

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 27, 2024

Identification of a reusable requirements structure for embedded products in a
dynamic market environment

Hauksdóttir, Dagný; Mortensen, Niels Henrik; Nielsen, Poul Erik

Published in:
Computers in Industry

Link to article, DOI:
10.1016/j.compind.2012.10.008

Publication date:
2013

Document Version
Early version, also known as pre-print

Link back to DTU Orbit

Citation (APA):
Hauksdóttir, D., Mortensen, N. H., & Nielsen, P. E. (2013). Identification of a reusable requirements structure for
embedded products in a dynamic market environment. Computers in Industry, 64, 351-362.
https://doi.org/10.1016/j.compind.2012.10.008

https://doi.org/10.1016/j.compind.2012.10.008
https://orbit.dtu.dk/en/publications/eef4fc24-9e7e-4760-9dda-ae397cba3a9e
https://doi.org/10.1016/j.compind.2012.10.008

 1

Identification of a reusable requirements structure for
embedded products in a dynamic market environment.

1. Introduction
The main measure of the success of a system is the degree to which it meets its purpose. Therefore,
identifying this purpose must be one of the main activities in the development of systems [1]. A survey
conducted by the Standish group shows that some of the main reason for project failure can be directly
related to incomplete requirements and poor requirement management [2]. The Requirements
Specification (RS) is important to create a written agreement among players regarding what will be
included in a new product development project. It aligns expectations and represents a contract between
development, project managers, customer and “business owners”. It has been long recognized that
inadequate, incomplete, ambiguous, or inconsistent requirements have a significant impact on the
quality of (software) products [1]. Problems with specifications are probably the principal reason for
project failure where systems are delivered late, do not meet the real needs of their users, and perform
in an unsatisfactory way [3, 4, 5, 6]. Quality RSs prevent uncertainty, ambiguity and misunderstanding
between players [7].

Technical products may have hundreds of requirements and the activity of requirement documenting
can consume considerable recourses. As product and market complexity increases requirements are
becoming a valuable knowledge. Similarly as other valuable knowledge, requirements can be reused
rather than reinvented. Reusing similar requirement frameworks is among the most promising ways to
reduce time and resources, and increase quality of requirements [8]. By reusing requirements
companies can improve the efficiency of documenting and reviewing requirements. Systematically
reusing requirements can therefore contribute to reduced time to market and increased product quality.

The requirement structure is an important enabler for controlling and managing requirements reuse. A
consistent requirement structure will support companies in the planning and management of
requirements activities and enable downstream reuse of other design documents. A good requirement
structure will not only need to be sufficient for documenting requirements, but also for efficiently
managing activities such as finding, selecting and maintaining requirements. It is not really possible to
start systematically reusing requirements unless a consistent and good structure is in place. This topic
should therefore be a top priority for every company that wants to reuse requirements across product
development projects and needs further attention.

Even though the requirement structure is important for reuse, this topic currently lacks theory and
practices. The objective of this paper is to identify what characterizes a good structure for requirement
reuse and to suggest a structure that fulfils the identified criterions. The structure shall be used for
documenting requirements in a re-usable RS. A RS is a collection of requirements that describes the
demanded behaviour and properties of a system or a product. The RS can be a document or it can be a
collection of requirement items in a repository. The structure will both be used for a RS containing
selected requirements for a product instance and for the collection of reusable requirements. It is about
finding a structure that can cover all types of requirements, include all technology fields and support
identification and reuse of relevant requirements. This is important to enable companies to gain benefits
from reusing requirements in practise. Without having control over the structure, practical challenges
could prevent capturing benefits from reuse. The objective is that this structuring technique can be
applied to technically complex, embedded products, as they typically involve a high level of system
complexity. With the proposed structure the focus is on the high level grouping and structuring of
requirements, contributing to creating a mature way to manage the reusable requirements.

The sections of this paper are organized as follows. In the next section, section 2, the criterions defining
a good reusable requirement structure are discussed. In section 3, the state of the art methods for
structuring and reusing requirements are presented. Section 4 presents a gap analysis comparing the

 2

previous contributions to the criterions identified in section 2. Section 5 presents the proposal for
structuring requirements for reuse. In section 6 a case study, where the proposed structure is used to
document and reuse requirement for solar inverter products, is described. The paper then concludes in
section 7 where the findings of the paper are discussed.

2. What needs to be in place to reuse requirements?
It has been recognized that requirements are valuable information and that reusing existing
requirements can be a promising way to increase efficiency in the documentation process and to
increase the quality of requirements [8, 9, 10, 11, 12, 13]. It is suggested that both the requirements
them self, their structure and other domain knowledge can be reused in new projects. In order to reuse
requirements several things should be in place such as well written and correct requirements, a
definition of what is general and what is specific, how to manage variability between products, roles
and responsibilities for how to document and to maintain the requirements, selection constrains,
dependencies or relationships between requirements etc.
However in practice, the first thing that must be done before building a reusable requirements asset is
to define a high level grouping and classification patterns which create a system for organising the
documented requirements.
When there are hundreds of requirements they can not be documented in one big pile of items and it
becomes unavoidable to group the requirements to create some logical overview. Requirement will not
be independent, but it will be in contextual relationship with other requirements. Requirements might
thus, specify related things, elaborate on or be a rationale for other requirements. In some cases
requirements directly affect the value other requirements. There must therefore be a defined structure
which defines the logic for how to document requirements. The structure of the requirement repository
should make it easy to understand it, retrieve and analyze its items, follow dependency links, trace
items back to their rationale and make appropriate changes [11]. This structure is important for all RSs
but especially for those that shall be reused. The authors of this paper have identified several criterions
that must be realized in order to establish a good requirement structure in general and additional ones to
create a good requirement structure for reuse.

The criterions for good requirements structures in general are:

• Overview and context: It is important that related requirements can be grouped together so
users can easily get an overview and understanding of the content of the RS. This is challenging
since different requirements might be related depending on the viewpoint taken.

• Coverage of all requirements: The requirement structure must have a place for all requirement
topics and types of requirements.

• Coverage analysis: The structure must create an overview of whether the RS is complete.
• Representation to stakeholders: There are many stakeholders to the RS. The structure must

make it easy for different groups of stakeholders to view relevant requirements. It must also be
straight forward which stakeholders can provide the necessary information to define the
requirements.

• Reflection of solution domain: To enable a transparent transformation to design, the structure
must reflect the solution domain of the product.

In addition, the criterions for good requirements structures for reuse are:

• Consistency: Although the product requirements will differ between product projects the
structure must be consistent and stable across products. The names and order of the main groups
must be consistent and each requirement should have a certain location in the structure. This
will create familiarity of the structure for users, enabling better planning of the requirement
documentation and stable connections to other tools.

• User friendliness: The reusable structure has some additional criterions regarding user
friendliness. Different stakeholders will work with the RS from one project to another. It must
be transparent where to find what they are looking for and where to locate requirements.

 3

The structure should create a structural guide for reuse, guiding the users from one requirement
to the next creating the order in which requirements are selected.

• Maintenance: It must be easy to maintain reusable requirements. Requirements have different
characteristics and sources that affect their volatility and maintenance. Therefore, requirements
with similar maintenance characteristics should be grouped together. It is beneficial if the
grouping of the requirements makes it transparent which stakeholders should be responsible for
its maintenance.

• Downstream reuse: To enable downstream reuse it is important that the requirements have a
consistent location in the structure. It is also important the RS reflects other specifications, such
as test specification and that knowledge from the RS can be transferred to other documents,
such as the design specification. This enables a stable and transparent connection between
requirements items and corresponding items in other specifications.

The goal of this paper is to present a RS structure that will fulfil these criterions.

3 State of the art
The state of the art work related to the proposal of this paper is focused on previous contribution
regarding high level grouping, categorizing and structuring for requirement reuse.

3.1 Requirement types
It has been widely recognised that requirements can be defined and divided into different
requirement types [9, 11, 14]. Requirement types are used to describe the purpose of requirements
and have often been the basis for grouping requirements. The most common types are functional-
and non-functional Requirements.

Functional requirements (FRs) are specifications of what a product should be able to do. That is the
functions, activities or actions that are to be part of the product and if carried out contribute to its goals.
FRs may specify calculations, technical details, data manipulation and processing and other
functionality. FRs are often captured in use cases or work descriptions. FRs can be further described by
non-functional or quality requirements.

The Non-functional Requirements (NFRs) specify qualities that the product must have or a criteria that
the product must meet. They describe the spirit of its appearance, how easy it must be to use, how
secure it must be, what laws apply to it and other qualities that must be built into the product.

NFRs are often further specified as quality attributes (QAs). Common QAs are; look and feel, usability,
reliability, performance, maintainability, portability, security and legal requirements. Most of the QAs
that are important for a product emerge from the system as a whole. Because QAs emerge from the
structuring principles of the whole system, it will be difficult to change these properties after the system
is completed. Finding out these QAs and carefully prioritizing them is crucial for a successful
development process [15].

Additionally requirement types, such as compliance requirements, architectural requirements and
development requirements have been suggested [11]. The distinction between FRs and NFRs should
not be taken in a strict, clear cut sense since the boundary between them is not always clear. For
example, functional safety requirements such as warning signals can be considered as functional and
safety requirements and similarly NFRs can overlap, such as legal and security requirements [11].

The requirement types are recognised way to categorize requirements. However the downside of the
approach is that suggest a separation of FRs and NFRs which is unfeasible to disregard due to their
close connection. Furthermore, requirement types don’t reflect the problem domain well enough. The
requirement types therefore don’t provide a sufficient coverage analysis. Finally, how to implement a

 4

high level grouping and structuring that could be implemented in a RS document or a requirement tool
is not specified.

3.2 Requirement models
Several theories contributed to formal modelling techniques where requirements are presented and
analysed in system models. These approaches make it possible to model, identify and rationalize
requirements for complex systems.

One of the tools often used for capturing FRs are Use Case Diagrams [16, 17, 18, 19]. Use case
diagrams visually represent the behavioural requirements of a proposed system, from which the analyst
can derive the FRs that must be implemented. In object-oriented software development, requirements
of different stakeholders are often manifested in use case models which complement the static domain
model by dynamic FRs [16]. A number of methods which extend use cases with variability points have
been proposed. Each of them applies use case diagrams with an explicit representation of variability to
model product line requirements [20, 21, 22]. They differ mainly in the expressiveness of the notation
that they support. In addition [23] extended the product line use case specification to include the
dependencies between variation points [15]. The use case driven approach is however limited since it
only documents FRs and leaves out other requirement types that might be needed for a complete the RS.

NFRs are usually the most difficult and expensive requirements to achieve [10, 24] but are also among
the most important system QAs [10]. Goal-oriented approaches to requirements engineering (GORE)
[8, 25, 26, 27, 28] are based on refining vague objectives into concrete formal goals and then
decomposing these further into sub goals until a set of primitive goals, which can readily be expressed
as system requirements, have been derived. Several modelling methods support the application of
GORE such as the NFR framework, KAOS and i* [25]. The NFR framework concentrates on the
modelling and analysis of NFRs. The main idea of the approach is to systematically model and refine
NFRs and to expose positive and negative influences of different alternatives on these requirements
[29]. The main modelling tool that the framework provides is the Soft-Goal interdependency Graph
(SIG) [25]. Overall, these NFR models provide a process-oriented approach for dealing with NFRs.
Instead of evaluating the final product with respect to whether it meets its NFRs, the emphasis is on
trying to analyze and rationalize the development process in terms of NFRs [29, 30].

In Use-Case driven approach, the description of NFRs is not specific enough and in the NFRs
framework approach NFRs is separate from dealing with FRs. This increases the complexity of analysis
and design in later development stages [29]. Cross cutting concerns include functional concerns and
non-functional concerns that crosscut and constrain the FRs. Cross cutting concerns are responsible for
producing complex representation that are difficult to understand and maintain. As an example a
system might be required to perform a certain function with certain non functional characteristics such
as accuracy or processing speed. This would then be a cross cutting non-functional concern. An
efficient presentation of cross cutting concerns is essential.

[29] Presents a method called NFR/AUC (AUC stands for Aspectual Use-Case driven approach) for
how to adapt the use case diagram and the NFR framework in order to integrate FRs and NFRs and
identify crosscutting concerns. FRs are identified and build into the use case diagram and global NFR
softgoals are identified. NFRs are associated at key association points in the use case model and
decomposed into sub-softgoals. The model identifies functional and non-functional cross cutting
concerns and helps to achieve a smooth transition between system analysis and design. Figure 1
presents the association points between the use case diagram and the NFRs.

 5

Figure 1: Association points connecting the NFRs to the Use Case Diagram [29].

These use case diagram and the Goal oriented approach have limitations since they don’t include all
types of requirements. The NFR/AUC method establishes the needed connection between the FRs and
NFRs. However, the model is originates from the use case diagram and therefore the starting point is
always the functionality which is limiting when documenting static goals or constraints for a product.

To conclude these methods describe modelling techniques to identify, visualize and rationalize
requirements for a product. They model system knowledge where requirements entities are presented in
relationship with other system entities. There is therefore a misalignment between the application of
these modelling techniques and the proposal of this paper. In terms of structuring, the models present
requirements that are related to and elaborate on each other. They therefore provide a way to break
down requirements, which may be converted to the RS structure. However, a single model is likely to
present only a branch of the structure. A high level RS structure that can contain all requirements is
therefore still missing.

3.3 Domain engineering
Domain analysis was introduced by Neighbors in the DRACO system [31]. The goal of the domain
analysis process is to generate a generic representation of the domain concepts. This model then guides
the requirements development [32] or is itself the requirements model [33]. The main interest is in how
variability is managed in domain specifications.
The software technology for adaptable, realisable systems (STARS) project developed comprehensive
process models for software reuse [34]. During domain analysis they use commonality and variability
assumptions to describe the characteristics shared among different systems and how these systems vary.
Traditional domain modelling methods, such as the STARS method, focus on the existing systems and
the general rules about the domain. This focus, however, can lead to a technical representation of
variability and may lead to an insufficient account of potential future requirements.
[35] proposed using two different domain analysis activiteies: application domain analysis and solution
domain analysis. The application domain analysis corresponds to the traditional view of domain
analysis. The solution domain analysis discovers the limitations of the solution domain technology and
finds out how concepts in the application domain and the parameters of variation can be expressed in
terms of the solution domain concepts. Coplien (1999) [35] present the importance of analysing both
the problem- and solution domain for requirement analysis.

The domain analyses in general identify that to identify requirements each domain should be studied.
They also identify that the domain analysis can reveal domain differences which are sources for general
and variable requirements. This provides a foundation for a coverage analysis of the specification.
However, the domain engineering does not provide a concrete way to structure the RS on a high level,
covering all requirements.

3.4 Viewpoint approach

 6

 [7, 28, 36, 37, 38, 39, 40, 41, 42] Suggest a viewpoint approach for eliciting and structuring
requirements. The preview (Process and Requirements engineering viewpoints) viewpoint [7, 28] is an
entity which encapsulates some but not all information about a system’s requirement. In the viewpoint
approach, requirements are structured according to different views of the system. For each viewpoint a
set of requirements are identified. A viewpoint-based approach to requirements engineering recognises
that all information about the system requirements cannot be discovered by considering the system
from a single perspective. Information from different viewpoints must be integrated to form the
complete system specification.
The preview approach introduces a set of concerns which reflect the high level objectives of the system.
They are used to align the requirement for the system with the business goals. Concerns are a way of
expressing critical holistic requirements which cut across all viewpoints and apply to the system as a
whole. Examples of concerns are; safety, cost, availability, functionality, reliability and maintainability.
Figure 2 illustrates how concerns cut across possible classes of viewpoints.

Figure 2: Preview application of viewpoints and concerns [7].

A viewpoint is defined by its focus. No two viewpoints have the same focus but viewpoints may have
focuses that interacts or overlap. It is important to identify these overlapping focuses as they help to
discover potential requirement conflicts. The notion of focus forms a link between the problem space
and the system which is to be developed and provides a base for a coverage analysis. Finally it helps to
encapsulate viewpoints and requirements which are potentially reusable across a range of systems.
Identifying viewpoints and organising information around them reduces the possibility that critical
information will be missed and provides a traceability mechanism for linking requirements with their
sources [28].

Mannion et al (1998) [43] proposed using viewpoints to define product line requirements. In their
approach requirements viewpoints are created according to the domain concepts. By analysing the
requirements organised into viewpoints, reusable requirements are created.

The viewpoint approach is a sufficient way to group requirements. The approach identifies that it is
relevant to look at different sources of requirement individually to elicit requirements and to ensure that
the coverage of the problem domain. The viewpoint approach resembles to the domain approaches in
this way. The viewpoint approaches also don’t give a concrete suggestion regarding how a consistent
RS for reuse should be structured.

3.5 Hierarchical structuring
Hierarchical classification system is a classification system where entries are arranged based on some
hierarchical structure. Hierarchical structuring involves creating a decomposition tree structure of items.
The most important hierarchies for requirement reuse are aggregation hierarchy and

 7

Generalisation/specification hierarchies defined by [32]. Aggregation hierarchy describes the
decomposition of object types. The objects in the upper levels of the hierarchy represent subsystems,
whereas the leaf nodes are the concrete object types (classes or components).
Generalisation/specialisation hierarchies support the derivation of a specialised object for each target
configuration by replacing the generic object type by the target specific object [32].

Kuusela and Savolainen (2000) [15] present a method called Definition hierarchy. A definition
hierarchy consist of nodes that represent design objectives and design decisions. Design objectives
define the goals and the functionality that the future system should have. Design decisions are a
reflection of the solution domain to the requirements analysis phase. The hierarchy is a logical AND
tree, that is, the child requirements are used to define the meaning of the parent requirements. The
complete hierarchy has a special root node that describes the purpose of the system under development.
The topmost nodes in the definition hierarchy represent the architectural drivers and other QAs that the
system is supposed to fulfil. The structure does not include international standards and suggest they
should only be used as a checklist during requirement analysis. Instead the major requirements are
chosen so that they are the most important requirements in the application domain and will satisfy the
needs of the most important stakeholders.

The definition hierarchy reports several benefits. It provides concise specification of a general design
objective that otherwise would need a lot of textual explanation. Structuring also helps in sorting out
the requirements conflicts and inconsistencies. Reversing the tree structure is helpful when one tries to
find missing requirements by finding out if the underlying sub requirements are by themselves enough
to completely define the corresponding super requirement. Finding out these missing requirements is
aided by the definition hierarchy because it expresses the need an the way how to satisfy the need. The
authors also report support for testing. When using the definition hierarchy abstract and general user
needs are divided into more defined, compact and testable sub-requirements. High-level user needs are
rarely testable as such. In this case one assumes that if all testable sub requirements are fulfilled then
also the super requirements are satisfied.

The definition hierarchy provides a high level structuring approach. From the perspective of reusability,
structuring the topmost nodes based on architectural drives might cause the structure to be unstable
between projects, since different projects are likely to have different drivers. Furthermore the structure
focuses less on other none critical requirements and constraints, and standards are excluded. It does
therefore not include the complete RS. Finally there is a lack of connection to the problem and solution
domain and the coverage of the specification is not ensured.

4. Gap analysis
Summarizing the previous contributions it can be seen that qualified ways for modelling and
categorizing requirements have been suggested. To evaluate how well each of the structuring technique
fulfils the criterions defined in section 2 they are grouped into categories consistent with the structure
in section 3. For section 3.5 only the definition hierarchy is evaluated. Each method category is then
compared against each criterion. The method categories include more than one technique or
contributions which differ in how well they meet the criterions; however the grouping well reflects the
general performance of the techniques against the criterions.

 8

Table 1: Gap analysis.
Requirement

types

Requirements

Modelling

Domain

analysis

Viewpoint

analyis

Defenition

Hierarchy

Overview and context + + ++ ++ +

Coverage of all requirements + 0 0 + 0

Coverage analysis + + + ++ +

Representation to stakeholders 0 + + + 0

Reflection of solution domain 0 ++ + 0 ++

Consistency + 0 + + 0

User friendliness + + + ++ +

Maintenance + 0 0 0 0

Downstream reuse + + 0 0 0

0 Does not support criterion

+ Moderately supports criterion

++ Fulfils criteria.

Table 1 reveals that all of the existing methods meet some of the criterions but none of them
accomplishes in meeting all the criterions. Three criterions; overview and context, coverage analysis
and user friendliness are well addressed by the current theory regarding domain- and viewpoint
analysis. Additionally the criterion, reflection of the solution domain, is considered to be fulfilled by
requirement modelling and the definition hierarchy.
On the other hand there are criterions that have not been sufficiently addressed. The criterions:
coverage of all requirements, consistency, maintenance and downstream reuse are lacking support. The
approaches of requirement types and viewpoint analysis can cover most requirements, but focus on
requirements for the product in its main operation and alternative sources of requirements and
constraints lack attention. Different characteristics affecting maintenance of requirements in the
reusable structure is disregarded in all of the modelling techniques although this is an important enabler
for the lifetime of the reusable requirement structure. Finally the criterions: representation to
stakeholders and consistency are only moderately supported by the current contributions and need
further attention.
A consistent high level structure to group and categorize reusable RSs is missing. There is therefore a
gap in the theory regarding a suggestion of a qualified structuring technique that can be applied to
create a structure for a reusable RS in a practical product development environment.
In the following proposal the objective is to create a requirement structure where the quality criterions
for a reusable structure, identified in section 2, are supported. Since the existing modelling techniques
successfully meet a few of the criterions, some of them will be utilized in the proposal. The proposal
will thus contribute to filling the gaps that current modelling techniques lack in order to accomplish a
good reusable structure for a RS.

5. Proposal about the structure of requirements
The proposal of the Complete Reusable Requirement structure will now be described. The proposed
structure has 5 groups of requirements that should be consistent for different products. Each group is
broken down to sub groups based on the main domain viewpoints in the problem space of the product.
For each sub group a set of requirements can be identified and decomposed hierarchically. In stead of
grouping requirements based on requirement types (FRs and NFRs) or QAs, different requirement
types are combined within the groups. First a look will be taken at the environment of a traditional
embedded product, which is the logic for the proposed structure.

5.1 Analysis of product environment
To fit its purpose, a product should interact with system and users in its environment sufficient way,
creating the right outputs and satisfy the expectations of its stakeholders. When documenting
requirements for a product, especially for a new product member in an already existing product family
the stakeholders tend to start thinking in terms of already existing product features and systems.

 9

However, this is a limiting view and might result in a narrow focus, lack of understanding regarding the
real needs of the users and little innovation to better solve these needs. When determining whether
requirements are relevant for reuse, front end processes to indentify and elect requirements are still
necessary. It is important to support innovation and creativity as well as to analyse the environment of
the product and the needs of the customers. If the project shares purpose, customers, users of system
domains etc. with previous products it is likely that many requirements can be reused. Once the context
is known it is possible to look for requirements that deal with all or part of that context and use them as
the source of potentially reusable requirement [8]. To develop quality requirements it is important to
maintain focus on the environment of the product and its purpose, and how differences in the
environment result in different requirements for the product.
In section 2 the criterions that need to be in place for a good requirement structure are addressed. The
structure reflecting the problem space and having a location for all requirements are one of the main
criterions. Therefore to create such a structure the problem space of a traditional embedded product was
analysed. Figure 3 shows how a problem space of a product might be visualized.

Environment

Users
External devices

Life Phases

Manufacturing Logistics Marketing Installation

Usage Service

Disposal

External

interfaces

ProductSystem

A

System

B

External

stakeholders

and cusomers Internal

stakeholders

and cusomers

Operation environment

Problem space

Standards

and laws

Internal interfaces and

standard systems

Technological

disciplines

Figure 3: Product environment.

Figure 3 outlines stakeholders and domains in the problem space of a typical embedded product. Here
the problem space of the product includes all external factors directly interacting with the product or
having interest in its outcome. A boarder is drawn in the problem space between items that directly
interact with the product in its operational environment and those that only have an interest in the
products design or affect it indirectly.
The items in the operation environment of the product are domains, systems and users directly
exchanging material or information with the system in addition to environmental issues specifying the
operational condition of the product. For a reusable product family, one can imagine that the operating
environment will include the same domain types, but with variations. On the other hand, some domains
might only be included in the environment of some products.
Additionally to the product’s intended operation, the product will go through life phases such as
manufacturing, installation, services and disposal. These life phases will include processes, machines
and systems that interact with the product creating constraints and requirements that if addressed in the
products design contribute to its overall quality. Since these life phases do not include the main
operations of the product they are on the boundary of the operating environment. Products in the
product family are likely to have similar life phases as they use the same supply chain.

 10

The product outcome is affected by influences outside the immediate operating environment of the
product. Standards and laws applying to the product don’t interact with the product directly, but might
specify requirements affecting the products operations. Products, with similar application, that operate
on the same market are likely to operate within the same standards and laws. Internal stakeholders are
people within the company that have an interest in the product such as the owners of the company,
portfolio managers, sales and marketing staff, designers, etc. External stakeholders are customers,
suppliers, market regulators, etc.
The product has interfaces to the items in its operating environment. These might include standard
designs that should be respected in product design. Assuming that the product belongs to a product
family it is likely that the product realization will additionally be required to respect standard designs
and systems specified for the product family. These belong to the solution domain of the product. The
solution domain will also include different technologies for implementing the requirements.
Finally, a transparent connection is required between the RS and other design specifications such as
design specification, design implementation, test specifications etc.
This analysis is a source of inspiration for the Complete Reusable Requirement structure presented in
the following section. The focus on the domains in the environment of the product is similar to domain
engineering and viewpoint analysis discussed in section 3.3 and 3.4. However, in this paper 5 groups
that should be consistent for embedded products and cover all the subjects in the problem space of the
product are introduced. Additionally the structure aims at addressing the criterions for a good
requirement structures such as user friendliness, consistency and maintenance issues.

5.2 Groups
Grouping is a system for classifying similar things together into groups. A group is a collection of
objects considered as a whole, creating a planned arrangement of things. Ideally, when subjects or
objects of knowledge are sorted into groups it makes them easier to understand and to see the
relationships between them. Scientists use classification systems to organize information and objects to
help them make sense of the world around them. The world would be a crazy place if we didn't have a
way of organizing things. Imagine trying to look for a book in a library not having any sections. The
requirement groups create the main sections of the RSs, guiding users looking for information and
helping them make sense of the requirements. There must be a section for every requirement topic, it
must be obvious for users where to find the information they are looking for and these groups must be
consistent for all products within the scope of this proposal (embedded products). A good classification
should have groups where all the items in each group have something common and where each item
can only be placed in one group, i.e. it is clear if an item is a part of each group or not. Identifying an
effective grouping logic should be the first step in creating a good structure.
Often requirements are dedicated to customer requirements belonging to the usage phase of the product.
From the environmental analysis, subjects, separate from those typically in focus in domain- and
viewpoint analysis, are identified. These subjects result in 5 requirement groups presenting a
generalization of the items in the product environment, each having a special purpose. This grouping
should be applicable for all embedded products. The groups are the following:

Business Requirements: The purpose of this group is to present the product positioning and success
factors of the product. What are the goals and main architectural drivers that the project has to fulfil for
the project to be successful? What customer groups must the product satisfy? What must the product
cost to be competitive? These are coming from internal and external stakeholders, customers and
business owners and define their expectations and targets. The rest of the requirements will need to be
aligned to these.
The Business requirements are characterised by a few high level requirements coming from the project
definition and scoping. These requirements should be in central focus during the project. Their main
stakeholders should be internal and external customers and the business and project owners. Changing
one of these requirements would likely to result in major changes for the project.

 11

Laws and standards: These are requirements coming from market regulations and laws. They are out
of the company’s control, but are something that the products must comply with. This should not only
include identifying the standards that shall met, but an identification of what requirements they create
for the product behaviour and design. Ordinary, a new project would be a trigger to update or enter
new requirements. These requirements should however be maintained between projects so that when a
new project starts knowledge about the standard will be up to date and ready to be selected from. This
group will also need an immediate update if legal standards change. All though certain standards have
been identified the project might choose to exceed those, then the additional requirements are defined
as product properties.
Relevant specialists should constantly monitor changes in market regulations and update requirements
according to these.

Product properties: In this group, objectives, features, functions and qualities that describe the
capabilities of the product in its operating environment are documented. Most of these requirements
evolve from the preferences of the users or are the result of domain analysis and other modelling of the
product environment and come from the usage phase of the product life time. These are project specific
requirements that the company can decide on itself although they must comply with the customers’
requests, the operating environment of the product and the standard and law requirements.
The product properties are requirements identified by communicating with lead customers and users of
the product and by analysing the work environment of the product. This analysis should be facilitated
in the beginning of each project.

Life phase Requirements: Requirements and constrains surfaced from each of the life phases of the
product such as production, logistics, installation etc. Often these are not actively documented and
cause problems late in the development phase, or even when the product has been launched. By
approaching each phase individually, as a source requirements, it should be possible to identify
requirements evolving from different sources in the organisation and make them available for
developers. Including this knowledge will contribute to improving the overall product quality and cost.
Gathering and documenting these requirements should involve relevant stakeholder for each of the
major product life phases since it requires an analysis of each life phase. Not identifying these
requirements as a special group increases the risk that they will not be actively included in the RS.

Design requirements: A product belonging to a product family has constraints for how the solution
should be realized. Design constraints are those pre-existing design decisions that mandate how the
final product shall be structured. These might be using standard product platforms, interfaces with
other products, specified standard programming language, standard market designs, alignment with
pre-existing products and other issues that limit the designers “freedom” when implementing a
solution.
For design requirements the main input comes from the product architectures platform specialists and
internal design standards.

Figure 4 gives an overview of the five requirement groups.

Figure 4: Five main groups of requirements.

 12

The logic for these five groups is the different characteristics and background of the requirements. This
is a new classification of requirements which should provide a better grouping than suggested by
previous methods since it identifies all objects in the product environment and their characteristics.
Each of these groups contains requirements with a specific purpose, origin and stakeholders. Separating
the requirements into these groups will therefore provide a clear focus for arranging the requirements.
It is an effective generalization of a complicated environment. The five specific groups are furthermore
believed to be sufficient to cover and communicate all requirement topics and be consistent for all
embedded products. It is believed to be a transparent to guide for users to find the section containing
the topic in question and making it easy to see the relationship between the requirements in each group.

5.3 Sub-groups
A subgroup is a distinct and often subordinate group within a group. When analysing and identifying
requirements for reuse, domain theory suggest analysing the main domains of the problem space of the
future product and indentify general and variable characteristics of the domains. It is suggested that
sub-groups reflecting the main domains in the problem space of the product are created. The
requirements are documented in a sub-groups corresponding to the domains they surface from. The
basic classification is therefore harmonized with where the requirement evolves from. All requirements
that are needed to accomplish operation or accordance with a specific domain are documented in the
same group, enabling a complete identification of relevant requirements. This is consistent with
domain- or viewpoint analysis. This shifts the focus, on the highest structuring level, to the goals of the
product in its problem domain and away from the solution space of the product. It is possible that sub-
groups will have more than one level. However, it is suggested that the number of levels should be kept
at minimum.

When documenting the requirements, it should therefore be transparent where to find the corresponding
sub-group to place the requirement. A product family can be expected to share common domains in the
environment of the product. When identifying requirements for reuse each of these domains can be
analysed and similarities and variation can be identified. It is recognised that there are two types of
variability between domains in the environment of a product within a product family. Some domain
types exist in the environment of every product within a product family although they have variations
between products, while others are only present for some products.

This proposal suggests that the definition of the sub-groups is not default and organizations are given
the flexibility to identify their own sub-groups. Different products will have specific sources of
requirements and each company will have their own specific concepts. For usability it is important that
the sub-groups make sense and are easily recognized by the employees. Typical sub-groups for life
phase requirements are the main life-phases in the products life time. For product properties they are
the main systems and users in the products operating environments and for standards and laws, they are
the major market regulations the product must comply with. Similar sub-groups might be reused
between product families and within companies. In each sub-group the requirements are decomposed in
a hierarchical structure.

5.4 Requirement types
Some approaches suggest that different types of requirements, e.g. FRs and NFRs create the main
classification for grouping requirements [8]. However, often NFRs support FRs and they are often
closely related. In this proposal it is therefore suggested that instead of separating requirement types,
different types are combined within the groups. Each requirement entity is defined as a certain
requirement type. These requirements types are used to ensure that the structure is implemented
correctly. Additionally to FR and NFR types (see description in section 3.1) the requirement types
included are the following:

 13

Group: This type presents the groups and sub-groups described in section 5.2 and 5.3 above. A group is
a heading or a section for requirements. It would therefore not specify a requirement but since this is an
entity in the structure it needs to have a defined type. This requirement type should contain a
description regarding the content of the group.

Objective: An objective is a high level specification of a capability that the product possesses or an
outcome it must achieve. An objective can describe a high level use case or a feature and can be further
divided into FRs and NFRs that specify more detailed aspects of the objective.

Typically solutions are not supposed to be included in the requirement election. However sometimes it
is required that a certain solution shall be used. Sometimes it is necessary to specify a solution to
identify more detailed requirements. Then it should be included in the requirement structure, but
categorised as solutions and documented as such. It is important to consider the solutions included
carefully and only include the necessary ones.

Constraints are not exactly requirements in the sense that they are not raised by the product’s
demands, but they are issues that have a strong influence on the requirements and the outcome for
the product. Constraints cause limitation on how the products design should be realised.

Figures 5 shows how each group contains of different requirement types.

Figure 5: Requirements of different types are combined in the groups.

Figure 5 shows how each group is broken down to sub-groups as described in section 5.3. The main
objectives are then found for each sub-group and the objectives are broken down to FRs, NFRs,
solutions and constraints. This breakdown shall be followed for all groups. Identifying the different
type of items ensures the structure is implemented in the correct way.
The reason for identifying these types is to give the items in the structure identification. Each of the
types will have a specific scope and be written in a different way. Identifying the requirement types can
therefore be an important enabler of documenting quality requirements.
Embedded products have a complicated connection between different technical disciplines. It should be
avoided to write requirements for technologies as such since requirements should describe behaviour
and characteristics of the product. It is the implementation of the requirements that should be carried
out with different technologies. Identifying objectives regardless of technology is important to identify
the real need independent on the implementation technique since many objectives can be carried out
using more than one technical discipline. For lower level requirements it might be relevant to identify
the implementation technique. Traces between lower level technical requirements and this need is
critical for a quality RS.

5.5 Quality aspects
QAs are defined in section 3.1. They can be seen as overall quality targets of the product and are often
associated with NFRs. As companies constantly have stricter quality targets understanding how
requirements relate to critical quality aspects of the product becomes ever more important. In addition

 14

to the requirement types, a requirement QA is identified for each requirement. Different QAs might be
used after each company preferences. The theory [8, 9, 10] provides several definitions of QA
categories that can be used.
It is identified that functional requirements also contribute to quality attributes. For example a
functional safety requirement contributes to the safety QA. Monitoring functions or error detection
functions are concerned with the reliability of the product etc.
Each QA can be filtered and viewed separately providing the structure a cross functional grouping and
categorizing. For example, all maintenance QAs can be filtered to analyse whether all requirements
concerning maintenance have been included and are consistent. QAs should have a different content
and a specific writing stile. Specific metrics should furthermore be specified for each QA which could
support authors to define a measurable criterion for the requirements.

5.6 Hierarchical decomposition of requirements
Under each sub-group a set of requirements is structured. A similar hierarchy logic as specified in [15]
with an AND tree, where the child requirements are used to define the meaning of the parent
requirements is suggested here. This involves decomposing high level requirements to more detailed
requirements in an aggregation hierarchy and breaking general requirements down to more specific
requirements in Generalisation/specialisation hierarchies (see section 3.5). As described in section 5.3,
sub-groups are broken down to high level objects which are broken down to FRs, NFRs, solutions and
constraints, which are specified in further detailed in each level.
Models such as the Use case diagram and the NFR/AUC can be useful to identify and analyze
requirements. These techniques model separate use-cases or objectives. They have until now been
lacking a high-level structure for organizing the models in a sufficient way. If such models are created
they can be used to create a corresponding breakdown of requirements in the hierarchy structure. The
use-case would be an objective type broken down to FRs and NFRs (See figure 1 and figure 5).
Stakeholders working with such models would therefore be able to present them in the structure and
use them directly to document requirements. It is however not expect that all objectives will be
structured in this way.
When decomposing the requirements for a reusable structure, it is important to consider the life time of
the structure. The structure needs to be flexible to add additional requirements without moving altering
the initial structure. To accomplish this sometimes it is necessary to create additional nodes in the
system when it is expected that other more similar requirements will be added later.
In some cases it might be appropriate to bring the variability up to a high level in the tree structure.
Domains which are only present in the environment of some product members might thus be included
or excluded on a sub-group level. Variability within the same domain would be more appropriate on a
lower level.
To enable easier comprehension of the structure similar decomposition logic should be applied within
similar sub-groups. This will create consistency and familiarity in the system, making it easy to
understand the dynamics in the structure. Following these guidelines should enable a more stable
structure. The case study discusses some practical experiences regarding creating a hierarchical
structure.

5.7 Contribution to the reusable requirement structure
With the proposal presented above a way of structuring a RS with the objective of reuse has been
suggested. In section 4 previous modelling and structuring techniques are evaluated against the
identified criterions in section 2. Some of the criterions identified to create a good reusable requirement
structure were considered to be sufficiently addressed by the existing theories. Those were: overview
and context, coverage analysis, reflection of the solution domain and user friendliness.
The proposed structure builds on the existing techniques utilizing their contributions. It uses the
viewpoint logic for sub-groups in the structure and it suggests a cross categorization build on the
definition of QAs. Furthermore the requirement modelling and the definition hierarchy are used to
support the hierarchical decomposition of requirements. Combining the current contribution in this way
is a new proposal. It is important, since each of the existing proposals only partly fulfil the criterions.

 15

Combining them within the same proposal therefore enables a fulfilment of more criterions by the same
technique. This proposal however, additionally seeks to close some of the gaps left open by the current
theory as follows:
Coverage of all requirements: A grouping logic presenting 5 main groups is suggested. These groups
expand the scope of the structure, and accomplish and promote coverage of all requirements within the
same structure. This is important in order for all requirements to be available in the same RS.
Consistency: The groups are also believed to be consistent for all embedded products which would be
useful for those companies developing more than one embedded product families. Having a consistent
classification might support re-use of requirement between product families.
Maintenance: Considering the characteristics and purpose of the requirements helps to understand the
management and maintenance of the requirements in each group. For example, the business
requirements and the standards and law requirements shall have different management approaches.
This is a new identification that is important for the life time of reusable requirement structure.
Representation to stakeholders: Representation of the requirements to different stakeholders has also
been considered in the grouping as each group is focused on a special stakeholder group. Sub-groups
and cross categorization should also make it efficient for stakeholders to view information they are
interested in and more importantly to identify stakeholders that have knowledge about each sub-group.
Downstream reuse: Finally, a consistent structure in addition to including a requirement group for
design requirements should support downstream reuse.
The structure should be applicable and consistent for embedded products and should be ready to be
applied by companies that seek to document and reuse requirements. The following section introduces
the case study of this paper.

6. Case study
The case study is performed with a global company developing electrical inverters. The experience
with working with the proposed structure will be described and some practical insights that surfaced
when structuring requirements will be discussed. Since the structure was implemented two projects
have reused the structure (i.e. three projects have used the structure in total). The projects belong to the
same product family but have different scopes.

6.1 Introduction to Case
The company has previously used a requirement tool to document and manage requirements and
focuses highly on requirement reuse. The structure of the reusable requirement repository has
developed casually and is not believed to be the best practise. The company wants to improve the
quality of the requirements and increase the efficiency and ease of the reuse process. The company
creates two RSs; a customer specification, presenting high level stakeholder requirements, aligning the
over all scope of the product and a, technical specification which presents more detailed, technical
design requirements belonging to the solution space of the product. The RS is used as input for design
specifications. The company is now implementing a new product, solar inverters, into the requirement
tool and wants to implement an improved way of structuring and managing requirements.
Solar inverters are a type of electrical inverters developed to convert Direct Current (DC) electricity
from a Photovoltaic (PV) array into Alternating Current (AC) that is, in this case, supplied to a power
utility grid. The product families of solar inverters are roughly divided between single- and three phase,
transformer and transformer less, low- and high power inverters. The inverters differentiate on their
efficiency, operating range and features. The solar inverter on one hand shall intake current form the
PV array where the main goals are having a flexible working range and keeping high efficiency by
tracking fluctuations in the current due to solar radiations, shadows etc. On the other hand it shall
supply current to a utility grid which requires following regulations for how to react to imbalance on
the utility grid and other market standards for electrical products. The inverter has different user groups
such as residential users, commercial users and power plants which have different demands for the data
output and features. Additionally stakeholders such as government and grid tie owners have interest in
the additional electrical supply.

 16

6.2 Requirement tool
The company uses a requirement management tool called CaliberRM provided by Borland. The tool
allows users to create groups for requirements and then create a hierarchical structure of requirement
entities. The tool provides some predefined attributes and knowledge fields to define requirements and
manage project related issues. The tool also enables users to create specific attributes that fit their
specific needs. It enables users to define dependencies between requirements, but does not enable
further definition of the kind of dependencies.
Reusable requirements are collected in a special reusable requirement repository, company
requirements and requirements for products are documented in a project requirement repository. When
the scope for a new project has been analyzed the project members use the company repository and
look for already existing requirements that can be reused. If the user identifies requirements that can be
reused, they map each requirement, from the company repository to the project repository. Mapping
means that a clone of the company requirement is created in the project repository where it is given a
unique ID number and has a life of its own.
When a project requirement is mapped, it is not possible to change or remove parts of the text field of
the requirement without breaking the mapping link (un-mapping the requirement). Therefore when
reusing requirements it must be possible to map the entire text field of the requirement without change.
When the text of the mapped-from requirement in the reusable structure is changed it automatically
changes in the mapped-to requirement in the project. If the reusable requirement changes it is important
to evaluate if the project requirement should also be updated, or other vice un-map it.

6.3 Grouping
Since the highest level of structuring, the groups are pre defined they created the initial structure for the
RS. The concept of the groups has been well received and understood by the users.
The 5 groups have been successful in creating a location for all requirements. Sometimes there were
requirements that could be located in more than one group. For example there might be standards for
how the products should be disposed, which can therefore be located in both the standard and laws
and the life phase requirements groups. Requirement regarding tool interfaces for implementation
might include physical standard design requirements and could be defined as design requirements as
well as life phase requirements. It is sometimes a matter of judgement where it is best to locate the
requirements and of managing conflicts.
The trigger for the consolidation or maintenance activities is different between the groups. Maintenance
of product properties requirements will traditionally occur when projects create new requirements or
change existing ones. On the other hand maintenance for standard and law requirements will occur
when market regulations are changed. Furthermore a change in standard and law requirements is more
likely to result in a update of previous products. The company has implemented maintenance processes
where the trigger and frequency of the maintenance process is different for the different groups. Finally
the split between the groups has been valuable to identify responsibility for maintenance.

6.3.1 Sub-group identification
The process of implementing the suggested structure to the solar inverter product began by indentifying
and modelling the relevant sub-groups. Experienced employees were gathered to come up with the
right sub-groups. After a few work shops the employees agreed on a common view of the main
domains for each group. The result is shown in Figure 6.

 17

Figure 6: Sub-groups created by the company.

It was clearly advantageous that employees created the structure themselves using their own words and
interpretation of the product. It is important that the employees chosen to create the structure are
experienced in order to get a correct structure and also to get a buy in from other users. When the sub-
groups had been created it was easily realised where it was appropriate to locate most requirements
topics since the groups were harmonized with the sources of the requirements. Creating sub-groups
improved the structure compared to previous experience of the company. Applying this structure
creates sub categorizing and overview of the requirements and reduces the risk of the structure having a
huge expansion on single levels in the hierarchy.

The structure has supported the requirement documentation and reuse activities by the groups and sub-
groups remaining stable. The number of sub-groups has increased from 42 in the first project to 50 in
the third and most are consistent. This has created a certain familiarity with the structure. It has also
helped the projects to plan the requirement documentation activity. Having a stable structure allows for
easily identifying which domains will be similar and which domains will have variants and allocate
employees with the relevant knowledge to write and review the sub-groups. Some domains do not exist
in the problem domain of all products. For example a residential inverter will not have operations with
a power plant. The domain can be selected or excluded entirely. Thus in some cases the variability is on
a higher level in the tree- structure enabling an efficient selection. Other domains such as the PV
module are always included in the operation of a solar inverter.
The second and the third projects have had RSs consisting of over 80% reused requirements all though
the scope and the architectural drivers of the products have been different for each project. The
structure has furthermore remained consistent and is believed to remain so. Having such stable
structure enables a better communication for the users.

The focus on the problem domains has helped to keep the focus on the working environment and
stakeholders of the product. This makes it easier to identify where to find the relevant information for
the requirement analysis and which stakeholders to involve. Structuring based on the domains makes it
transparent which technical specialist to contact for a review of the requirement group.

6.3.2 Requirement types

 18

The different requirements types helped to ensure that the structure is correctly implemented and that
the content of the requirement is according to its type. As described in section 6.3.1 including sub-
groups is important to accomplish a quality break down and categorization in the structure. It is
furthermore important to always include an objective to ensure that the actual needs and goals of the
product are captured.
There is a risk that the authors with technical background describe the need on a too low technical level.
Defining the objective first ensures that requirements are identified in the correct order, finding the
general need before discussing software or hardware implementation. It can be valuable to identify the
technical disciplines of some of the more detailed requirements. However, the different technologies
should not be separated in the structure and it is important to establish an overview of how general
objectives are broken down to technical requirements. Combining the different technologies in the
structure increased the quality of the requirements and helped users to look further than their technical
area.

6.3.3 Requirement QAs
The specified QAs used by the company are based on [8]. They are the following:
• Look and Feel: The spirit of the product’s appearance. Example: Colours, softness, shape and

overall aesthetics.
• Usability: Human factors related to the products ease of use and any special usability

considerations. Example: understandability, consistency and documentation.
• Reliability: To what extent can the product be expected to perform its intended function

satisfactorily. Example: recoverability, predictability, accuracy, and mean time between failures.
• Performance: How well does the product perform? Example: Processing speed, response time,

resource, consumption, throughput and efficiency.
• Operational: The operating environment of the product and what considerations must be made for

this environment.
• Maintainability: Ease of identifying what needs to be changes as well as ease of modification. This

also includes requirements related to making it easy to changing the product to accommodate a new
environment and with other configurations.

• Security: The security and confident ability of the product.
• Cultural and Political: Special requirements that come about because of the people involved in the

product’s development and operation.
• Legal Requirements: Laws and standards that apply to the product.

QAs were defined for all requirements in the structure. A learning is that for the definition of QAs to be
valuable it is important that they are defined correctly for all requirements. If some requirements are
wrongly defined the suggested categorization does not provide the value it should. This did not become
as problematic as expected and the requirement types created an understanding of the purpose of the
requirements and how they were related to the goals of the product.
As the structure gets more mature these identification becomes valuable. It allows users to filter out
specific QAs and evaluate if they are complete and consistent. Usually QAs are general and include
adjectives which are difficult to quantify. Currently the company is implementing a listing of standard
QA aspects and metrics that should support users to specify the QAs in a more concrete and detailed
manner. Reliability is a example of a QA that can have many different aspects that might be difficult to
specify and quantify. Having a standardised listing of reliability aspects and metrics would be useful
for a user defining reliability requirements in testable way and to evaluate if all relevant aspects of
reusability, that the product needs to satisfy, to accomplish this QA have been defined.

6.3.4 Hierarchical decomposition structuring
The project members were ambitious in creating a good and a flexible structure for reuse, while at the
same time considering alignment with test and the structure of the RSs, it was often difficult to find the
best way to decompose the requirements. It was challenging to predict how the requirement structure
would evolve in the future and to implement the needed flexibility in the structure.

 19

Use case modelling has been used by some developers at the company for analysing and modelling
system requirements. An approach, for transferring these models into a structure for decomposing use
case objectives into a hierarchical requirement structure, was developed. Linking the use case diagram
to the structure was well received by the users working with use case diagrams. This motivated them to
transfer the use case knowledge to the RS. It was therefore a useful connection between the
requirement analysis and the documentation of the RS. The Use case model also provided a good
overview of the requirements in the hierarchical structure. Finally, reusing use-cases could be an
efficient way to reuse requirements. However, if there is much variation it could become problematic
since it requires an update of the use case model on a high level in the structure.
It often occurred that several high level requirements shared the same requirement on a lower level. In
this case it could be necessary to repeat the requirement several times. This presents some challenges
when maintaining the structure. This can be solved by either moving the requirement to a higher level
in the structure or making references between the duplicate requirements.

6.5 Results from using structure
The structure has been accepted and has had positive response from its users. They are able to
understand the logic of the structure and the categorization of the requirements. Considering where the
requirements evolved from helped the users to understand where requirements should be located and
why. This by it self is a critical issue when structuring information and will lead to increased reuse and
reduce the lack of duplication in the structure. Both the projects that have used the structure to reuse
requirements have had RS consisting of over 80% reused requirements. This shows that the first
project seams to have been successful in identifying requirements and that it has been possible to reuse
the requirement content.
Analysis of the group requirement types shows that the structure has remained stable. The number of
sub-groups has slightly increased between the projects, from 42 in the first project to 50 in the third
project. These are consistent groups except for a few that have been included or excluded as a result of
the scope of each product. This stability has made it possible to better plan the documentation and
maintenance of the structure by allocating users to the sub-groups.
It can also be seen that they reflect the different stakeholders as each group usually has 1-2 authors
assigned to it. There is a clear split in which authors assigned to each of the 5 groups. Stakeholders
outside the project such as service and maintenance people and other specialists have also been called
in to gather further information for groups outside the operating range of the products.
The presented structure has been successful in meeting the criterions for a good requirement structure
in general and for reuse. By the experiences with the case study it has been proven to provide an
overview and context for the RS. The structure has provided a location for all requirement topics that
have come up during the case study and the focus on the problem domain and a classification of the
QAs has supported coverage analysis of the RSs.
It is assumed that when the structure matures the stability of the structure will enable downstream reuse.

7. Conclusions
The purpose of this paper has been specified to identify criterions that shall be met to accomplish a
good structure for a reusable RS and to find a structure that meets these criterions. A number of quality
criterions for a reusable requirement structure have been identified. Analysing previous contributions it
was found that some of the existing techniques sufficiently fulfil a few of the criterions. However,
individually they each only fulfil a few criterions and some criterions have not been successfully met
with any of the existing techniques. According to this a definition of a good requirement structure for a
reusable RS is missing.
Parts of the previous contributions have been utilized, in addition to new contribution to create a
holistic way of structuring an reusable RS that can meet all the identified quality criterions.
It is concluded that it has been sufficiently argued that the suggested structure fulfils the criterions
identified, better than the other identified modelling techniques and is therefore a more qualified
structure for RSs than has been suggested previously.

 20

The proposed structure has been used to document and reuse RSs for a company developing electrical
inverters. The case study confirms that the structure was sufficient for a reusable requirement
specification. The structure remained stable, supporting reuse and the planning of the documentation
activity. It also supported the consolidation and maintenance process of the requirements by focusing
on the different characteristics of the requirement groups and the stakeholder that should maintain it.
Recently the structuring technique has been applied to a different embedded product family in the
company. The high level structure and focus on the environment of the product was well received by
the users. The sub-groups of the structure remained stable between the product families. Only a few
sub-groups in the product properties and standards and laws groups changed. In fact, it has this
consistency highlighted requirement groups that could be reused between the two product families. The
structure has also been used for documenting a RS for a PC software product. The 5 high level groups
remained stable but the subgroups changed considerably compared to the embedded products. For
further research it would be interesting to study further how the structure works for other product types
and whether they require different categorization.
By this it is concluded that the proposed structuring technique should be useful and applicable for
companies creating a reusable requirement structures that should be used to document RSs for
embedded product families.

Acknowledgements
The authors of this paper would like to thank Danfoss Power Electronics for the founding of this article
work and the employees at the Danfoss Solar Inverter business unit for their time and participation in
the project. Furthermore, we would like to think Torkild Folmer Pedersen for sharing his knowledge
and experience regarding requirement management.

References
References
1. B. Gumus, A. Ertas, Requirement management and axiomatic design, Journal of Integrated Design &
Process Science 8 (4) (2004) 19-31.

2. E. Hull, K. Jackson and J. Dick, Requirement engineering, Springer, United States of America, 2005.

3. S. Barlas, Anatomy of a Runaway: What Grounded the AAS, IEEE Software 13 (1) (1996) 104–106.

4. GAO, Contracting for Computer Software Development – Serious Problems Require Management
Attention to Avoid Wasting Millions, US General Accounting Office (1979)

5. W.W. Gibbs, Software’s Chronic Crisis, Scientific American (International Edition) 271 (3) (1994)
72–81.

6. I. Sommerville, P. Sawyer, Viewpoints: principles, problems and a practical approach to
requirements engineering, Annals of Software Engineering 3 (1997) 101-130.

7. S. Andriole, The Politics of Requirements Management, IEEE Software 15 (6) (1998) 82 – 84.

8. P. Massonet, A. van Lamsweerde, Analogical Reuse of Requirements Frameworks, In: Proceedings
of the IEEE International Symposium on Requirements Engineering, (1997), 26-37

9. S. Roberstson, J. Robertson, Mastering the requirements process, Addison-Weslay, London, 1999.

 21

10. C. López, L.M. Cysneiros, H. Astudillo, NDR Ontology: Sharing and Reusing NFR and Design
Rationale Knowledge, in: Proceedings of the first international Workshop on Managing Requirement
Knowledge (MARK ´08), 2008, pp. 1-10.

11. A. van Lamsweerde, Requirements Engineering, From system Goals to UML Models with
Software specfiications, John Whiley and Sons, Ltd., Chichester, 2009.

12. S. Supakkul, T. Hill, E.A. Oladimeji, L. Chung, Capturing, Organizing and Reusing knowledge of
NFRs: An NFR pattern approach, in: Proceedings of the 2009 Second International Workshop on
Managing Requirements Knowledge (MARK 2009), 2010.

13. I. Sommerville, P. Sawyer and S. Viller, Viewpoints for requirements elicitation: a practical
approach, in: Third international conference on requirements engineering proceedings, 1998, pp. 74-81.

14. D. Samadhiya, D. Chen, S.H. Wang, Quality Models: Role and Value in Software Engineering, in:
proceedings of 2nd International Conference on Software Technology and Engineering(ICSTE), 2010,
pp. 1320-1324.

15. J. Kuusela and J. Savlainen, Requirement Engineering for Product Families, ICSE, 2000, pp. 61-69.

16. J.H. Hausmann, R. Heckel, G. Taentzer, Detection of Conflicting Functional Requirements in a Use
Case-Driven Approach A static analysis technique based on graph transformation, in: Proceedings of
the 24th international conference on software engineering, 2002, pp. 105-115.

17. K. Alghathbar, Enhancement of Use Case Diagram to Capture Authorization Requirements, in:
Fourth International Conference on Software Engineering Advances, 2009, pp. 394-400.

18. U.I. Hernández, F.J.Á Rodríguez, M.V. Martin, Use Processes – Modeling Requirements Based on
Elements of BPMN and UML Use Case Diagrams, in: Proceeding of the 2010 2nd International
Conference on Software Technology and Engineering(ICSTE), 2, 2010, pp. 236-240

19. M.A. Laouadi, H. Seridi-Bouchelaghem, M.A. Laouadi, F. Mokhati, A Novel Formal Specification
Approach for Real Time Multi-Agent System Functional Requirements, in: Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence (LNAI) and Lecture Notes in
Bioinformatics) 6251, 2010, pp. 15-27.

20. C. Atkinson, J. Bayer, C. Bunse, E. Kamsties, O. Laitenberger, R. Laqua, et al. Component-Based
Product Line Engineering with Uml., London, Addison-Wesley. 2000.

21. G. Halmans and K. Pohl, Communicating the Variability of a Software-Product Family to
Customers, Software and Systems modelling Journal 2(1) (2003) 15-36.

22. H. Gomaa, Designing Software Product Lines with Uml – from Use Cases to Pattern Based
Software Architectures, Addison-Wesley. 2005.

23. S. Bühne, G. Halmans and K. Pohl, Modelling Dependencies between variation points in Use Case
Diagrams, In: Ninth International Workshop on Requirements Engineering: Foundation for Software
Quality (REFSQ’03), 2003, pp. 59-70.

24. L.M. Cysneiros and J.C.S. Do Prado Leite, Integrating non-functional requirements into data
modeling. In: Proceedings of IEEE International Symposium on Requirements Engineering, 1999, pp.
162-171.

 22

25. http://www.cs.utoronto.ca/~alexei/pub/Lapouchnian-Depth.pdf

26. R. Darimont, A.van Lamsweerde, Formal Refinement Patterns for Goal-Driven Requirements
Elaboration, in: Proceedings of the ACM SIGSOFT Symposium on the Foundations of Software
Engineering 21 (6) (1996) 179-190.

27. A. van Lamsweerde, R. Darimont, P. Massonet, Goal-Directed Elaboration of Requirements for a
Meeting Scheduler, In: Proceedings of the IEEE International Conference on Requirements
Engineering, 1995, pp. 194-203.

28. A. van Lamsweerde, Requirements Engineering in the Year 00: A Research Perspective, In:
Proceedings of the IEEE International Conference on Software Engineering, 2000, pp. 5-19.

29. X. Liu, S. Liu, X. Zheng, Adapting the NFR Framework to Aspectual Use-Case Driven Approach,
in: Proceedings - 7th ACIS International Conference on Software Engineering Research, Management
and Applications, 2009, pp. 209-214.

30. J. Mylopoulos, L. Chung, B. Nixon. Representing and Using Non-Functional Requirements: A
Process-Oriented Approach, IEEE Transactions on Software Engineering 18 (6) 1992.

31. D.M. Weiss and Lai, Software Product-Line Engineering – a family-Based Software Development
Process, Addison-Wesley. 1999.

32. H. Gomaa and L. Kerschberg, Domain Modeling for Software Reuse and Evolution, in: Seventh
International Workshop on Computer-Aided Software Engineering, 1995, pp. 162-171.

33. Klingler, The Reuse-Oriented Software Evolution (Rose) Process model. Preston, Chichester,
Wiley, 1993.

34. J. Coplien, Multi-Paradigm Design for C++. Reading, Addison-Wesley, 1999.

35. G. Kotonya, I. Sommerville, Requirements engineering with viewpoints, Software Engineering
Journal 11(1) (1996) 5-18.

36. A. Goedicke, A. Finkelsetin, B. Finkelstein, J. Nuseibeh, L. Kramer, M. Finkelstein, Viewpoints: A
Framework for Integrating Multiple Perspectives in System Development, International Journal of
Software Engineering and Knowledge Engineering 2 (1) (1992) 31-57.

37. P. Darke and G. Shanks, User viewpoint modelling: understanding and representing user
viewpoints during requirements definition, Info Systems Journal 7 (3) (1997) 213 – 239.

38. P. Darke & G. Shanks, Stakeholder Viewpoints in Requirements Definition: A Framework for
Understanding Viewpoint Development Approaches, Requirements Engineering 1 (2) (1996) 88-105

39. G. Kotonya, I. Sommeiville, Requirements engineering with viewpoints, Software Engineering
Journal 11 (1) (1996) 5-18.

40. J.M. Neighbors, The Draco Approach to Constructing Software from Reusable Components, IEEE
Transactions on Software Engineering 10(5) (1984) 564-574.

41. S. Easterbrook and B. Nuseibeh, Using Viewpoints for Inconsistency Management. Software
Engineering Journal 11(1) (1996) 31-43.

 23

42. A. Hunter and B. Nuseibeh, Analysing Inconsistent specifications, in: Proceedings of the Third
IEEE International Symposium on Requirements Engineering, IEEE, 1999, pp. 78-86.

43. M. Mannion, B. Keepence and D. Harper, Using Viewpoints to Define Domain Requirements, in:
IEEE Computer Society Press, 1998, pp.453-462.

44. http://midwestgreenenergy.com/images/PV-GridSystem2.jpg

