Downloaded from orbit.dtu.dk on: Apr 27, 2024

DTU Library

=
=
—

i

Identification of a reusable requirements structure for embedded products in a
dynamic market environment

Hauksdattir, Dagny; Mortensen, Niels Henrik; Nielsen, Poul Erik

Published in:
Computers in Industry

Link to article, DOI:
10.1016/j.compind.2012.10.008

Publication date:
2013

Document Version
Early version, also known as pre-print

Link back to DTU Orbit

Citation (APA):

Hauksddttir, D., Mortensen, N. H., & Nielsen, P. E. (2013). Identification of a reusable requirements structure for
embedded products in a dynamic market environment. Computers in Industry, 64, 351-362.
https://doi.org/10.1016/j.compind.2012.10.008

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

e Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
e You may not further distribute the material or use it for any profit-making activity or commercial gain
e You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

https://doi.org/10.1016/j.compind.2012.10.008
https://orbit.dtu.dk/en/publications/eef4fc24-9e7e-4760-9dda-ae397cba3a9e
https://doi.org/10.1016/j.compind.2012.10.008

| dentification of a reusable requirements structure for
embedded productsin a dynamic market environment.

1. Introduction

The main measure of the success of a system is the degndech it meets its purpose. Therefore,
identifying this purpose must be one of the main activitidbendevelopment of systems [1]. A survey
conducted by the Standish group shows that some ofdivereason for project failure can be directly
related to incomplete requirements and poor requirementageaent [2]. The Requirements
Specification (RS) is important to create a written agesg among players regarding what will be
included in a new product development project. It aligns expectatimhsepresents a contract between
development, project managers, customer and “business owrteh&ls been long recognized that
inadequate, incomplete, ambiguous, or inconsistent requirsnm@ave a significant impact on the
quality of (software) products [1]. Problems with spieaifions are probably the principal reason for
project failure where systems are delivered late, donaat the real needs of their users, and perform
in an unsatisfactory way [3, 4, 5, 6]. Quality RSs preventngiogy, ambiguity and misunderstanding
between players [7].

Technical products may have hundreds of requirements and thgyaatirequirement documenting
can consume considerable recourses. As product and markptegdy increases requirements are
becoming a valuable knowledge. Similarly as other valuable lkeugel requirements can be reused
rather than reinvented. Reusing similar requirement framevi®iksong the most promising ways to
reduce time and resources, and increase quality ofiremgents [8]. By reusing requirements
companies can improve the efficiency of documenting and wawjerequirements. Systematically
reusing requirements can therefore contribute to reduced timeketraad increased product quality.

The requirement structure is an important enabler for allinty and managing requirements reuse. A
consistent requirement structure will support companiesha planning and management of
requirements activities and enable downstream reuse of agsgn documents. A good requirement
structure will not only need to be sufficient for documentieguirements, but also for efficiently
managing activities such as finding, selecting and maintainingrezgemts. It is not really possible to
start systematically reusing requirements unless a censmhd good structure is in place. This topic
should therefore be a top priority for every company thattsvemreuse requirements across product
development projects and needs further attention.

Even though the requirement structure is important for rethée topic currently lacks theory and
practices. The objective of this paper is to identify wheracterizes a good structure for requirement
reuse and to suggest a structure that fulfils the ideshtdigerions. The structure shall be used for
documenting requirements in a re-usable RS. A RS is a cohlieatirequirements that describes the
demanded behaviour and properties of a system or a produd®S'ban be a document or it can be a
collection of requirement items in a repository. The stmecwill both be used for a RS containing
selected requirements for a product instance and for tleetion of reusable requirements. It is about
finding a structure that can cover all types of requirememtfide all technology fields and support
identification and reuse of relevant requirements. This is impddamnable companies to gain benefits
from reusing requirements in practise. Without having comvel the structure, practical challenges
could prevent capturing benefits from reuse. The objective tstlisa structuring technique can be
applied to technically complex, embedded products, as timégatly involve a high level of system
complexity. With the proposed structure the focus is on tgh l@vel grouping and structuring of
requirements, contributing to creating a mature way to managettbaile requirements.

The sections of this paper are organized as follows. In the nexirsesgction 2, the criterions defining
a good reusable requirement structure are discussed. tlans8¢ the state of the art methods for
structuring and reusing requirements are presented. Secpoesdnts a gap analysis comparing the

previous contributions to the criterions identified Section 2. Section 5 presents the proposal for
structuring requirements for reuse. In section 6 a casly,sithere the proposed structure is used to
document and reuse requirement for solar inverter products,asbdies The paper then concludes in
section 7 where the findings of the paper are discussed.

2. What needsto bein placeto reuse requirements?

It has been recognized that requirements are valuable gtiormand that reusing existing
requirements can be a promising way to increase efficiamdpe documentation process and to
increase the quality of requirements [8, 9, 10, 11, 12, 133. suggested that both the requirements
them self, their structure and other domain knowledge caaused in new projects. In order to reuse
requirements several things should be in place such aswmigién and correct requirements, a
definition of what is general and what is specific, howranage variability between products, roles
and responsibilities for how to document and to maintainrétgirements, selection constrains,
dependencies or relationships between requirements etc.

However in practice, the first thing that must be done befoildibg a reusable requirements asset is
to define a high level grouping and classification patterhtlwcreate a system for organising the
documented requirements.

When there are hundreds of requirements they can not be eotmthin one big pile of items and it
becomes unavoidable to group the requirements to createlegice overview. Requirement will not
be independent, but it will be in contextual relationship witieprequirements. Requirements might
thus, specify related things, elaborate on or be a rationaleth@r requirements. In some cases
requirements directly affect the value other requireméitisre must therefore be a defined structure
which defines the logic for how to document requirements. Trbetare of the requirement repository
should make it easy to understand it, retrieve and analyzeeihs, follow dependency links, trace
items back to their rationale and make appropriate chdhggsrhis structure is important for all RSs
but especially for those that shall be reused. The authdnssgfaper have identified several criterions
that must be realized in order to establish a good requirement strucggearal and additional ones to
create a good requirement structure for reuse.

The criterions for good requirements structures in general are:

« Overview and context: It is important that related requirements can be groupgether so
users can easily get an overview and understanding of the conteatR&1t This is challenging
since different requirements might be related depending on the viewgen.

e Coverage of all requirements: The requirement structure must have a place for all r=geint
topics and types of requirements.

e Coverageanalysis. The structure must create an overview of whether the RS is demple

* Representation to stakeholders: There are many stakeholders to the RS. The structure must
make it easy for different groups of stakeholders to vigevant requirements. It must also be
straight forward which stakeholders can provide the necessfwymation to define the
requirements.

» Reflection of solution domain: To enable a transparent transformation to design, the stuctu
must reflect the solution domain of the product.

In addition, the criterions for good requirements structures for eease

e Consstency: Although the product requirements will differ between produojects the
structure must be consistent and stable across products. The nanoedea of the main groups
must be consistent and each requirement should have a dec&tion in the structure. This
will create familiarity of the structure for users, blvag better planning of the requirement
documentation and stable connections to other tools.

 User friendliness. The reusable structure has some additional criteri@gmarding user
friendliness. Different stakeholders will work with the R8m one project to another. It must
be transparent where to find what they are looking for and where to teqaieements.

The structure should create a structural guide for rgusgéing the users from one requirement
to the next creating the order in which requirements are selected.

* Maintenance: It must be easy to maintain reusable requirements. Requiterave different
characteristics and sources that affect their volaglitd maintenance. Therefore, requirements
with similar maintenance characteristics should be gmbupgether. It is beneficial if the
grouping of the requirements makes it transparent which sti@lebshould be responsible for
its maintenance.

* Downstream reuse: To enable downstream reuse it is important that the mgaimts have a
consistent location in the structure. It is also important thedfects other specifications, such
as test specification and that knowledge from the RS eamansferred to other documents,
such as the design specification. This enables a stadldramsparent connection between
requirements items and corresponding items in other specifications.

The goal of this paper is to present a RS structure thatufillthese criterions.

3 State of the art
The state of the art work related to the proposal of phiser is focused on previous contribution
regarding high level grouping, categorizing and structuring for requireraase.

3.1 Requirement types

It has been widely recognised that requirements can be deéindddivided into different
requirement types [9, 11, 14]. Requirement types are usedstoilke the purpose of requirements
and have often been the basis for grouping requirements. Tétecoramon types ariinctional-
andnon-functional Requirements.

Functional requirements (FRs) are specifications of what a product should be &bbo. That is the
functions, activities or actions that are to be part of the prodhdlcif @arried out contribute to its goals.
FRs may specify calculations, technical details, data mbtipn and processing and other
functionality. FRs are often captured in use cases or workipses. FRs can be further described by
non-functional or quality requirements.

The Non-functional Requirements (NFRs) specify qualities that the product must have oiteria that
the product must meet. They describe the spirit of its axppee, how easy it must be to use, how
secure it must be, what laws apply to it and other qualities thatbaumuiilt into the product.

NFRs are often further specified as quality attributes [QB8smmon QAs ardpok and feel, usability,
reliability, performance, maintainability, portability, security and legal requirements. Most of the QAs
that are important for a product emerge from the systemalole. Because QAs emerge from the
structuring principles of the whole system, it will be difficial change these properties after the system
is completed. Finding out these QAs and carefully priongj them is crucial for a successful
development process [15].

Additionally requirement types, such as compliance reqents, architectural requirements and
development requirements have been suggested [11]. The distibetivseen FRs and NFRs should
not be taken in a strict, clear cut sense since the bouhddween them is not always clear. For
example, functional safety requirements such as warning sigaalbe considered as functional and
safety requirements and similarly NFRs can overlap, suclgalsded security requirements [11].

The requirement types are recognised way to categmrqérements. However the downside of the
approach is that suggest a separation of FRs and NFRs whiclfessible to disregard due to their
close connection. Furthermore, requirement types don’tctefie problem domain well enough. The
requirement types therefore don't provide a sufficiemecage analysis. Finally, how to implement a

high level grouping and structuring that could be implememedRS document or a requirement tool
is not specified.

3.2 Requirement models

Several theories contributed to formal modelling techniques evteguirements are presented and
analysed in system models. These approaches make it passibiedel, identify and rationalize
requirements for complex systems.

One of the tools often used for capturing FRs are Use Casgadns [16, 17, 18, 19]. Use case
diagrams visually represent the behavioural requiremém@tpmposed system, from which the analyst
can derive the FRs that must be implemented. In objestted software development, requirements
of different stakeholders are often manifested in use aadels which complement the static domain
model by dynamic FRs [16]. A number of methods which extesedcases with variability points have
been proposed. Each of them applies use case diagramswveikiplecit representation of variability to
model product line requirements [20, 21, 22]. They diffemhyain the expressiveness of the notation
that they support. In addition [23] extended the product line ase specification to include the
dependencies between variation points [15]. The use case dppeoach is however limited since it
only documents FRs and leaves out other requirement types gtatbraineeded for a complete the RS.

NFRs are usually the most difficult and expensive requaremto achieve [10, 24] but are also among
the most important system QAs [10]. Goal-oriented appemth requirements engineering (GORE)
[8, 25, 26, 27, 28] are based on refining vague objectives into ¢enfmenal goals and then
decomposing these further into sub goals until a set of jprargoals, which can readily be expressed
as system requirements, have been derived. Several modellingdmetinoport the application of
GORE such as the NFR framework, KAOS and25]. The NFR framework concentrates on the
modelling and analysis of NFRs. The main idea of the appram systematically model and refine
NFRs and to expose positive and negative influences dreliff alternatives on these requirements
[29]. The main modelling tool that the framework provideshis Soft-Goal interdependency Graph
(SIG) [25]. Overall, these NFR models provide a processited approach for dealing with NFRs.
Instead of evaluating the final product with respect to whathmeets its NFRs, the emphasis is on
trying to analyze and rationalize the development process is wrMFRs [29, 30].

In Use-Case driven approach, the description of NFRs is petife enough and in the NFRs
framework approach NFRs is separate from dealing with FRs. Theases the complexity of analysis
and design in later development stages [29]. Cross cutting corinelnde functional concerns and
non-functional concerns that crosscut and constrain the FBss Cutting concerns are responsible for
producing complex representation that are difficult to undedstand maintain. As an example a
system might be required to perform a certain functioh wétrtain non functional characteristics such
as accuracy or processing speed. This would then be a critisg cwon-functional concern. An
efficient presentation of cross cutting concerns is essentia

[29] Presents a method called NFR/AUC (AUC stands fqre8tial Use-Case driven approach) for
how to adapt the use case diagram and the NFR frameworkien o integrate FRs and NFRs and
identify crosscutting concerns. FRs are identified and boitwlthe use case diagram and global NFR
softgoals are identified. NFRs are associated at keyca$®n points in the use case model and
decomposed into sub-softgoals. The model identifies fumaltiand non-functional cross cutting

concerns and helps to achieve a smooth transition betwesggmsynalysis and design. Figure 1
presents the association points between the use case diagramdR&she

System Boundary

System,
development, or
software process
related NFRs

Access,
communication,
or info exchange
related to NFRs

Functional
requirements
related to NFRs

Enternal entity
related NFRs

Actor

Use Case
Figure 1. Association points connecting the NFRsto the Use Case Diagram [29].

These use case diagram and the Goal oriented approachirhig@ions since they don’t include all
types of requirements. The NFR/AUC method establisheegbded connection between the FRs and
NFRs. However, the model is originates from the use cageadieand therefore the starting point is
always the functionality which is limiting when documenting static goat®nstraints for a product.

To conclude these methods describe modelling techniquedetdify, visualize and rationalize
requirements for a product. They model system knowledge wbgu@ements entities are presented in
relationship with other system entities. There is therefomisalignment between the application of
these modelling techniques and the proposal of this papernis td structuring, the models present
requirements that are related to and elaborate on eaeh dtey therefore provide a way to break
down requirements, which may be converted to the RS steudtiawever, a single model is likely to
present only a branch of the structure. A high level RS steithat can contain all requirements is
therefore still missing.

3.3 Domain engineering

Domain analysis was introduced by Neighbors in the DRAC®@e8y$31]. The goal of the domain
analysis process is to generate a generic represerttiomn domain concepts. This model then guides
the requirements development [32] or is itself the requirermeatiel [33]. The main interest is in how
variability is managed in domain specifications.

The software technology for adaptable, realisable sys{&TARS) project developed comprehensive
process models for software reuse [34]. During domain andheysuse commonality and variability
assumptions to describe the characteristics shared anftargrd systems and how these systems vary.
Traditional domain modelling methods, such as the STARS méefihmal on the existing systems and
the general rules about the domain. This focus, however, cartdeadechnical representation of
variability and may lead to an insufficient account of potentialreutequirements.

[35] proposed using two different domain analysis activitgpplication domain analysis and solution
domain analysis. The application domain analysis corresptindke traditional view of domain
analysis. The solution domain analysis discovers the limtatof the solution domain technology and
finds out how concepts in the application domain and the pasesneft variation can be expressed in
terms of the solution domain concepts. Coplien (1999) [35] prélsentportance of analysing both
the problem- and solution domain for requirement analysis.

The domain analyses in general identify that to identify requents each domain should be studied.
They also identify that the domain analysis can reveal domain diffesevhich are sources for general
and variable requirements. This provides a foundation forvarage analysis of the specification.
However, the domain engineering does not provide a concreteovediutture the RS on a high level,
covering all requirements.

3.4 Viewpoint approach

[7, 28, 36, 37, 38, 39, 40, 41, 42] Suggest a viewpoint approach for eliaeidgstructuring
requirements. The preview (Process and Requirements engghemwpoints) viewpoint [7, 28] is an
entity which encapsulates some but not all information absystem’s requirement. In the viewpoint
approach, requirements are structured according to differens\of the system. For each viewpoint a
set of requirements are identified. A viewpoint-based agprt@requirements engineering recognises
that all information about the system requirements cannot deewadired by considering the system
from a single perspective. Information from different viemp® must be integrated to form the
complete system specification.

The preview approach introduces a set of concerns whicletréfie high level objectives of the system.
They are used to align the requirement for the system héthbtisiness goals. Concerns are a way of
expressing critical holistic requirements which cut acalksiewpoints and apply to the system as a
whole. Examples of concerns are; safety, cost, availabilibgtionality, reliability and maintainability.
Figure 2 illustrates how concerns cut across possible clalsgesvpoints.

Safety Cost Functionality

Equipment

Operators
VIEWPOINTS I

/ | \

/ Supervisors/line managers \

/ Organisation \
/ Socio-plitical environment
I I I
I I

I
CONCERNS

Figure 2: Preview application of viewpointsand concerns[7].

A viewpoint is defined by its focus. No two viewpoints halve same focus but viewpoints may have
focuses that interacts or overlap. It is important to tilethese overlapping focuses as they help to
discover potential requirement conflicts. The notion autbforms a link between the problem space
and the system which is to be developed and provides adrasedverage analysis. Finally it helps to
encapsulate viewpoints and requirements which are potentellable across a range of systems.
Identifying viewpoints and organising information around themuces the possibility that critical
information will be missed and provides a traceability Inaedsm for linking requirements with their
sources [28].

Mannion et al (1998) [43] proposed using viewpoints to define prodhetrequirements. In their
approach requirements viewpoints are created according tdotihain concepts. By analysing the
requirements organised into viewpoints, reusable requirementseatec:

The viewpoint approach is a sufficient way to group requén@s. The approach identifies that it is
relevant to look at different sources of requirement individual®licit requirements and to ensure that
the coverage of the problem domain. The viewpoint approaamides to the domain approaches in
this way. The viewpoint approaches also don’t give a constgggestion regarding how a consistent
RS for reuse should be structured.

3.5 Hierarchical structuring

Hierarchical classification system is a classificatigstsm where entries are arranged based on some
hierarchical structure. Hierarchical structuring involvesating a decomposition tree structure of items.
The most important hierarchies for requirement reuse are eg@aipn hierarchy and

6

Generalisation/specification hierarchies defined by [32]. Aggtion hierarchy describes the
decomposition of object types. The objects in the upper levatsedierarchy represent subsystems,
whereas the leaf nodes are the concrete object types seglaor components).
Generalisation/specialisation hierarchies support the derivation of a specialised olfipeatach target
configuration by replacing the generic object type by the targeffispagect [32].

Kuusela and Savolainen (2000) [15] present a method calledifiefi hierarchy. A definition
hierarchy consist of nodes that represent design objectiveslemigih decisionsDesign objectives
define the goals and the functionality that the future systbould haveDesign decisions are a
reflection of the solution domain to the requirementsyaimlphase. The hierarchy is a logical AND
tree, that is, the child requirements are used to definendaning of the parent requirements. The
complete hierarchy has a special root node that describesrgesewf the system under development.
The topmost nodes in the definition hierarchy represerdrittgtectural drivers and other QAs that the
system is supposed to fulfil. The structure does not indligenational standards and suggest they
should only be used as a checklist during requirement analystead the major requirements are
chosen so that they are the most important requiremeiit® application domain and will satisfy the
needs of the most important stakeholders.

The definition hierarchy reports several benefits. It provaegise specification of a general design
objective that otherwise would need a lot of textual expiamaStructuring also helps in sorting out
the requirements conflicts and inconsistencies. Reversingehatructure is helpful when one tries to
find missing requirements by finding out if the underlying suluiregqnents are by themselves enough
to completely define the corresponding super requirement.rigralit these missing requirements is
aided by the definition hierarchy because it expresseseibe an the way how to satisfy the need. The
authors also report support for testing. When using the definitioarbir abstract and general user
needs are divided into more defined, compact and tessablrequirements. High-level user needs are
rarely testable as such. In this case one assumes #ilatei$table sub requirements are fulfilled then
also the super requirements are satisfied.

The definition hierarchy provides a high level structuring approach. Fropetspective of reusability,
structuring the topmost nodes based on architectural drives oagke the structure to be unstable
between projects, since different projects are likely to lafferent drivers. Furthermore the structure
focuses less on other none critical requirements andraons, and standards are excluded. It does
therefore not include the complete RS. Finally theeeleck of connection to the problem and solution
domain and the coverage of the specification is not ensured.

4. Gap analysis

Summarizing the previous contributions it can be seen thatfigdakvays for modelling and
categorizing requirements have been suggested. To evalwatgdtioeach of the structuring technique
fulfils the criterions defined in section 2 they are grouped categories consistent with the structure
in section 3. For section 3.5 only the definition hierarchgvaluated. Each method category is then
compared against each criterion. The method categoridaden more than one technique or
contributions which differ in how well they meet the cribes; however the grouping well reflects the
general performance of the techniques against the criterions.

Table 1. Gap analysis.

Requirement| Requirements| Domain |Viewpoint| Defenition

types Modelling | analysis| analyis | Hierarchy
Overview and context + + ++ ++ +
Coverage of all requirements + 0 0 + 0
Coverage analysis + + + ++ +
Representation to stakeholders 0 + + + 0
Reflection of solution domain 0 ++ + 0 ++
Consistency + 0 + 0
User friendliness + + + ++ +
Maintenance + 0 0 0 0
Downstream reuse + + 0 0 0

0 Does not support criterion
+ Moderately supports criterion
++ Fulfils criteria.

Table 1 reveals that all of the existing methods meet soiméhe criterions but none of them
accomplishes in meeting all the criterions. Three cribsti@verview and context, coverage analysis
and user friendliness are well addressed by the currentytmegarding domain- and viewpoint
analysis. Additionally the criterion, reflection of thdwmn domain, is considered to be fulfilled by
requirement modelling and the definition hierarchy.

On the other hand there are criterions that have nat ka#ficiently addressed. The criterions:
coverage of all requirements, consistency, maintenance and deamnseuse are lacking support. The
approaches of requirement types and viewpoint analysic@ar most requirements, but focus on
requirements for the product in its main operation andrratere sources of requirements and
constraints lack attention. Different characteristicee@fhg maintenance of requirements in the
reusable structure is disregarded in all of the modellicignigues although this is an important enabler
for the lifetime of the reusable requirement structufally the criterions: representation to
stakeholders and consistency are only moderately suppbytehe current contributions and need
further attention.

A consistent high level structure to group and categogmsable RSs is missing. There is therefore a
gap in the theory regarding a suggestion of a qualified strogtweichnique that can be applied to
create a structure for a reusable RS in a practical produelogenent environment.

In the following proposal the objective is to create a remuént structure where the quality criterions
for a reusable structure, identified in section 2, are supgo&ince the existing modelling techniques
successfully meet a few of the criterions, some of thdirbe utilized in the proposal. The proposal
will thus contribute to filling the gaps that current moatgltechniques lack in order to accomplish a
good reusable structure for a RS.

5. Proposal about the structure of requirements

The proposal of the Complete Reusable Requirement struciiineow be described. The proposed
structure has 5 groups of requirements that should be tantsisr different products. Each group is
broken down to sub groups based on the main domain viewpoitite problem space of the product.
For each sub group a set of requirements can be iderdifi@dlecomposed hierarchically. In stead of
grouping requirements based on requirement types (FRs aRd)NFF QAs, different requirement
types are combined within the groups. First a look willtddeen at the environment of a traditional
embedded product, which is the logic for the proposed structure.

5.1 Analysis of product environment

To fit its purpose, a product should interact with sysend users in its environment sufficient way,
creating the right outputs and satisfy the expectations ofstakeholders. When documenting
requirements for a product, especially for a new prochenber in an already existing product family
the stakeholders tend to start thinking in terms of alreadgting product features and systems.

8

However, this is a limiting view and might result in a narrow focus, lack of atadeting regarding the
real needs of the users and little innovation to besttdve these needs. When determining whether
requirements are relevant for reuse, front end processeslentify and elect requirements are still
necessary. It is important to support innovation and creéatg well as to analyse the environment of
the product and the needs of the customers. If the prsljaces purpose, customers, users of system
domains etc. with previous products it is likely that manyiregnents can be reused. Once the context
is known it is possible to look for requirements that dedl aik or part of that context and use them as
the source of potentially reusable requirement T8].develop quality requirements it is important to
maintain focus on the environment of the product and its peypasd how differences in the
environment result in different requirements for the product.

In section 2 the criterions that need to be in place fyoa requirement structure are addressed. The
structure reflecting the problem space and having ditocéor all requirements are one of the main
criterions. Therefore to create such a structure the problaoe g1 a traditional embedded product was
analysed. Figure 3 shows how a problem space of a product miglsulaéaad.

~

Problem space

Q. \tﬁ Operation environment (o =
e
E“ ______ Envnronment ¢ Q{/D
xternal 4
stakeholders &

h f,\ \@“
\
\\ N__F Esmlw @ -
External
Internal interfaces and 4 ‘ interfaces
standard systems
. System
System Product M B
A / l_

Technological T
disciplines / Q
(:. \m . *. | Standards
‘ "
== T and laws
Users

External devices

KManufacturm} Log|st|cs>Marketln>lnstallat|> Usage> Serwce> Dlspos%

Figure 3: Product environment.

Internal
stakeholders
and cusomers

and cusomers

Figure 3 outlines stakeholders and domains in the problene sffactypical embedded product. Here
the problem space of the product includes all externabradtirectly interacting with the product or
having interest in its outcome. A boarder is drawn in the pnolslpace between items that directly
interact with the product in its operational environment andehbat only have an interest in the
products design or affect it indirectly.

The items in the operation environment of the product are demaystems and users directly
exchanging material or information with the system in additioaenvironmental issues specifying the
operational condition of the product. For a reusable productyfaome can imagine that the operating
environment will include the same domain types, but with variati®n the other hand, some domains
might only be included in the environment of some products.

Additionally to the product’s intended operation, the produitt go through life phases such as
manufacturing, installation, services and disposal. Thesphdses will include processes, machines
and systems that interact with the product creating @nttrand requirements that if addressed in the
products design contribute to its overall quality. Since thésephases do not include the main
operations of the product they are on the boundary of the omemtvironment. Products in the
product family are likely to have similar life phases as theytig same supply chain.

The product outcome is affected by influences outsideinimediate operating environment of the
product. Standards and laws applying to the product don't interdcthe product directly, but might
specify requirements affecting the products operations. Btgduwith similar application, that operate
on the same market are likely to operate within the saamelards and laws. Internal stakeholders are
people within the company that have an interest in the prodahbtasithe owners of the company,
portfolio managers, sales and marketing staff, designers, eterngl stakeholders are customers,
suppliers, market regulators, etc.

The product has interfaces to the items in its operatmyament. These might include standard
designs that should be respected in product design. Assumindnéhptaduct belongs to a product
family it is likely that the product realization will additially be required to respect standard designs
and systems specified for the product family. These bedlotige solution domain of the product. The
solution domain will also include different technologies forlenpenting the requirements.

Finally, a transparent connection is required between the B®thrr design specifications such as
design specification, design implementation, test specifications et

This analysis is a source of inspiration for the ComepReusable Requirement structure presented in
the following section. The focus on the domains in the environofehe product is similar to domain
engineering and viewpoint analysis discussed in sectionn8.34. However, in this paper 5 groups
that should be consistent for embedded products and covbe albjects in the problem space of the
product are introduced. Additionally the structure aimsaddiressing the criterions for a good
requirement structures such as user friendliness, consistenoyaamenance issues.

5.2 Groups

Grouping is a system for classifying similar things togeth& groups. A group is a collection of
objects considered as a whole, creating a planned arrangefréhimgs. Ideally, when subjects or
objects of knowledge are sorted into groups it makes thenerewmsiunderstand and to see the
relationships between them. Scientists use classificaggirms to organize information and objects to
help them make sense of the world around them. The woldbvioe a crazy place if we didn't have a
way of organizing things. Imagine trying to look for a book in aalipmot having any sections. The
requirement groups create the main sections of the RSsnguiders looking for information and
helping them make sense of the requirements. There must logoa $er every requirement topic, it
must be obvious for users where to find the information #neylooking for and these groups must be
consistent for all products within the scope of this proposalbéelded products). A good classification
should have groups where all the items in each group lawetsing common and where each item
can only be placed in one group, i.e. it is clear if amits a part of each group or not. Identifying an
effective grouping logic should be the first step in creating a gimoctsre.

Often requirements are dedicated to customer requirementsgyel to the usage phase of the product.
From the environmental analysis, subjects, separate from tgpmally in focus in domain- and
viewpoint analysis, are identified. These subjects resulb inequirement groups presenting a
generalization of the items in the product environment, each havapgcial purpose. This grouping
should be applicable for all embedded products. The groups ardloharq:

Business Requirements. The purpose of this group is to present the product posigoand success
factors of the product. What are the goals and maintaothral drivers that the project has to fulfil for
the project to be successful? What customer groups mustdtacp satisfy? What must the product
cost to be competitive? These are coming from interndl extternal stakeholders, customers and
business owners and define their expectations and taidgetgest of the requirements will need to be
aligned to these.

The Business requirements are characterised by a ¢gwdel requirements coming from the project
definition and scoping. These requirements should be in cdotnad during the project. Their main
stakeholders should be internal and external customdrtharbusiness and project owners. Changing
one of these requirements would likely to result in major cbsufgy the project.

10

Laws and standards: These are requirements coming from market regulationsaavel They are out
of the company’s control, but are something that the prodmgss comply with. This should not only
include identifying the standards that shall met, but an ideatidn of what requirements they create
for the product behaviour and design. Ordinary, a new projeatdabe a trigger to update or enter
new requirements. These requirements should however be mathtstween projects so that when a
new project starts knowledge about the standard will be date and ready to be selected from. This
group will also need an immediate update if legalddass change. All though certain standards have
been identified the project might choose to exceed those,hbeadtitional requirements are defined
as product properties.

Relevant specialists should constantly monitor changemiket regulations and update requirements
according to these.

Product properties: In this group, objectives, features, functions and qualitied tescribe the
capabilities of the product in its operating environment areideated. Most of these requirements
evolve from the preferences of the users or are thet ifsdomain analysis and other modelling of the
product environment and come from the usage phase of the prdetichd. These are project specific
requirements that the company can decide on itself althdweghmust comply with the customers’
requests, the operating environment of the product and the standdedvarequirements.

The product properties are requirements identified by aomeating with lead customers and users of
the product and by analysing the work environment of the prodhis.ahalysis should be facilitated
in the beginning of each project.

Life phase Requirements. Requirements and constrains surfaced from each offth@hases of the
product such as production, logistics, installation etc. Oftesetlage not actively documented and
cause problems late in the development phase, or even whemothect has been launched. By
approaching each phase individually, as a source requiremerstsputd be possible to identify
requirements evolving from different sources in the orgéoisaand make them available for
developers. Including this knowledge will contribute to improving the overadluct quality and cost.
Gathering and documenting these requirements should involve relgeðolder for each of the
major product life phases since it requires an analgsieach life phase. Not identifying these
requirements as a special group increases the risk that theypte actively included in the RS.

Design requirements. A product belonging to a product family has constraints fov tiee solution
should be realized. Design constraints are those pre-exdggisign decisions that mandate how the
final product shall be structured. These might be using stamadadiict platforms, interfaces with
other products, specified standard programming language, dlam#aket designs, alignment with
pre-existing products and other issues that limit thdgdess “freedom” when implementing a
solution.

For design requirements the main input comes from the pradcititectures platform specialists and
internal design standards.

Figure 4 gives an overview of the five requirement groups.

Requirements Repository

—E Business Requirements
- {~] Standards and laws
"] Product Properties

- {~] Life Phase Requriements
L[~] Design Constraints

Figure 4: Five main groups of requirements.

11

The logic for these five groups is the different chamastics and background of the requirements. This
is a new classification of requirements which should provideetter grouping than suggested by
previous methods since it identifies all objects in the progdngironment and their characteristics.
Each of these groups contains requirements with a specific puigagin and stakeholders. Separating
the requirements into these groups will therefore providiea focus for arranging the requirements.
It is an effective generalization of a complicated emvinent. The five specific groups are furthermore
believed to be sufficient to cover and communicate all reqent topics and be consistent for all
embedded products. It is believed to be a transparent to guidsdrs to find the section containing
the topic in question and making it easy to see the relationstedre the requirements in each group.

5.3 Sub-groups

A subgroup is a distinct and often subordinate group mighgroup. When analysing and identifying
requirements for reuse, domain theory suggest analysing the nmaandoof the problem space of the
future product and indentify general and variable charatitesiof the domains. It is suggested that
sub-groups reflecting the main domains in the problem spacteofproduct are created. The

requirements are documented in a sub-groups correspondihg tintnains they surface from. The
basic classification is therefore harmonized with wheeerédgquirement evolves from. All requirements
that are needed to accomplish operation or accordance wpkdafic domain are documented in the
same group, enabling a complete identification of relevaquirements. This is consistent with

domain- or viewpoint analysis. This shifts the focus, on the higltestturing level, to the goals of the

product in its problem domain and away from the solution spht& product. It is possible that sub-
groups will have more than one level. However, it is suggessgdhe number of levels should be kept
at minimum.

When documenting the requirements, it should therefore be transpareattavfied the corresponding
sub-group to place the requirement. A product family carxpeated to share common domains in the
environment of the product. When identifying requirements for reasé of these domains can be
analysed and similarities and variation can be identifiets tecognised that there are two types of
variability between domains in the environment of a produtimvia product family. Some domain
types exist in the environment of every product within a pcotamily although they have variations
between products, while others are only present for some products.

This proposal suggests that the definition of the sub-groupstidefault and organizations are given
the flexibility to identify their own sub-groups. Different protkionill have specific sources of

requirements and each company will have their own spedificepts. For usability it is important that
the sub-groups make sense and are easily recognized leyntlleyees. Typical sub-groups for life
phase requirements are the main life-phases in the psolifiectime. For product properties they are
the main systems and users in the products operating environmerits atandards and laws, they are
the major market regulations the product must comply witmil& sub-groups might be reused
between product families and within companies. In each sub-group theerequis are decomposed in
a hierarchical structure.

5.4 Requirement types

Some approaches suggest that different types of requiremants;Rs and NFRs create the main
classification for grouping requirements [8]. However, oftéffiRs support FRs and they are often
closely related. In this proposal it is therefore suggestatiinstead of separating requirement types,
different types are combined within the groups. Each remein¢ entity is defined as a certain

requirement type. These requirements types are usedstoeethat the structure is implemented
correctly. Additionally to FR and NFR types (see algdion in section 3.1) the requirement types
included are the following:

12

Group: This type presents the groups and sub-groups described in se2teomd®.3 above. A group is
a heading or a section for requirements. It would therefdrepexify a requirement but since this is an
entity in the structure it needs to have a defined type. Tdgsirement type should contain a
description regarding the content of the group.

Objective: An objective is a high level specification of a capabithgt the product possesses or an
outcome it must achieve. An objective can describe a highueeetase or a feature and can be further
divided into FRs and NFRs that specify more detailed aspétis objective.

Typically solutions are not supposed to be included in the requirement electiave\t¢o sometimes it
Is required that a certain solution shall be used. Sometitnie necessary to specify a solution to
identify more detailed requirements. Then it should be imduch the requirement structure, but
categorised as solutions and documented as such. It @tanpto consider the solutions included
carefully and only include the necessary ones.

Condtraints are not exactly requirements in the sense that theynatreaised by the product’s
demands, but they are issues that have a strong influence megthements and the outcome for
the product. Constraints cause limitation on how the productgrdsisould be realised.

Figures 5 shows how each group contains of different requirenpag. ty

Requirements Repository @ Group (5 main groups)
—{™ | Business Requirements -4 Group (Domain based Sub-groups)
—{~] Standards and laws » .. Objective
—fil Product Properties Each group is broken {7 ¢ Functional Requirement
)] down to sub-groups, = i 4@ Non-functional requirement
—{__] Life Phase Requriements opjectives FRs, NFRs .
NG A @ Constraint
L] Design Constraints Constraints and .
Solutions < Solution

Figure5: Requirements of different typesare combined in the groups.

Figure 5 shows how each group is broken down to sub-graudeszribed in section 5.3. The main
objectives are then found for each sub-group and the olgectire broken down to FRs, NFRs,
solutions and constraints. This breakdown shall be followedlf groups. Identifying the different
type of items ensures the structure is implemented in theatavay.

The reason for identifying these types is to give the itienike structure identification. Each of the
types will have a specific scope and be written in a differaryt Identifying the requirement types can
therefore be an important enabler of documenting quality requirements.

Embedded products have a complicated connection betweenmtifiecanical disciplines. It should be
avoided to write requirements for technologies as sute sequirements should describe behaviour
and characteristics of the product. It is the implemugont of the requirements that should be carried
out with different technologies. Identifying objectives regassllef technology is important to identify
the real need independent on the implementation technigce siany objectives can be carried out
using more than one technical discipline. For lower level reqénts it might be relevant to identify
the implementation technique. Traces between lower leeéhteal requirements and this need is
critical for a quality RS.

5.5 Quality aspects

QAs are defined in section 3.1. They can be seen asllayeaadity targets of the product and are often
associated with NFRs. As companies constantly have strigtality targets understanding how
requirements relate to critical quality aspectshef product becomes ever more important. In addition

13

to the requirement types, a requirement QA is identfiieceach requirement. Different QAs might be
used after each company preferences. The theory [8, 9, @0idps several definitions of QA
categories that can be used.

It is identified that functional requirements also cdmite to quality attributes. For example a
functional safety requirement contributes to the safety MAnitoring functions or error detection
functions are concerned with the reliability of the product etc.

Each QA can be filtered and viewed separately provithegstructure a cross functional grouping and
categorizing. For example, all maintenance QAs can beefiltéo analyse whether all requirements
concerning maintenance have been included and are consistenshQ@d have a different content
and a specific writing stile. Specific metrics shouldiHarmore be specified for each QA which could
support authors to define a measurable criterion for the requiteme

5.6 Hierarchical decomposition of requirements

Under each sub-group a set of requirements is structArsitnilar hierarchy logic as specified in [15]
with an AND tree, where the child requirements are usedetine the meaning of the parent
requirements is suggested here. This involves decomposingewghréquirements to more detailed
requirements in an aggregation hierarchy and breaking geweguilements down to more specific
requirements in Generalisation/specialisation hierardsms section 3.5). As described in section 5.3,
sub-groups are broken down to high level objects which are iaden to FRs, NFRs, solutions and
constraints, which are specified in further detailed in each level.

Models such as the Use case diagram and the NFR/AUC carsdfel to identify and analyze
requirements. These techniques model separate use-casbgdives. They have until now been
lacking a high-level structure for organizing the models safficient way. If such models are created
they can be used to create a corresponding breakdown of ragoisein the hierarchy structure. The
use-case would be an objective type broken down to FRs and (@eRsfigure 1 and figure 5).
Stakeholders working with such models would therefore be tabteesent them in the structure and
use them directly to document requirements. It is howevererpéct that all objectives will be
structured in this way.

When decomposinthe requirements for a reusable structure, it is impbttaconsider the life time of
the structure. The structure needs to be flexible to dddi@nal requirements without moving altering
the initial structure. To accomplish this sometimes it isessary to create additional nodes in the
system when it is expected that other more similar requirenvéll be added later.

In some cases it might be appropriate to bring the variabifityo a high level in the tree structure.
Domains which are only present in the environment of some proaeitbers might thus be included
or excluded on a sub-group level. Variability within the sadomain would be more appropriate on a
lower level.

To enable easier comprehension of the structure sio@mposition logic should be applied within
similar sub-groups. This will create consistency and lfarty in the system, making it easy to
understand the dynamics in the structure. Following these gudedihould enable a more stable
structure. The case study discusses some practicalienges regarding creating a hierarchical
structure.

5.7 Contribution to thereusable requirement structure

With the proposal presented above a way of structuring a REthat objective of reuse has been
suggested. In section 4 previous modelling and structuring tecknignge evaluated against the
identified criterions in section 2. Some of the criteriaentified to create a good reusable requirement
structure were considered to be sufficiently addressetidoexisting theories. Those were: overview
and context, coverage analysis, reflection of the solution domdinser friendliness.

The proposed structure builds on the existing techniques mgilitieir contributions. It uses the
viewpoint logic for sub-groups in the structure and it sutggascross categorization build on the
definition of QAs. Furthermore the requirement modelling drel definition hierarchy are used to
support the hierarchical decomposition of requirements. Combininguthent contribution in this way
IS a new proposal. It is important, since each of the agigiroposals only partly fulfil the criterions.

14

Combining them within the same proposal therefore enables a fulfilmemdref criterions by the same
technique. This proposal however, additionally seeks to clase sbthe gaps left open by the current
theory as follows:

Coverage of all requirements. A grouping logic presenting 5 main groups is suggested. Thespgyr
expand the scope of the structure, and accomplish antbpraoverage of all requirements within the
same structure. This is important in order for all requiremertis #vailable in the same RS.
Consistency: The groups are also believed to be consistent for all emégmtdducts which would be
useful for those companies developing more than one embedodct families. Having a consistent
classification might support re-use of requirement between producigamil

Maintenance: Considering the characteristics and purpose of the mqeits helps to understand the
management and maintenance of the requirements in each dfoupexample, the business
requirements and the standards and law requirementshstva different management approaches.
This is a new identification that is important for the life tiofieeusable requirement structure.
Representation to stakeholders. Representation of the requirements to different staketsolis also
been considered in the grouping as each group is focusedmetial stakeholder group. Sub-groups
and cross categorization should also make it efficientstakeholders to view information they are
interested in and more importantly to identify stakeholders thet keowledge about each sub-group.
Downstream reuse: Finally, a consistent structure in addition to includangequirement group for
design requirements should support downstream reuse.

The structure should be applicable and consistent fiwedded products and should be ready to be
applied by companies that seek to document and reuseamguits. The following section introduces
the case study of this paper.

6. Case study

The case study is performed with a global company develagedrical inverters. The experience
with working with the proposed structure will be described and smaetical insights that surfaced
when structuring requirements will be discussed. Since thetgte was implemented two projects
have reused the structure (i.e. three projects have usetlutter® in total). The projects belong to the
same product family but have different scopes.

6.1 Introduction to Case

The company has previously used a requirement tool to documdninanage requirements and
focuses highly on requirement reuse. The structure of thealée requirement repository has
developed casually and is not believed to be the bestiggradthe company wants to improve the
guality of the requirements and increase the effigieanod ease of the reuse process. The company
creates two RSs; a customer specification, presenting éwgh dtakeholder requirements, aligning the
over all scope of the product and a, technical speddicavhich presents more detailed, technical
design requirements belonging to the solution space of the prddhecRkS is used as input for design
specifications. The company is now implementing a new produiet, siverters, into the requirement
tool and wants to implement an improved way of structuring and managjogements.

Solar inverters are a type of electrical inverters develdpeconvert Direct Current (DC) electricity
from a Photovoltaic (PV) array into Alternating CurreAC] that is, in this case, supplied to a power
utility grid. The product families of solar inverters are roughiyded between single- and three phase,
transformer and transformer less, low- and high power ingerfdre inverters differentiate on their
efficiency, operating range and features. The solar inverteane hand shall intake current form the
PV array where the main goals are having a flexible working rangekeeping high efficiency by
tracking fluctuations in the current due to solar radiati@msdows etc. On the other hand it shall
supply current to a utility grid which requires following regigdas for how to react to imbalance on
the utility grid and other market standards for electgcatiucts. The inverter has different user groups
such as residential users, commercial users and power plantshavie different demands for the data
output and features. Additionally stakeholders such as gowart and grid tie owners have interest in
the additional electrical supply.

15

6.2 Requirement tool

The company uses a requirement management tool called @alilggnovided by Borland. The tool
allows users to create groups for requirements anddteate a hierarchical structure of requirement
entities. The tool provides some predefined attributes aodlkdge fields to define requirements and
manage project related issues. The tool also enables tosersate specific attributes that fit their
specific needs. It enables users to define dependenciesebeteguirements, but does not enable
further definition of the kind of dependencies.

Reusable requirements are collected in a special reusaguirement repository, company
requirements and requirements for products are documendéepraject requirement repository. When
the scope for a new project has been analyzed the progmubens use the company repository and
look for already existing requirements that can be reusdae biser identifies requirements that can be
reused, they map each requirement, from the company regasittine project repository. Mapping
means that a clone of the company requirement is createé project repository where it is given a
unique ID number and has a life of its own.

When a project requirement is mapped, it is not possibleangehor remove parts of the text field of
the requirement without breaking the mapping link (un-mapping theireenent). Therefore when
reusing requirements it must be possible to map the e¢exiréield of the requirement without change.
When the text of the mapped-from requirement in the reusahleture is changed it automatically
changes in the mapped-to requirement in the project. If the reusgbleement changes it is important
to evaluate if the project requirement should also be updatethervice un-map it.

6.3 Grouping

Since the highest level of structuring, the groups are pneadkthey created the initial structure for the
RS. The concept of the groups has been well received and unddrgtihedusers.

The 5 groups have been successful in creating a locatiall iaquirements. Sometimes there were
requirements that could be located in more than one gFarpexample there might be standards for
how the products should be disposed, which can therefore bedacaboth thestandard and laws

and thelife phase requirements groups. Requirement regarding tool interfaces for impleatient
might include physical standard design requirements and beuttefined aslesign requirements as
well aslife phase requirements. It is sometimes a matter of judgement where it & be locate the
requirements and of managing conflicts.

The trigger for the consolidation or maintenance activities isrdiftdoetween the groups. Maintenance
of product properties requirements will traditionally acethen projects create new requirements or
change existing ones. On the other hand maintenance for staamthiaw requirements will occur
when market regulations are changed. Furthermore a changadat and law requirements is more
likely to result in a update of previous products. The companynii@emented maintenance processes
where the trigger and frequency of the maintenance procdgterent for the different groups. Finally
the split between the groups has been valuable to identify respiiy$ivilmaintenance.

6.3.1 Sub-group identification

The process of implementing the suggested structure toldrarsgerter product began by indentifying
and modelling the relevant sub-groups. Experienced gepowere gathered to come up with the
right sub-groups. After a few work shops the employeesesigon a common view of the main
domains for each group. The result is shown in Figure 6

16

Requirements Repository

........ E‘7 Business Requirements

---------- @ Compnay Strategic factors

---------- ’ Success Factors

Ej Requirements Repository oo < Main technical targets

. . I <« Target customer areas
—fil Business Requirements
I—{~] Standards and laws 5 Standards and laws
L—{"] Product Properties g ... @ Product Properties [T @ Grid Codes
L") Life Phase Requriements | fee @ Overall System properties | © Electircal Safety
L D C @ PVinteface i ® emc

esign Constraints i T
gnonstamis 44 L T e @ Certificates and Dedlerations

.......... @ Grid Interface
---------- € Communictaion Interface

---------- 4@ Environmental resistance
E Life Phase Requriements

--------- (= Design Requirements) Purchasing
""""" @ Platform Design B Man'uf.actunng
---------- -@ Product variants S 4 LOQIStI(?S
---------- @ Use of materials @) Marketing
"""""" @ Installation
"""""" 4 Training
"""""" @ Service
"""""" 3 4 Disposal

Figure 6: Sub-groups created by the company.

It was clearly advantageous that employees createdrtiotuse themselves using their own words and
interpretation of the product. It is important that the leiyges chosen to create the structure are
experienced in order to get a correct structure and algetta buy in from other users. When the sub-
groups had been created it was easily realised whevasitappropriate to locate most requirements
topics since the groups were harmonized with the sowfcdse requirements. Creating sub-groups
improved the structure compared to previous experiemceo company. Applying this structure
creates sub categorizing and overview of the requirenagtseduces the risk of the structure having a
huge expansion on single levels in the hierarchy.

The structure has supported the requirement documentaticewselactivities by the groups and sub-
groups remaining stable. The number of sub-groups has incrigased?2 in the first project to 50 in
the third and most are consistent. This has createsitairc familiarity with the structure. It has also
helped the projects to plan the requirement documentationitydtaving a stable structure allows for
easily identifying which domains will be similar and whicbnghins will have variants and allocate
employees with the relevant knowledge to write and re#masub-groups. Some domains do not exist
in the problem domain of all products. For example a resalantierter will not have operations with
a power plant. The domain can be selected or excluded entirely. Thus in ses¢heavariability is on

a higher level in the tree- structure enabling an efficiefdction. Other domains such as the PV
module are always included in the operation of a solar inverter.

The second and the third projects have had RSs consistigio80% reused requirements all though
the scope and the architectural drivers of the products bega different for each project. The
structure has furthermore remained consistent and isvedlieo remain so. Having such stable
structure enables a better communication for the users.

The focus on the problem domains has helped to keepothes fon the working environment and
stakeholders of the product. This makes it easier to fglemkiere to find the relevant information for
the requirement analysis and which stakeholders to involugct8ting based on the domains makes it
transparent which technical specialist to contact for a revidheofequirement group.

6.3.2 Requirement types

17

The different requirements types helped to ensure thadttheture is correctly implemented and that
the content of the requirement is according to its type. Asritbesl in section 6.3.1 including sub-
groups is important to accomplish a quality break down @atdgorization in the structure. It is
furthermore important to always include an objective to enthat the actual needs and goals of the
product are captured.

There is a risk that the authors with technical backgroundidegbtie need on a too low technical level.
Defining the objective first ensures that requirements @eatified in the correct order, finding the
general need before discussing software or hardware impleroantatan be valuable to identify the
technical disciplines of some of the more detaileduireqnents. However, the different technologies
should not be separated in the structure and it is impoxaestablish an overview of how general
objectives are broken down to technical requirements. Combthmglifferent technologies in the
structure increased the quality of the requirements aneédeipers to look further than their technical
area.

6.3.3 Requirement QAs

The specified QAs used by the company are based on [8]. Théeamlowing:

e Look and Feedl: The spirit of the product’s appearance. Example: Coloursness, shape and
overall aesthetics.

e Usabhility: Human factors related to the products ease of use andsp@égial usability
considerations. Example: understandability, consistency and docuimentat

* Reliability: To what extent can the product be expected to perform igndatl function
satisfactorily. Example: recoverability, predictabilitycacacy, and mean time between failures.

* Performance. How well does the product perform? Example: Processingdspesponse time,
resource, consumption, throughput and efficiency.

» Operational: The operating environment of the product and what consideratioesbe made for
this environment.

* Maintainability: Ease of identifying what needs to be changes as well a®kasmlification. This
also includes requirements related to making it easgdaging the product to accommodate a new
environment and with other configurations.

» Security: The security and confident ability of the product.

» Cultural and Political: Special requirements that come about because of the peopheethwolthe
product’s development and operation.

e Legal Requirements. Laws and standards that apply to the product.

QAs were defined for all requirements in the structure. A lagrisi that for the definition of QAs to be
valuable it is important that they are defined correatlydll requirements. If some requirements are
wrongly defined the suggested categorization does not provadeathe it should. This did not become
as problematic as expected and the requirement typatedran understanding of the purpose of the
requirements and how they were related to the goals of the produc

As the structure gets more mature these identificationrbes valuable. It allows users to filter out
specific QAs and evaluate if they are complete and demsisUsually QAs are general and include
adjectives which are difficult to quantify. Currently thergmany is implementing a listing of standard
QA aspects and metrics that should support users to spleeifAs in a more concrete and detailed
manner. Reliability is a example of a QA that can have rd#fgrent aspects that might be difficult to
specify and quantify. Having a standardised listing of loéitg aspects and metrics would be useful
for a user defining reliability requirements in testableywad to evaluate if all relevant aspects of
reusability, that the product needs to satisfy, to accomplish this @Abdeen defined.

6.3.4 Hierarchical decomposition structuring

The project members were ambitious in creating a good #edille structure for reuse, while at the
same time considering alignment with test and the stictithe RSs, it was often difficult to find the
best way to decompose the requirements. It was challengimigediact how the requirement structure
would evolve in the future and to implement the needed flexibilithé structure.

18

Use case modelling has been used by some developers amntpany for analysing and modelling
system requirements. An approach, for transferring these snodela structure for decomposing use
case objectives into a hierarchical requirement structuae,developed. Linking the use case diagram
to the structure was well received by the users workitlg wge case diagrams. This motivated them to
transfer the use case knowledge to the RS. It was therefouseful connection between the
requirement analysis and the documentation of the RS. Thec&lse model also provided a good
overview of the requirements in the hierarchical str@ctidinally, reusing use-cases could be an
efficient way to reuse requirements. However, if thenmugh variation it could become problematic
since it requires an update of the use case model on a high level in theetruc

It often occurred that several high level requirements dhthiee same requirement on a lower level. In
this case it could be necessary to repeat the requitesegeral times. This presents some challenges
when maintaining the structure. This can be solved by either mtwengequirement to a higher level
in the structure or making references between the duplicateeeuants.

6.5 Resultsfrom using structure

The structure has been accepted and has had positpense from its users. They are able to
understand the logic of the structure and the categorizdtitre sequirements. Considering where the
requirements evolved from helped the users to understane weprirements should be located and
why. This by it self is a critical issue when structuriniprmation and will lead to increased reuse and
reduce the lack of duplication in the structure. Both tlugepts that have used the structure to reuse
requirements have had RS consisting of over 80% reused eeguits. This shows that the first
project seams to have been successful in identifying requiteraad that it has been possible to reuse
the requirement content.

Analysis of the group requirement types shows that theetste has remained stable. The number of
sub-groups has slightly increased between the projects,42om the first project to 50 in the third
project. These are consistent groups except for a fevhdivat been included or excluded as a result of
the scope of each product. This stability has made it pestibbetter plan the documentation and
maintenance of the structure by allocating users to the sub-groups.

It can also be seen that they reflect the differerke$ialders as each group usually has 1-2 authors
assigned to it. There is a clear split in which authorgasd to each of the 5 groups. Stakeholders
outside the project such as service and maintenance peaptateer specialists have also been called
in to gather further information for groups outside the operating rafnbe products.

The presented structure has been successful in meetingténems for a good requirement structure
in general and for reuse. By the experiences with the cadg gthas been proven to provide an
overview and context for the RS. The structure has providedasion for all requirement topics that
have come up during the case study and the focus on themrdbleain and a classification of the
QAs has supported coverage analysis of the RSs.

It is assumed that when the structure matures the stabilitye adtructure will enable downstream reuse.

7. Conclusions

The purpose of this paper has been specified to identifyiontethat shall be met to accomplish a
good structure for a reusable RS and to find a strutitatemeets these criterions. A number of quality
criterions for a reusable requirement structure have beatifidé. Analysing previous contributions it
was found that some of the existing techniques sufficidotfil a few of the criterions. However,
individually they each only fulfil a few criterions andnse criterions have not been successfully met
with any of the existing techniques. According to this a dedimiof a good requirement structure for a
reusable RS is missing.

Parts of the previous contributions have been utilized, in additonew contribution to create a
holistic way of structuring an reusable RS that can meeteaitiintified quality criterions.

It is concluded that it has been sufficiently argued thatsuggested structure fulfils the criterions
identified, better than the other identified modelling techrsqaed is therefore a more qualified
structure for RSs than has been suggested previously.

19

The proposed structure has been used to document and reue R8smpany developing electrical
inverters. The case study confirms that the structure sudicient for a reusable requirement
specification. The structure remained stable, supporting reaséharplanning of the documentation
activity. It also supported the consolidation and maintenarmeeps of the requirements by focusing
on the different characteristics of the requirement gronddfae stakeholder that should maintain it.
Recently the structuring technique has been applied toferedift embedded product family in the
company. The high level structure and focus on the environnieéhé groduct was well received by
the users. The sub-groups of the structure remained &tatieen the product families. Only a few
sub-groups in the product properties and standards and lawgsgecbhanged. In fact, it has this
consistency highlighted requirement groups that could be reusgedrethe two product families. The
structure has also been used for documenting a RS for affMare product. The 5 high level groups
remained stable but the subgroups changed considerably mmmpathe embedded products. For
further research it would be interesting to study furtlwey the structure works for other product types
and whether they require different categorization.

By this it is concluded that the proposed structuring technsipoeild be useful and applicable for
companies creating a reusable requirement structuresshioatid be used to document RSs for
embedded product families.

Acknowledgements

The authors of this paper would like to thank Danfoss Povestrianics for the founding of this article

work and the employees at the Danfoss Solar Invertendsssiunit for their time and participation in
the project. Furthermore, we would like to think Torkild FeinfPedersen for sharing his knowledge
and experience regarding requirement management.

References

References

1. B. Gumus, A. Ertas, Requirement management and axiomatic design| dbumtegrated Design &

Process Science 8 (4) (2004) 19-31.

2. E. Hull, K. Jackson and J. Dick, Requirement engineering, Springeed 8tiaites of America, 2005.
3. S. Barlas, Anatomy of a Runaway: What Grounded the AAS, IEEE Seff8afl) (1996) 104—106.

4. GAO, Contracting for Computer Software Development — SerimddMs Require Management
Attention to Avoid Wasting Millions, US General Accounting Off(@®79)

5. W.W. Gibbs, Software’s Chronic Crisis, Scientific Aman (International Edition) 271 (3) (1994)
72-81.

6. I. Sommerville, P. Sawyer, Viewpoints: principles, proldemnd a practical approach to
requirements engineering, Annals of Software Engineering 3 (1997) 101-130.

7. S. Andriole, The Politics of Requirements Management, IEEE Sefti#a(6) (1998) 82 — 84.

8. P. Massonet, A. van Lamsweerde, Analogical Reuse of Rewntse Frameworks, In: Proceedings
of the IEEE International Symposium on Requirements Engineering, (233,

9. S. Roberstson, J. Robertson, Mastering the requirements proddsanWeslay, London, 1999.

20

10. C. Lopez, L.M. Cysneiros, H. Astudillo, NDR Ontology: Sharing Beusing NFR and Design
Rationale Knowledge, in: Proceedings of the first inteonal Workshop on Managing Requirement
Knowledge (MARK "08), 2008, pp. 1-10.

11. A. van Lamsweerde, Requirements Engineering, From system @o&J8IL Models with
Software specfiications, John Whiley and Sons, Ltd., Chichester, 2009.

12. S. Supakkul, T. Hill, E.A. Oladimeji, L. Chung, Capturing, Orgawgizand Reusing knowledge of
NFRs: An NFR pattern approach, in: Proceedings of the 2009 Senterdaltional Workshop on
Managing Requirements Knowledge (MARK 2009), 2010.

13. I. Sommerville, P. Sawyer and S. Viller, Viewpoints foruisgments elicitation: a practical
approach, in: Third international conference on requirements engiggeaceedings, 1998, pp. 74-81.

14. D. Samadhiya, D. Chen, S.H. Wang, Quality Models: Role ahg\Wa Software Engineering, in:
proceedings of 2nd International Conference on Softwackniaogy and Engineering(ICSTE), 2010,
pp. 1320-1324.

15. J. Kuusela and J. Savlainen, Requirement Engineering for Produtiesa@iSE, 2000, pp. 61-69.

16. J.H. Hausmann, R. Heckel, aentzerDetection of Conflicting Functional Requirements in a Use
Case-Driven Approach A static analysis technique based on grapfotraation, in: Proceedings of
the 24" international conference on software engineering, 2002, pp. 105-115.

17. K. Alghathbar, Enhancement of Use Case Diagram to Captutferzation Requirements, in:
Fourth International Conference on Software Engineering AdvaB088, pp. 394-400.

18. U.l.Hernandez, F.J.ARodriguez, M.V. Martin, Use Processes — Modeling Requirements Based on
Elements of BPMN and UML Use Case Diagrams, in: Pudiogeof the 2010 2nd International
Conference on Software Technology and Engineering(ICSTE), 2, gp1236-240

19. M.A. Laouadi, H. Seridi-Bouchelaghem, M.A. Laouadi, F. Mokhatyo¥el Formal Specification
Approach for Real Time Multi-Agent System Functional Regjaents, in: Lecture Notes in Computer
Science (including subseries Lecture Notes in Artifi¢rdelligence (LNAI) and Lecture Notes in
Bioinformatics) 6251, 2010, pp. 15-27.

20. C. Atkinson, J. Bayer, C. Bunse, E. Kamsties, O. Laitenberger, R. Lagua&Cemponent-Based
Product Line Engineering with Uml., London, Addison-Wesley. 2000.

21. G. Halmans and K. Pohl, Communicating the Variability of a So&#roduct Family to
Customers, Software and Systems modelling Journal 2(1) (20(8).15-

22. H. Gomaa, Designing Software Product Lines with Uml — from Use<a Pattern Based
Software Architectures, Addison-Wesley. 2005.

23. S. Buhne, G. Halmans and K. Pohl, Modelling Dependencies between mgratits in Use Case
Diagrams, In: Ninth International Workshop on Requirements Engine@imngpdation for Software
Quality (REFSQ’03), 2003, pp. 59-70.

24. L.M. Cysneiros and J.C.S. Do Prado Leite, Integrating noriidmmat requirements into data

modeling. In: Proceedings of IEEE International SymposinnRequirements Engineering, 1999, pp.
162-171

21

25. http://www.cs.utoronto.ca/~alexei/pub/Lapouchnian-Depth.pdf

26. R. Darimont, A.van Lamsweerde, Formal Refinement Pattern&dal-Driven Requirements
Elaboration, in: Proceedings of the ACM SIGSOFT SymposiumhenRoundations of Software
Engineering 21 (6) (1996) 179-190.

27. A. van Lamsweerde, R. Darimont, P. Massonet, Goal-Dirétiedzbration of Requirements for a
Meeting Scheduler, In: Proceedings of the IEEE Internationahféence on Requirements
Engineering, 1995, pp. 194-203.

28. A.van Lamsweerdd&requirements Engineering in the Year 00: A Research Perspeuative, |
Proceedings of the IEEE International Conference on Softtamgaeering, 2000, pp. 5-19.

29. X. Liu, S. Liu, X. Zheng, Adapting the NFR Framework to Aspddtise-Case Driven Approach,
in: Proceedings - 7th ACIS International Conference onw&o#t Engineering Research, Management
and Applications, 2009, pp. 209-214.

30. J. Mylopoulos, L. Chung, B. Nixon. Representing and Using Non-Fuatt®eqguirements: A
Process-Oriented Approach, IEEE Transactions on Software Enigigd.8 (6) 1992.

31. D.M. Weiss and Lai, Software Product-Line Engineering — dyfd@ased Software Development
Process, Addison-Wesley. 1999.

32. H. Gomaa and L. Kerschberg, Domain Modeling for Softwartes&kand Evolution, in: Seventh
International Workshop on Computer-Aided Software Engineering,, 1#93.62-171.

33. Klingler, The Reuse-Oriented Software Evolution (Rose3déss model. Preston, Chichester,
Wiley, 1993.

34. J. Coplien, Multi-Paradigm Design for C++. Reading, Addison-Wesley, 1999.

35. G. Kotonya, I. Sommerville, Requirements engineering with vigwgoSoftware Engineering
Journal 11(1) (1996) 5-18.

36. A. Goedicke, A. Finkelsetin, B. Finkelstein, J. Nuseibeh, LmeraM. Finkelstein, Viewpoints: A
Framework for Integrating Multiple Perspectives in Syst@avelopment, International Journal of
Software Engineering and Knowledge Engineering 2 (1) (1992) 31-57.

37. P. Darke and G. Shanks, User viewpoint modelling: understaraidg representing user
viewpoints during requirements definition, Info Systems Jdutr(d) (1997) 213 — 239.

38. P. Darke & G. Shanks, Stakeholder Viewpoints in Requireni@efisition: A Framework for
Understanding Viewpoint Development Approaches, Requirements Engpd (2) (1996) 88-105

39. G. Kotonya, |I. Sommeiville, Requirements engineering with viewgoSoftware Engineering
Journal 11 (1) (1996) 5-18.

40. J.M. Neighbors, The Draco Approach to Constructing Softwane Reusable Components, IEEE
Transactions on Software Engineering 10(5) (1984) 564-574.

41. S. Easterbrook and B. Nuseibeh, Using Viewpoints for Inconsiskdacggement. Software
Engineering Journal 11(1) (1996) 31-43.

22

42. A. Hunter and B. Nuseibeh, Analysing Inconsistent specificationg;ace&dings of the Third
IEEE International Symposium on Requirements Engineering, IEEE, 1998886.

43. M. Mannion, B. Keepence and D. Harper, Using Viewpoints to DefimeaiPoRequirements, in:
IEEE Computer Society Press, 1998, pp.453-462.

44. http://midwestgreenenergy.com/images/PV-GridSystem2.jpg

23

