests to achieve its objectives and, at the same time, respect the customer’s availability 

constraints. The decision facing a customer is how much availability information she needs to 

reveal in order to maximize her benefit. In this section, we formulate the decision problems 

facing the service provider and customers.  

3.1. Service Provider’s Decision Problem 

Consider a NCSS problem consists of a service provider and a group of customers. The 

provider receives a set of   service requests from customers. Each request is assigned a weight 

which reflects its contribution to the provider’s objective. The provider has limited service 

capacity and knows the time required for processing a request. The provider’s objective is to 

maximize the sum of the weights of a schedule. An important type of constraints of NCSS is the 

customers’ availability. Since customers need to be present for the service, the provider cannot 

schedule a customer to a time slot during which she is not available. We describe a customer’s 

availability by a set of available time intervals along the scheduling timeline.   As we will later 

develop an iterative bidding framework for NCSS, we represent an available time interval as a 

bid from a customer using the bundle bidding language [12] developed for combinatorial 

auctions.  To apply the language, we need to first discretize the provider’s service timeline into 

fixed-size time units.  In this way, without loss of generality, an available time interval can be 

defined by a bundle of adjacent time units contained in the interval. Different from the general 

combinatorial auctions, customers do not attach prices to their bids in NCSS. In our case, bids 

are used by the customers to indicate their availabilities. If a customer submit a bid (available 

time interval), she informs the provider that she is available to be scheduled during that interval. 

The set of intervals that contains a customer’s complete availability is referred to as the 

customer’s set of Feasible Time Intervals (FTI).  
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Let    be the set of availability intervals revealed by customer  . It is clear that    is a subset of 

customer  ’s FTI.  The service provider will not schedule customer  ’s request outside her   . Let 

   be the weight scale of customer   assigned by the service provider and    the processing time 

of customer  ’s request. Let   be the set of time units available for allocation and   be the set of 

customers who have service requests to be scheduled; let   ( )    
if the time unit bundle 

    is allocated to customer    and zero otherwise. The provider’s decision problem is to 

determine the allocation of limited service time to the requests in a way that the sum of the 

weights of the awarded requests is maximized. The problem can be formulated as the following 

integer programming. 

   ∑ ∑   ( )             

subject to 

∑   ( )                            (1) 

∑ ∑   ( )           
 
                  (2) 

∑   ( )  ∑   ( )        
                    (3) 

| |     ( )                           (4) 

| |          ( )                     (5) 

  ( )  {   }                         (6)  

The set of constraints (1) ensures that any customer can only obtain one bundle of time units. 

The set of constraints (2) ensures that a time unit is not included into two bundles which have 

been assigned to the customers. The set of constraints (3) ensure that if a bundle is assigned to a 

customer, it must belong to the set of available intervals submitted by the customer. These 

constraints prevent service provider from assigning customers time bundles which they are not 

willing to accept. Constraints (4) (5) ensure that if a bundle is assigned to a customer, the length 

of the bundle is equal to the processing time of the customer’s request, where   is a large 

positive constant, which is used for the linearization of the logical constraint “if.” The minimum 

value of   depends on the problem instance. In general, a   that is greater than the number of 

available time units of the service provider is large enough to enforce the logical “if” constraint. 

Constraints (6) are integer constraints. The provider’s decision problem is NP-hard as stated in 

the following theorem.  
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Theorem 1 The service provider’s decision problem in NCSS is NP-hard. 

Proof: Consider a special case of the provider’s decision problem, in which a set of   service 

requests from customers need to be scheduled. A request may be scheduled on one of the   

intervals on a discrete time scale on a single resource.  The decision version of this special case 

of provider’s decision problem is identical to the job interval selection problem, which is NP-

complete [13]. Therefore, the decision version of provider’s decision problem is NP-complete. It 

follows that provider’s decision problem is NP-hard . 

3.2. Customers’ Decision Problem 

To model customers’ decision problem, we first introduce their preference structure over the 

time intervals in their FTIs. A customer’s FTI is her private information not known to the service 

provider. She may behave strategically, for example hide part of her FTI, to maximize her 

benefits. To reflect this self-interest property of the customers, we call them agents
1
. We assume 

that an agent prefers some time intervals over others within its FTI and the preferences can be 

quantified by associating a preference violation cost to each time interval. Preference violation 

cost reflects the level of the preference violations to the agent. It is essentially a subjective 

measure adopted by an agent. For example, it can be a function of the number and severity of 

preference violations that a time interval may cause to the agent. In many cases, it is reasonable 

to assume that an agent can order the time intervals in its FTI according to the increasing order of 

their preference violation costs. That is, given an ordered FTI,                

 |   |     is known to the agent, where    denotes the preference violation cost of the  th time 

interval in FTI and    denotes the preference violation cost of not being allocated any time 

intervals (for the sake of simplicity, we drop the agent subscript in this subsection). Note that an 

agent may have identical preference violation costs for more than one time intervals. In a FTI, 

the highest preference violation cost is that of not being awarded in the service schedule. 

Anything beyond that is not included since it is not relevant to our NCSS.   

An agent would prefer to be assigned a time interval with lowest preference violation cost. 

However, the final schedule is computed based on the submitted time intervals from all agents. 

Because of the potential time conflicts among agents’ requests, it is difficult for them to decide 

how much availability information it should reveal in order to obtain a preferred assignment. If 

                                                           
1 In this paper agents also refer to the trading software entities that represent the customer. From this point forward, when we mention 

customers in the context of system modeling and design, we will use the term “agent”.  
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an agent only submits a few low cost time intervals, it can control the upper bound of its 

preference violation cost as the awarded bundle must be within the set of submitted intervals. 

However, by doing so, it runs the risk of not being allocated anything if the submitted time 

intervals are also demanded by other agents with higher weights.  On the other hand, if an agent 

submits its complete FTI, it maximizes its probability of getting an assignment. However, 

reporting complete FTI increases the possibility of ending up with an interval with high 

preference violation cost. In fact, there is not a clear strategy for agents to minimize their 

expected preference violation costs.  The effectiveness of an agent’s bidding strategy depends on 

how heavy the competition is for its desired time intervals and other agents’ bidding strategies. 

This uncertainty leads to speculation during bidding, which will increase agents’ computation 

cost and may render final schedule arbitrarily far from optimal. Our goal, therefore, is to design a 

mechanism which systematically evolves the solution towards an optimal one given the 

constraint that agents try to avoid high cost assignments by not revealing their complete 

availability. Since no payment is allowed in the NCSS setting, the possibility of applying 

standard one-shot VCG mechanisms [14][15][16] and even its iterative implementations [17] is 

eliminated. In the following section, we will propose a non-price bidding approach to the NCSS 

problem. We will also evaluate the performance of the approach in Section V.  

4. The Iterative Bidding Framework 

The bidding framework proposed in this paper is an iterative bundle auction. It contains two 

major components: an iterative bidding procedure and an integer programming model for winner 

determination. The winner determination model computes provisional schedules which 

maximize the sum of the weights of winning bids at each round. The iterative bidding procedure 

provides a structure for the agents and the service provider (auctioneer) to interact in a 

systematic way and eventually evolve the provisional solutions towards an optimal one. Iterative 

bidding also reduces agents’ information revelation and adds the potential of accommodating 

dynamic changes during the bidding process.  The iterative bidding framework is a single-

attribute auction, which allows negotiation over a non-price attribute: the level of availability of 

agents revealed to the auctioneer. The framework has good privacy preserving properties. It 

requires agents’ revelation of their availability only on a necessary to reveal basis.  
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Figure 1.   Flow chart of the iterative bidding procedure for NCSS problems 

4.1. Iterative Bidding 

The iterative bidding procedure is depicted as a flow chart in Figure 1.  The bidding procedure 

consists of four components, namely initialization, availability update and bidding, termination 

checking and winner determination. The auctioneer first publishes its open time units to agents 

and subsequently invites agents to submit their preferred time intervals. The iterative bidding is a 

collaborative interaction procedure between the auctioneer and the agents.  

4.1.1. Initialization 

Initially, an agent has a service request and knows its FTI. The agent constructs its initial bid 

by selecting the available time intervals with lowest preference violation cost and sends them to 

the auctioneer. If a bid contains more than one time intervals, they are connected by XOR logical 

connector meaning that the agent is willing to be scheduled in either of the intervals and the 

agent is indifferent from the intervals in terms of the preference violation cost.  

4.1.2. Availability Update and Bidding  

After the provisional schedule which resulted from the winner determination at round     is 

presented to the agents, at the beginning of round   (   ), an agent needs to decide whether it 

submits additional time intervals to the auctioneer at round  .  If an agent was not awarded in the 
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provisional schedule at round    , it has two availability update options at round  : (1) it can 

submit additional time intervals; (2) it can also keep the set of submitted time intervals 

unchanged by submitting an empty bid (a bid does not contain any time intervals). However, if 

an agent does so, the auctioneer will consider the agent has entered into the final bid status and 

the agent is forbidden from updating its availability in future rounds. On the other hand, if an 

agent won in the last round, it also has the option of submitting additional time intervals or 

submitting an empty bid. However, in this winning case, the agent does not enter into the final 

bid status.  

 

Figure 2.        Agents’ myopic bidding strategy at a specific round 

Although the auction rule allows an agent to bid differently in both the losing and winning 

cases, we will show in the next section that, since agents are assumed to be rational in 

minimizing their preference violation costs, they will always follow the myopic bidding strategy 

which is described in Figure 2. The myopic bidding strategy says if an agent won during the last 

round, it will submit an empty bid at the current round; if the agent lost, it will check whether all 

the intervals in its FTI have been submitted. If yes, the agent will still submit an empty bid 

because there are no more available time intervals to be added; if no, the agent will select the 

ones with the lowest cost from its unrevealed part of the FTI and submit them to the auctioneer.  
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4.2. Bids Screening and Termination Checking 

Once bids are received from the agents, the auctioneer first screens out invalid ones. Those 

bids will not be considered in the following winner determination procedure. Invalid bids are 

defined as containing (1) time intervals which have been submitted in the previous rounds; (2) 

new time intervals from agents who have already declared their final bidding status in previous 

rounds; and (3) a time interval which is shorter than the processing time of the agent’s request. 

The auctioneer then checks the termination condition against the valid bids. The auction 

terminates if there is no new availability added. That is, each agent that bid in the last round has 

either submitted an empty bid or withdrawn from the bidding process. After the auction 

terminates, the auctioneer implements the final schedule.  If the termination condition is not 

satisfied, the auctioneer will update agents’ availability information by adding the newly 

submitted time intervals to those already submitted in previous rounds and solve the winner 

determination model using the updated availability information as input.  

4.3. Winner Determination 

The auctioneer needs to compute a new provisional schedule in each round as long as the 

auction is not terminated. At round  , the new provisional schedule    solves provider’s decision 

problem model with updated availability from all bidding agents.  It is possible that there exist 

multiple schedules with the same optimal overall weight.  Which optimal schedule the auctioneer 

will find is determined by a combination of many factors, such as the design and configuration of 

the winner determination algorithm and the organization pattern of the input data. After winner 

determination, the auctioneer will inform all bidding agents with the results regarding whether 

they win or lose at round  . After receiving the results, the agents will decide their strategy on 

availability updating and start a new round of bidding. It is important to note that the winner 

determination model here is different from that of many other combinatorial auctions, in which 

the losing bids will not be considered in future rounds [18]. In our model, the bid from an agent 

is just a new addition to its already submitted availability. When computing the provisional 

schedule, winner determination algorithm will consider all time intervals submitted from an 

agent during current and previous rounds. In addition, the provisional schedule is determined by 

the updated availability at current round. It is not affected by the sequence of bidding in previous 

rounds.  
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4.4. Properties of the Iterative Bidding Framework 

In the design of the iterative bidding framework, we have assumed that agents bid according to 

the myopic bidding strategy described in Figure 2. As agents are self-interested, a question arises 

naturally: will the agents really follow the myopic strategy? We now study the iterative bidding 

framework from incentive compatibility perspective. We prove that the myopic bidding strategy 

we have assumed is the dominant strategy for agents as stated in the following proposition. 

Proposition 1 Given the proposed iterative bidding mechanism, myopic bidding is the 

dominant strategy for agents.  

Proof: It’s clear that if an agent has already been awarded in the previous round, there is no 

reason for it to add new time intervals in the current round because more availability increase the 

upper bound of its preference violation cost. Therefore, it will follow the myopic strategy by 

reporting an empty bid. Let’s now consider the situation where the agent is not awarded in the 

previous round. Assume that the agent has reported first     time intervals in its FTI during 

the previous rounds. If the agent follows myopic strategy, it should add the  th time interval at 

the current round and update its availability to first   time intervals. To compare with the myopic 

strategy, we construct an alternative strategy, in which the agent reports first (   )  time 

intervals. In the following we first prove that the myopic strategy weakly dominates the 

alternative strategy. We consider three cases: 

Case#1: The agent is not awarded in the current round, no matter it submits first   or     time 

intervals. In this case, both first   and first     time intervals end up with the same 

preference violation cost which is   . There is no difference between the myopic and the 

alternative strategies. 

Case#2: The agent is awarded by submitting first   time intervals. In this case, the agent must be 

awarded by reporting first     time intervals because first   is a subset of first    . Since 

the awarded time bundle can fall into any one of the submitted time intervals, we compare the 

expected preference violation cost of the myopic strategy and the alternative strategy. Let    

denotes the number of available time intervals, each of which costs   . Since          

         , we know that     ∑   
 
    ∑     

 
   . Since       , it follows that 

        ∑   
 
        ∑     

 
   .  Adding ∑   

 
   ∑     

 
    to both sides of the inequality 

we have ∑   
 
   ∑     

 
            ∑   

 
     ∑   

 
   ∑     

 
        ∑     
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   ∑     

   
    ∑   

   
   ∑     

 
   , which is equivalent to ∑     

   
   ∑   

   
   ⁄  

∑     
 
   ∑   

 
   ⁄ .  

Since adding the time interval     will increase the feasible schedule space of the winner 

determination, therefore, will not change the value of   ,        , the left hand side of the 

last inequality can be interpreted as the expected cost of reporting first     intervals and the 

right hand side can be interpreted as the expected cost of reporting only first   intervals. It is 

clear that when the agent can be awarded by just reporting first   intervals. The myopic 

strategy always leads to less (or equal) expected preference violation cost than the alternative 

strategy does.  

Case#3: The agent is not awarded by reporting first   intervals, but awarded by reporting first 

    intervals. In this case, although by the myopic strategy, the agent is not awarded at the 

current round, it always has the option to report first     by repeatedly applying the myopic 

strategy in the next round. Given that the sequence of bidding does not affect the winner 

determination result, that is, the same set of availability intervals will result in the same 

provisional schedule, the agent will not lose any opportunity by adopting the myopic strategy.  

It follows that the myopic strategy weakly dominates the alternative strategy with first     

time intervals. This conclusion also applies to the initial round of bidding. Since the provisional 

schedule before the initial round is empty, which can be interpreted as no agent is allocated a 

bundle. Therefore the best strategy for agents’ initial round bidding is myopic strategy. That is, at 

the first round, an agent should bid with its lowest cost time intervals in its FTI. By mathematical 

induction, it follows that, myopic bidding is the dominant strategy for agents given the proposed 

iterative bidding mechanism    

4.5. Iterative Bidding with Partial Allocation during Each Round  

The iterative bidding procedure we have proposed computes provisional allocation during 

each round. It does not permanently award time bundles to customers until the termination 

condition is reached. The procedure may reach higher solution quality since it collects more 

agents’ availability along the process of bidding.  However, as the bidding proceeds, the size of 

the winner determination problem will increase continuously. Since we have proved that the 

winner determination problem is NP-hard, for a service scheduling problem with larger amount 

of customers, winner determination will be slowed down considerably as more availability 
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information is added. As a variant of the proposed iterative bidding procedure, we can actually 

award the provisional allocation to the customers during each round. In the subsequent round, 

those awarded time intervals will be removed from the service time inventory, the awarded 

customers will withdraw from the bidding process, and the customers who are not awarded in the 

current round will construct their bids based on the updated inventory. The service provider will 

solve the winner determination problem formulated by the updated inventory and the bids 

submitted in the current round.  In this case, the size of winner determination problem decreases 

along the iterations as both the number of provider’s inventory and the number of bidding agents 

decrease. The bidding terminates in lesser rounds than the original procedure does. In the next 

section, we will study the relationship between the efficiency of a solution and the privacy loss 

of customers under the iterative bidding procedures through a computational study. 

5. Privacy and Efficiency Analysis: A Computational Study 

By designing an iterative bidding framework, agents reveal their availability information as 

necessary. Also, higher system transparency makes the adoption of the framework easier. 

However, these benefits are obtained with a cost of efficiency. If at the termination of bidding all 

agents have revealed their full availability, the winner determination algorithm will compute an 

optimal schedule which maximizes the sum of the weights of awarded agents. However, when 

bidding terminates before all feasibility information becomes known to the auctioneer, the 

optimality of the solution is not guaranteed. In this section, we evaluate the privacy and 

efficiency performance of the proposed approach through a computational study. Given a 

solution schedule, the measure of its efficiency is defined as the ratio between its overall weight 

and that of an optimal solution for the same problem instance. The measure of privacy loss is the 

ratio of the revealed availability of all agents when the solution is reached and their complete 

availability. Intuitively, submitting more availability incurs high privacy loss, which increases 

the expected preference violation cost. We use ILOG CPLEX 12.1 (http://www-

01.ibm.com/software/integration/optimization/cplex-optimizer) as optimization engine for 

solving the winner determination model given the set of bids from agents as the input. The 

iterative bidding control logic is coded using the OPL Script language [19]. The control module 

and the optimization engine are integrated using the ILOG OPL environment (http://www-
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01.ibm.com/software/integration/optimization/cplex-optimization-studio). All experiments were 

conducted on a PC with a 2.4 GHz CPU and 4 GB memory.  

 

Figure 2.   Efficiency increment during interative bidding  

            

 
Figure 3.   Privacy loss increment during iterative bidding 

                    

Figure 4.   Tradeoff between efficiency and privacy loss    

We generate a set of test problem instances by fixing the service provider’s time units 

inventory to 20 and the number of customers to 50. Customers’ weights are drawn from a 

uniform distribution in the range of 1 to 3. The processing times for agents’ requests are identical 

and restricted to one time unit. For each agent, we randomly select the set of time intervals from 
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the service provider’s available time inventory to form its FTI. The sizes of agents’ FTIs are 

drawn from a uniform distribution in the range of 8 to 16 with a mean of 12.The length of the 

time intervals in FTIs is also restricted to one. The time intervals in FTIs are randomly ordered. 

We solve the set of problem instances using the proposed iterative bidding framework and 

compute the average efficiency and privacy loss at each round of bidding. The bidding processes 

without partial allocation usually terminate within 12 rounds which is the mean of the size of 

FTIs. The bidding processes with partial allocation usually terminate within 6 round, which are, 

as expected, much faster than the bidding without partial allocation case.  

Figures 3 and 4 show the efficiency and privacy loss increment during the bidding process.  

At round 6, the modified bidding procedure with partial allocation achieves on average 84% 

efficiency, whereas the original bidding procedure without partial allocation achieves on average 

93% efficiency at round 12.  The bidding procedure with partial allocation is essentially a greedy 

distributed search algorithm which can find a solution quickly. However, the solution quality can 

be compromised. The bidding procedure without partial allocation involves backtracking. It 

normally reaches higher quality solution, however, with more rounds of bidding. From Figure 4, 

we see that the privacy loss of bidding with partial allocation is always lower than that of bidding 

without partial allocation and the difference increases along the bidding process. Compared with 

bidding without partial allocation, it seems that bidding with partial allocation can find a 

reasonably good solution with much less computation costs and privacy loss. Figure 5 shows the 

tradeoff between efficiency and privacy loss. We see that high efficiency demands more privacy, 

which is natural. It is observed that increasing privacy loss has a diminishing return in efficiency. 

Bidding with partial allocation can reach 84% efficiency with only 34% privacy loss, whereas 

bidding without partial allocation needs to double the privacy loss (70%) in order to reach the 

same efficiency level. For bidding without partial allocation, a solution with 93% efficiency 

demands 79% privacy loss. Since agents decide when to stop submitting more availability 

information to the auctioneer, the bidding procedure actually provides agents with the option of 

setting their respective privacy loss limits based on their own calculation of the costs caused by 

privacy loss. In this experiment, we did not consider the situation where agents have privacy loss 

limits. However, Figure 5 gives an indication regarding the efficiency we can reach given 

various levels’ loss of privacy.  

Table 1 configuration of scalability testing problems and computational Results 
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Group 

Num. of 

agents 

Num. of available time 

units for bidding 

Run time 

(seconds) 

1 100 20 0.36 

2 200 20 0.42 

3 300 20 0.68 

4 300 40 1.08 

5 400 20 1.52 

6 500 40 2.16 

7 800 40 2.67 

8 1000 40 3.48 

The responsiveness and scalability of the proposed bidding framework are mainly determined 

by the computation time needed to solve the winner determination problem at each round of 

bidding (we assume that the computation needed for an agent to order its time intervals in FTI is 

trivial). To evaluate the effectiveness of using ILOG CPLEX 12.1 for solving the winner 

determination problems, we have randomly generated eight groups of problem instances with 

different sizes and structures. Weights of agents and sizes of FTIs are drawn from the same 

distributions as previously generated problem sets. The configuration of the test problem sets and 

the corresponding solving time by CPLEX 12.1 are summarized in Table 1.  Based on the run 

time results, it is clear that the proposed iterative bidding framework can be practically applied to 

large scale NCSS problems. For example, CPLEX 12.1 can solve a winner determination 

problem with 40 available time units and 1000 agents in 3.48 seconds. In this case, if the mean of 

the size of agents’ FTIs is 12, which is quite reasonable in many application domains, the overall 

bidding procedure will likely to terminate within 45 seconds. This level of responsiveness is 

sufficient for most of the NCSS applications. 

6. Related work 

There has been growing research efforts on services supply chains. Many of them extrapolate 

lessons learned in the manufacturing sector to the service sector [20]. For decentralized 

scheduling problems, economic based mechanisms have been proposed to facilitate information 

sharing and achieving high efficiency given the self-interested nature of participants [21].  These 

approaches usually model processing times of resources as goods to be sold in the market, e.g. 

landing timeslots of airport runways [22], machine processing times of a factory [11], 

computation and network accessing times of internet resources [23], and the right to use railroad 

tracks [24]. The market, then balance the demand and supply using various price mechanisms. 
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Different types of auctions have been proposed for decentralized scheduling in the literature.  

While giving a comprehensive review of these models is beyond the scope of this paper, we 

summarize three typical auctions which are of importance to decentralized scheduling. The core 

issue here is how to accommodate the complementarity of agents’ preferences over bundles of 

time units. 

Sequential and simultaneous auctions price bundles as the sum price of the individual items. 

They do not allow bidders to bid on bundles. Sequential auctions suppose that the set of items are 

auctioned in sequence. Bidders bid for items in a specific, known order, and can choose how 

much (and whether) to bid for an item depending on past successes, failures, prices, and so on. 

Sequential auctions are particularly useful in situations where setting up combinatorial or 

simultaneous auctions are infeasible. Simultaneous auctions sell multiple items in separate 

markets simultaneously. Bidders have to interact with simultaneous but distinct markets in order 

to obtain a combination of items sufficient to accomplish their task. Real-world markets quite 

typically operate separately and concurrently despite significant interactions in preferences. A 

typical example is the series of FCC spectrum auctions [25]. In [24], simultaneous auctions are 

designed for decentralized train scheduling problems. A review of the uses of economic theory in 

simultaneous auction design can be found in [26]. Sequential and simultaneous auctions fail 

when there are no prices that support an efficient solution (the existence problem) and also when 

agents bid cautiously to avoid purchasing an incomplete bundle (the exposure problem). 

However, given that these auctions are more practical in terms of computation, they are two 

important models worthy of further study.  

Combinatorial auctions (CAs) allow bidders to place bids on bundles of items. It addresses 

complementary preference issue explicitly. However, the computation required for solving hard 

valuation problems and winner determination problems can be prohibitive. In general, CAs are 

likely to be practical for smaller size problems. The computational complexities of CAs have 

been studied by various researchers [18]. Some sophisticated algorithms have produced 

promising results [27].  

Iterative bundle auctions are iterative implementations of CAs. This class of auction has 

practical significance because it addresses the computational and informational complexities of 

CAs by allowing bidders to reveal their preference information only as necessary as the auction 

proceeds, and bidders are not required to submit (and compute) complete and exact information 
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about their private valuations. With careful design of the structure and components, iterative 

bundle auctions have the potential of significantly reducing computational costs in CAs. In 

addition, iterative auctions specially designed for scheduling problems have also been proposed 

in the literature. In [28], iterative auctions are applied to the job shop scheduling problem. The 

focus in [28] is to investigate the links between combinatorial auctions and Lagrangean 

relaxation, and to design auctions based on the Lagrangean based decomposition. In [11], the 

properties of several iterative auction protocols are investigated in the context of decentralized 

scheduling. In [29] and [30] price prediction and bidding strategies for simultaneous auctions are 

studied in the setting of market-based scheduling. The proposed framework in this paper is an 

iterative bundle auction specially designed for scheduling problems. In many cases, iterative 

auctions present better computational and privacy properties than those of CAs. In addition, 

iterative auctions have the potential of accommodating dynamic events, which is required in 

many real-world scheduling applications. The sequential, simultaneous, combinatorial and 

iterative bundle auctions are important models for accommodating complementary preferences 

of agents. However, they require price or payment mechanisms, therefore cannot be directly 

applied to our NCSS setting.  

Secure multiparty computation (SMC) protocols enable a group of mutually distrustful parties 

to perform a joint computation with private inputs. In theory, trading partners could benefit from 

strong privacy protection by using SMC protocols in supply chain collaboration. However, the 

uptake of SMC in practical applications is still rare [31]. There could be three lines of 

explanations. Catrina and Kerschbaum argue that this is due to poor performance, functionality, 

and scalability, as well as architectures that do not meet the needs of the applications. At a more 

general level, Goldreich states in [32] that although the general secure multi-party computation 

problem is solvable in theory, using the solutions derived by these general results for special 

cases can be impractical. In other words, efficiency dictates that development of special solutions 

for special cases for efficiency reasons. In addition, secure multi-party protocols are a form of 

cooperative distributed computing. They preserve the privacy of the participants’ data. However, 

they assume cooperative behavior of participants. In other words, participants are willing to 

supply true and complete information to the secure protocol. Game theoretic behavior of 

participants is not explicitly modeled in SMC, which restricts its application to supply chain 

collaborations. For example, secure protocols for discriminatory and non-discriminatory e-
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auctions are proposed in [7]. These protocols allow buyers to reveal only partial information of 

their price-quantity pair bids to the supplier. However, incentives are still needed to motivate 

buyers from hiding or misreporting their true private information. In our services scheduling 

model, customers can behave strategically by hiding availability information. Furthermore, 

SMCs usually do not assume any trusted center, which is not the case in our services scheduling 

setting.  

7. Conclusion 

In recent years, the economy has evolved from manufacturing to services. Service supply chain 

management has become an important research area with significant practical implications. 

Scheduling non-commercial services for self-interested customers who behave strategically to 

protect their privacy is a challenging problem attributed to the different objectives of service 

provider and the customers. In non-commercial services scheduling environments, no payment 

transfers are allowed, which eliminates the possibility of designing price or payment based 

mechanisms to balance the supply and demand.  We propose a bidding framework for scheduling 

non-commercial services and evaluate its efficiency and privacy performance through theoretical 

analysis and computational experiments. We show that, under the proposed auction mechanism, 

myopic bidding is the dominant strategy for customers. In terms of the efficiency and privacy 

performance, the computational study shows that bidding with partial allocation can find a 

reasonably good solution with much less computation costs and privacy loss. For both cases of 

bidding with and without partial allocation, increasing privacy loss has a diminishing return in 

efficiency. Experimental results also show that the proposed framework scales well to large size 

problems. 

 For future research, we will study the applicability of the proposed bidding framework to 

various types of services scheduling domains. We plan to build an integrated simulation 

environment with interactive user interfaces for both customers and the service provider. We 

believe that such a simulation environment can provides more insights in terms of the role that 

privacy plays in service scheduling.  
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