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Abstract 

Face study and description through landmarks is a key activity in many fields, in 

particular the medical one for both corrective and aesthetic surgery purposes. In a 

previous work, we used a geometric approach to automatically extract landmarks working 

in the Differential Geometry domain, through the coefficients of the Fundamental 

Forms, the Principal Curvatures, Mean and Gaussian Curvatures and also with 

derivatives and Shape and Curvedness Indexes. In this paper we describe the 

improvements made to our algorithm previously developed by using a new 

parameterization of the mesh, new geometrical descriptors, and new conditions. 

 

1. Introduction 

Thanks to the strong development of 3D acquisition systems, three-dimensional 

face description has become more attractive, as the capture of 3D faces is faster and 

cheaper than in the past. One of the methods used for studying faces is the one involving 

the extraction of key points shared by all faces and with a particular biological meaning: 

they are called landmarks. In human face fifty-nine landmarks could be collected, but the 

most famous ones are nearly twenty. Some algorithms identify faces by extracting 

landmarks, or features, from an image of the subject’s face. A possible algorithm may 

analyze the relative position, size and shape of the eyes, nose, cheekbones, and jaw. Then, 

these features are used for various applications, including maxillo-facial surgery. In fact, 
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landmarks help surgeons in studying the patient’s face, especially in the pre-operation 

phase for predicting the actions of the surgery and for better stating how to intervene. 

Much research has been carried out on this topic. In their various publications, 

Alker et al., Frantz et al., and Wörz et al. proposed multi-step differential procedures for 

subvoxel localization of 3D point landmarks, addressing the problem of choosing an 

optimal size for a region-of-interest (ROI) around point landmarks [1] [2]. They 

introduced an approach for the localization of 3D anatomical point landmarks based on 

deformable models. To model the surface as a landmark, they used quadric surfaces 

combined with global deformations [3] [4]. They proposed a method based on 3D 

parametric intensity models, which are directly fitted to 3D images, and introduced an 

analytic intensity model based on the Gaussian error function in conjunction with 3D 

rigid transformations and deformations in order to efficiently model anatomical 

structures [5]. Finally these researchers introduced a new multi-step approach to improve 

detection of 3D anatomical point landmarks in tomographic images [6]. 

Romero et al. presented a comparison of several approaches that use graph 

matching and cascade filtering for landmark localization in 3D face data. For the first 

method, they apply the structural graph matching algorithm relaxation-by-elimination 

using a simple distance-to-local-plane node property and a Euclidean-distance arc 

property. After the graph matching process has eliminated unlikely candidates, the most 

likely triplet is selected, by exhaustive search, as the minimum Mahalanobis distance over 

a six dimensional space, which corresponds to three node variables and three arc 

variables. A second method uses state-of-the-art pose-invariant feature descriptors 

embedded into a cascade filter to localize the nose tip. After that, local graph matching is 

applied to localize the inner eye corners [7]. Then, it describes and evaluates their pose-
invariant point-pair descriptors, which encode 3D shape between a pair of 3D points. 

Two variants of descriptor are introduced: the first one is the point-pair spin image, 

which is related to the classical spin image of Johnson and Hebert, and the second one is 

derived from an implicit radial basis function (RBF) model of the facial surface. These 

descriptors can really encode edges in graph based representations of 3D shapes. Here 

they show how the descriptors are able to identify the nose-tip and the eye-corner of a 

human face simultaneously in six promising landmark localisation systems [8]. 

Bevilacqua et al. [9] presented a method for landmarks detection in which 

landmarks are detected by the use of a “sliding vector” (an observation window that at 
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every step “scrolls” along the particular direction of movement) on the polygonal mesh to 

search geometrical-statistic features typical of the face. 

Ruiz et al. [10] presented an algorithm for automatic localization of landmarks on 

3D faces. An Active Shape Model (ASM) is used as a statistical joint location model for 

configurations of facial features. The ASM is adapted to individual faces through a guided 

search, whereby landmark specific Shape Index models are matched to local surface 

patches. Similarly, Sang-Jun et al. [11] applied the Active Shape Models to extract the 

position of the eyes, the nose, and the mouth. Nair and Cavallaro [12] presented a 

method based on a statistical model called Point Distribution Model (PDM) to detect the 

landmarks. The PDM is similar to the Active Shape Model (ASM), but it uses the points 

coordinates instead of the colour of an image used by ASM. Firstly, a set of candidate 

points are detected through the use of the Curvedness Index; subsequently, a PDM is 

used to detect the landmarks; finally, the face registration is performed using the IPC 

algorithm. 

Salah et al. [13] proposed a coarse-to-fme method for facial landmark localization: 

it relies on unsupervised modelling of landmark features obtained through different 

Gabor filter channels. 

D’Hose et al. [14] presented a method for localization of landmarks on 3D faces: it 

uses Gabor wavelets to extract the curvature of the 3D faces, which is then used for 

performing a coarse detection of landmarks. 

In our previous work [15] we presented a first method to detect nine landmarks 

(pronasal, nasion, subnasal, alae, endocanthions, exocanthions) using geometrical descriptors. 

In this paper we propose an improvement to the previous algorithm, in order to have 

more precise measurements for a greater number of faces. This work is based on a 

geometric formalization of the face which may be used not only in the medical field, but 

also in other applications such as face detection, face recognition, authentication, and 

facial expression recognition. 

 

2. The proposed method 

A facial landmark is a point which all faces share and has a particular biological 

meaning. In particular we may distinct two types of landmarks: 
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1. hard-tissue landmarks, which lie on the skeletal and may be identified only 

through lateral cephalometric radiographs; 

2. soft-tissue landmarks, which are on the skin and can be identified on the point 

clouds generated by the scanning. 

In this paper we considered only soft-tissue landmarks, since a radiograph is more 

invasive (and harmful) than a photogrammetric acquisition system. Although soft-tissue 

landmarks are nearly fifty-nine, in this paper we considered nine identifiable ones 

(pronasal, nasion, subnasal, alae, endocanthions, exocanthions) plus other assistant points 

which better define nose and eyes shapes, as shown in Figure 1. The landmarks close to 

the mouth are not taken into consideration due to their pose-dependency, while the ones 

close to the face boundaries have been ignored because in those zones the scan is not 

accurate. 

 
Figure 1. (left) The Anthropometric soft-tissue landmarks (g-glabella, n-nasion, en-endocanthion, 
ex-exocanthion, or-orbital, prn-pronasal, sn-subnasal, al-alae, ch-cheilion, pg-pogonion, gn-gnathion, go-
gonion, me-menton) [16]; (right) landmarks detected by our proposed method (PN-pronasal, SN-
subnasal, AL-alae, N-nasion, EN-endocanthions, EX-exocanthions, C1 and C2-ridge of nose, B1 and 
B2-base of nose, from O1 to O6-boundaries of eye). 

The geometrical analysis is based on a mesh surface that approximates the point 

cloud, therefore a parameterization is necessary; in our previous work we used the 

following representation to describe the surface:   
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𝑆𝑆 = �
𝑥𝑥 = 𝑋𝑋
𝑦𝑦 = 𝑌𝑌 

𝑧𝑧 = 𝑓𝑓(𝑋𝑋,𝑌𝑌)
�, 

but with this form some analytical problems rose (e.g., with this form, the points which 

have the same 𝑥𝑥 and 𝑦𝑦-coordinates are not taken). As a result, we interpolated the shell 

points with a parametric function, that has been fitted to the mesh using the 

parameterization:  

𝑆𝑆 = �
𝑥𝑥 = 𝑋𝑋(𝑣𝑣,𝑢𝑢) 
𝑦𝑦 = 𝑌𝑌(𝑣𝑣,𝑢𝑢) 
𝑧𝑧 = 𝑍𝑍(𝑣𝑣,𝑢𝑢)

 ,   1 ≤ 𝑢𝑢, 𝑣𝑣� ≤ 150, 

which solves the previous analytical problems. The reference system used has the 

following features, as shown in Figure 2: 

1. the 𝑥𝑥-axis is horizontal, from left to right; 

2. the 𝑦𝑦-axis is vertical, from bottom to top; 

3. the 𝑧𝑧-axis is outgoing from 𝑥𝑥𝑦𝑦-plane. 

 
Figure 2. The reference system used in this work.    

The 𝑢𝑢 and 𝑣𝑣-parameters are the parametric directions of the surface; as shown in Figure 

3, the 𝑢𝑢-direction is nearly horizontal, while the 𝑣𝑣-direction is nearly vertical. Keeping 

constant one of them, we obtained some curves on the surface; in particular, keeping 

constant the 𝑢𝑢-parameter we obtain the curves at 𝑢𝑢-constant, while keeping constant the 

𝑣𝑣-parameter we obtain the curves at 𝑣𝑣-constant. These curves are will be used to detect 

some landmarks. 
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Figure 3. Detail of the face parametric surface (eyes region); the red grid indicates the parametric 
coordinates: the 𝒖𝒖-direction is nearly horizontal, while the 𝒗𝒗-direction is nearly vertical. 

For studying the features of the surface the differential analysis may be used; in 

particular, the first, the second and the mixed derivates, the coefficients of the 

Fundamental Forms, the curvatures, Shape and Curvedness Indexes, and Tangent Map 

are used. The First and the Second Fundamental Forms are employed to measure the 

distance on surfaces and are defined by 

𝐸𝐸𝑑𝑑𝑢𝑢2 + 2𝐹𝐹𝑑𝑑𝑢𝑢𝑑𝑑𝑣𝑣 + 𝐺𝐺𝑑𝑑𝑣𝑣2, 

𝑒𝑒𝑑𝑑𝑢𝑢2 + 2𝑓𝑓𝑑𝑑𝑢𝑢𝑑𝑑𝑣𝑣 + 𝑔𝑔𝑑𝑑𝑣𝑣2, 

respectively, where 𝐸𝐸, 𝐹𝐹, 𝐺𝐺, 𝑒𝑒, 𝑓𝑓, and 𝑔𝑔 are their coefficients and are calculated by the 

following formulas: 

𝐸𝐸 = ‖𝐷𝐷𝑢𝑢‖2, 

𝐹𝐹 = 〈𝐷𝐷𝑢𝑢 ,𝐷𝐷𝑣𝑣〉, 

𝐺𝐺 = ‖𝐷𝐷𝑣𝑣‖2, 

𝑒𝑒 = 〈𝑁𝑁,𝐷𝐷𝑢𝑢𝑢𝑢 〉, 

𝑓𝑓 = 〈𝑁𝑁,𝐷𝐷𝑢𝑢𝑣𝑣 〉, 

𝑔𝑔 = 〈𝑁𝑁,𝐷𝐷𝑣𝑣𝑣𝑣〉, 

where 
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𝐷𝐷𝑢𝑢 =

⎩
⎪
⎨

⎪
⎧𝑋𝑋𝑢𝑢 = 𝜕𝜕𝑋𝑋 (𝑣𝑣,𝑢𝑢)

𝜕𝜕𝑢𝑢

𝑌𝑌𝑢𝑢 = 𝜕𝜕𝑌𝑌(𝑣𝑣,𝑢𝑢)
𝜕𝜕𝑢𝑢

𝑍𝑍𝑢𝑢 = 𝜕𝜕𝑍𝑍(𝑣𝑣,𝑢𝑢)
𝜕𝜕𝑢𝑢

�, 

𝐷𝐷𝑣𝑣 =

⎩
⎪
⎨

⎪
⎧𝑋𝑋𝑣𝑣 = 𝜕𝜕𝑋𝑋(𝑣𝑣,𝑢𝑢)

𝜕𝜕𝑣𝑣

𝑌𝑌𝑣𝑣 = 𝜕𝜕𝑌𝑌(𝑣𝑣,𝑢𝑢)
𝜕𝜕𝑣𝑣

𝑍𝑍𝑣𝑣 = 𝜕𝜕𝑍𝑍(𝑣𝑣,𝑢𝑢)
𝜕𝜕𝑣𝑣

�, 

𝐷𝐷𝑢𝑢𝑢𝑢 = 𝜕𝜕𝐷𝐷𝑢𝑢
𝜕𝜕𝑢𝑢

, 𝐷𝐷𝑢𝑢𝑣𝑣 = 𝜕𝜕𝐷𝐷𝑢𝑢
𝜕𝜕𝑣𝑣

, 𝐷𝐷𝑢𝑢𝑣𝑣 = 𝜕𝜕𝐷𝐷𝑣𝑣
𝜕𝜕𝑣𝑣

, 𝑁𝑁 = 𝐷𝐷𝑢𝑢  × 𝐷𝐷𝑣𝑣
|𝐷𝐷𝑢𝑢  × 𝐷𝐷𝑣𝑣|

. 

Curvatures are used to measure how a regular surface bends in 𝑅𝑅3. If 𝐷𝐷 is the differential 

and 𝑁𝑁 is the normal plane of a surface, then the determinant of 𝐷𝐷𝑁𝑁 will be the product 

of the Principal Curvatures (𝑑𝑑𝑒𝑒𝑑𝑑(𝐷𝐷𝑁𝑁) = (−𝑘𝑘1)(−𝑘𝑘2) = 𝑘𝑘1𝑘𝑘2), and the trace of 𝐷𝐷𝑁𝑁 will 

be the negative of the sum of Principal Curvature (𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒(𝐷𝐷𝑁𝑁) = −(𝑘𝑘1 + 𝑘𝑘2)). In the 

point 𝑃𝑃, the determinant of 𝐷𝐷𝑁𝑁𝑃𝑃  is the Gaussian Curvature (𝐾𝐾) at 𝑃𝑃, while the negative 

of half of the 𝐷𝐷𝑁𝑁 trace is called the Mean Curvature (𝐻𝐻) at 𝑃𝑃. In terms of the principal 

curvatures it can be written: 

𝐾𝐾 = 𝑘𝑘1𝑘𝑘2, 

𝐻𝐻 = 𝑘𝑘1+𝑘𝑘2
2

, 

where 𝑘𝑘1 and 𝑘𝑘2 are the Principal Curvatures. Starting from the coefficients of the 

Fundamental Forms, we may calculate the Gaussian and Mean Curvatures with the 

following formulas: 

𝐾𝐾 = 𝑒𝑒𝑔𝑔−𝑓𝑓2

𝐸𝐸𝐺𝐺−𝐹𝐹2, 

𝐻𝐻 = 𝑒𝑒𝐺𝐺−2𝑓𝑓𝐹𝐹+𝑔𝑔𝐸𝐸
2(𝐸𝐸𝐺𝐺−𝐹𝐹2)

. 

Obtained the Gaussian and Mean Curvatures we may calculate the Principal Curvatures 

in this way: 

𝑘𝑘1 = 𝐻𝐻 + √𝐻𝐻2 − 𝐾𝐾2
, 

𝑘𝑘2 = 𝐻𝐻 − √𝐻𝐻2 − 𝐾𝐾2
. 



8 
 

The most used descriptors are surely the Shape (𝑆𝑆) and Curvedness (𝐶𝐶) Indexes, 

introduced by Koenderink et al. [17]: 

𝑆𝑆 = − 2
𝜋𝜋

tan−1 𝑘𝑘1+𝑘𝑘2
𝑘𝑘1−𝑘𝑘2

,          𝑆𝑆 ∈ [−1,1],          𝑘𝑘1 ≥ 𝑘𝑘2, 

𝐶𝐶 = �𝑘𝑘1
2+𝑘𝑘2

2

2

2
. 

Their meaning is shown in Figure 4, 5, 6, and in Table 1. 

 
Figure 4. Illustration of Shape Index scale divided into seven categories. Different subintervals of 
its range [-1,1] correspond to seven geometric surfaces. 

Class 𝑺𝑺 Type 𝑯𝑯 𝑲𝑲 

Cup/Pit  [−1;−0.625) Elliptical convex + + 

Rut/Valley [−0.625;−0.375) Cylindrical convex + 0 

Saddle rut/Saddle valley [−0.375;−0.125) Hyperbolic convex + - 

Saddle [−0.125; 0.125) Hyperbolic symmetric 0 - 

Saddle ridge [0.125; 0.375) Hyperbolic concave - - 

Ridge [0.375; 0.625) Cylindrical concave - 0 

Dome/Peak [0.625; 1] Elliptical concave - + 

Table 1. Topographic classes [16]. 𝑺𝑺 is the Shape Index, 𝑯𝑯 and 𝑲𝑲 are the Mean and Gaussian 
Curvatures, respectively. The first line means that if a surface lies in the class of cup (namely its 
shape is comparable to a pit or a cup), its Shape Index will be in the range between -1 and -0.625; 
it will also have an elliptical convexity and both the Mean and Gaussian Curvatures will be 
positive. Similarly for the other lines of the table. 
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Figure 5. Curvedness Index scale, whose range is (−∞; +∞). 

 
Figure 6. The effects on surface structure from variations in the Curvedness (radial coordinate) 
and Shape Index (angular coordinate) parameters of curvature, and the relation of these 
components to the Principal Curvatures (𝒌𝒌𝟏𝟏 and 𝒌𝒌𝟐𝟐). Indexes (𝑺𝑺, 𝑪𝑪)  are viewed as polar 
coordinates in the 𝒌𝒌𝟏𝟏𝒌𝒌𝟐𝟐-plane, with planar points mapped to the origin. The degree of curvature 
increases radially from the centre [16]. 

The Tangent Map is an index used by Perakis et al. [18] to detect the points which have 

the normal outward with respect to the centroid of the surface like nose and chin regions. 

The Tangent Map is calculated by the following formula: 

𝑇𝑇(𝑃𝑃) = 〈𝑁𝑁(𝑃𝑃),𝑅𝑅(𝑃𝑃)〉,  

where 𝑁𝑁 is the normal of the surface at 𝑃𝑃 and 𝑅𝑅 is the straight line passing through the 

centroid of the surface and 𝑃𝑃. 

The detection process consists in two phases: firstly, the algorithm defines the 

region of interest of a single landmark through geometric constrains; secondly, it detects 

the landmarks through a research of the critical points of an appropriate descriptor. 
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Indeed, the critical point positions depend by the face orientation, therefore it is 

necessary to rotate the face in a standard pose. It is represented by the following angles: 

𝜃𝜃𝑥𝑥_𝑡𝑡𝑒𝑒𝑓𝑓 =  −0.467384745634034 𝑡𝑡𝑡𝑡𝑑𝑑, 

𝜃𝜃𝑦𝑦_𝑡𝑡𝑒𝑒𝑓𝑓 =  0 𝑡𝑡𝑡𝑡𝑑𝑑,  

where 𝜃𝜃𝑥𝑥_𝑡𝑡𝑒𝑒𝑓𝑓  indicates the rotation angle around 𝑥𝑥-axis, so that the straight line through 

pronasal and nasion lies on 𝑥𝑥𝑦𝑦-plane, while 𝜃𝜃𝑦𝑦_𝑡𝑡𝑒𝑒𝑓𝑓  indicates the rotation angle around 𝑦𝑦-
axis so that the straight line through two forehead points equidistant from nasion lies on 

𝑥𝑥𝑦𝑦-plane, as shown in Figure 7.  

 
Figure 7. Representation of the angles 𝜽𝜽𝒙𝒙 and 𝜽𝜽𝒚𝒚. 

Firstly, the function detects pronasal, nasion, and two forehead points equidistant from 

nasion in this way: 

𝑝𝑝1 = �𝑢𝑢 = 𝑢𝑢𝑛𝑛 − 15
𝑣𝑣 = 𝑣𝑣𝑛𝑛 + 10

� , 

𝑝𝑝2 = �𝑢𝑢 = 𝑢𝑢𝑛𝑛 + 15
𝑣𝑣 = 𝑥𝑥𝑛𝑛 + 10

� . 

Next, the function estimates the face angles 𝜃𝜃𝑥𝑥  and 𝜃𝜃𝑦𝑦  and finally it rotates the face so 

that the new angles 𝜃𝜃𝑥𝑥  and 𝜃𝜃𝑦𝑦  are respectively equal to 𝜃𝜃𝑥𝑥_𝑡𝑡𝑒𝑒𝑓𝑓  and 𝜃𝜃𝑦𝑦_𝑡𝑡𝑒𝑒𝑓𝑓 . Since 𝜃𝜃𝑥𝑥  and 

𝜃𝜃𝑦𝑦  are estimated separately, the new angles 𝜃𝜃𝑥𝑥  and 𝜃𝜃𝑦𝑦  will not be equal to reference 

angles, therefore the function repeats the entire procedure five times. After five iterations 

the differences between the face angles and reference angles are very small, therefore 

negligible.  

The rotation angle around 𝑧𝑧-axis is not considered for the standard pose because the 

estimate of this angle is not very precise, therefore the face after the rotation may be in a 
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wrong pose. However, this angle is used to detect some landmarks, so its estimate is 

necessary. Firstly, we consider a point (C) that lies on the ridge of the nose, as shown in 

Figure 8. 

 
Figure 8. Representation of the angle 𝜽𝜽𝒛𝒛. 

The coordinates of this point are obtained in this way: 

1. the 𝑣𝑣-coordinate (𝑣𝑣𝑡𝑡 ) is calculated by the formula: 𝑣𝑣𝑡𝑡 = 𝑣𝑣𝑃𝑃𝑁𝑁 + 20; 

2. the 𝑢𝑢-coordinate (𝑢𝑢𝑡𝑡 ) is found by searching for a local maximum along 𝑢𝑢-
direction (with 𝑣𝑣-coordinate equal to 𝑣𝑣𝑡𝑡 ). 

Secondly, we calculate the rotation angle by the following formula: 

𝜃𝜃𝑧𝑧 = − tan−1 𝑥𝑥𝑝𝑝𝑛𝑛 −𝑥𝑥𝑡𝑡
𝑦𝑦𝑝𝑝𝑛𝑛 −𝑦𝑦𝑡𝑡

 , 

where 

𝑥𝑥𝑝𝑝𝑛𝑛 = 𝑿𝑿(𝑣𝑣𝑝𝑝𝑛𝑛 ,𝑢𝑢𝑝𝑝𝑛𝑛 ),  

𝑦𝑦𝑝𝑝𝑛𝑛 = 𝒀𝒀(𝑣𝑣𝑝𝑝𝑛𝑛 ,𝑢𝑢𝑝𝑝𝑛𝑛 ), 

𝑥𝑥𝑡𝑡 = 𝑿𝑿(𝑣𝑣𝑡𝑡 ,𝑢𝑢𝑡𝑡), 

𝑦𝑦𝑡𝑡 = 𝒀𝒀(𝑣𝑣𝑡𝑡 ,𝑢𝑢𝑡𝑡). 

When the process of the face rotation ends, the algorithm starts the landmark detection 

phase, summarized in the following scheme. 
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2.1 Pronasal 

The pronasal (PN) is the point on the nose tip and surely is the point most easily 

identifiable by human eye, especially because it is the most salient when the face is well 

oriented. In a standard face, the region of nose is characterized by following features: 

1. values of 𝑘𝑘2 curvature is higher compared to the other regions;  

2. in our reference system the nose tip is an local maximum, so it is a critical point. 

The idea consists in maximizing 𝑘𝑘2 curvature, so the system finds the pronasal region and 

then the algorithm searches the maximum of the surface in a neighborhood of the point 

found. 

 

In most of the faces, the point that maximizes 𝑘𝑘2 curvature is the nose tip, but in 

particular cases (for example hooked noses or noses with large nostrils) this is not true, 

therefore the research of the local maximum becomes necessary.  

 

2.2 Nasion 

The search of the nasion (N) is more complex than the pronasal one because the 

region surrounding the nasion has some geometric features present in other areas of the 

face, therefore the reduction of the region to be analyzed is necessary. We could analyze 

the face profile, shown in Figure 9, which is represented as a bi-dimensional function; in 

particular, the abscissa indicates 𝑣𝑣-parameter, while the ordinate indicates 𝑧𝑧-coordinate 
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of the face. For each 𝑣𝑣-parameter, the value of the face profile is equal to the maximum 

of the face surface by varying the 𝑢𝑢-parameter.  

 
Figure 9. Profile of the region overlying the pronasal. The abscissa indicates 𝒗𝒗-parameter, while 
the ordinate indicates the 𝒛𝒛-coordinate of the face. In particular, the region subtended by the 
function is a portion of the nose. In 𝒗𝒗 = 𝟎𝟎 we have the 𝒛𝒛-coordinate of the pronasal, while the 𝒗𝒗 
maximum value corresponds to the 𝒛𝒛-coordinate of the forehead point. 

To facilitate the search of the nasion, the profile is extracted only in the region 

overlying the pronasal, therefore the value 𝑣𝑣 = 0 is the nose tip, while the maximum 𝑣𝑣-
value indicates a forehead point, as shown in Figure 9. In a standard face, the region of 

nasion is characterized by the following features: 

1. high values of the face profile derivative, as in Figure 10; 

2. the nasion is a critical point; 

3. Shape Index lies in the range corresponding to the surface of saddle ridge, saddle 

point, saddle rut, or rut: −0.625 ≤ 𝑆𝑆 < 0.375; 

4. the Gaussian Curvature is less than or equal to zero: 𝐾𝐾 ≤ 0; 

5. the Mean Curvature lies in the range between -0.5 and 0.5: −0.5 < 𝐻𝐻 < 0.5; 

6. the coefficient f lies in the range between -0.1 and 0.1: −0.1 < 𝑓𝑓 < 0.1; 

7. low values of the coefficient 𝑔𝑔; 

8. the nasion is a saddle point in the Tangent Map, as shown in Figure 11. 
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Figure 10. Derivative of the profile of the region overlying the pronasal. 

 

 
Figure 11. Particular of the tangent map in proximity of the nasion (N). 

Firstly, the algorithm reduces the region of interest through the analysis of the 

face profile derivative: maximizing the derivative, the initial 𝑣𝑣-coordinate (𝑣𝑣𝑖𝑖 ) is found; 

then the initial 𝑢𝑢-coordinate (𝑢𝑢𝑖𝑖 ) is estimated maximizing 𝑍𝑍(𝑣𝑣,𝑢𝑢) keeping constant the 

initial 𝑣𝑣-coordinate and varying the 𝑢𝑢-coordinate in a neighbourhood of 𝑢𝑢𝑠𝑠 coordinate 

calculated by the formula: 

𝑢𝑢𝑠𝑠 = 𝑢𝑢𝑝𝑝𝑛𝑛 − 𝑑𝑑𝑡𝑡𝑛𝑛 𝜃𝜃𝑧𝑧 ∗ (𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑝𝑝𝑛𝑛 ). 

Since the forehead is a nearly flat region, the presence of noise and small rotations of the 

face may be due to an incorrect estimate of the 𝑢𝑢𝑖𝑖  parameter; consequently, the 

maximization of 𝑍𝑍(𝑣𝑣,𝑢𝑢) is performed keeping constant 𝑣𝑣-parameter to the value 𝑣𝑣𝑖𝑖 − 7 

instead of 𝑣𝑣𝑖𝑖  (we assume that the 𝜃𝜃𝑧𝑧 doesn’t affect the 𝑢𝑢𝑖𝑖  parameter because the distance 
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between 𝑣𝑣𝑖𝑖 − 7 and 𝑣𝑣𝑖𝑖  is very small), since the curve 𝑍𝑍(𝑣𝑣𝑖𝑖 − 7,𝑢𝑢) intersects the ridge of 

nose, which is a region more robust to noise than the forehead. 

Secondly, the algorithm considers a set of points that are located in a 

neighbourhood of the point identified by parametric coordinates (𝑢𝑢𝑖𝑖  and 𝑣𝑣𝑖𝑖 ) previously 

found. These points are filtered by conditions 2, 3, 4, 5, and 6, while minimizing the 

coefficient 𝑔𝑔 the algorithm finds a point (𝑢𝑢𝑛𝑛  and 𝑣𝑣𝑛𝑛 ) which could be the nasion. Indeed, 

this research has the same problem as previous research, so the estimate of the 𝑢𝑢𝑛𝑛  

parameter could be incorrect. As a result of this, the algorithm estimates the 𝑢𝑢𝑛𝑛  

parameter with the same method described above (in this case 𝑣𝑣𝑖𝑖  is equal to 𝑣𝑣𝑛𝑛 ).  

Finally, the algorithm searches a saddle point in the Tangent Map in a 

neighbourhood of the point identified by coordinates parametric (𝑢𝑢𝑛𝑛  and 𝑣𝑣𝑛𝑛 ) previously 

found. If the research produces no result then the algorithm considers as nasion the point 

obtained with the previous research. In fact, the Tangent Map depends on the head pose, 

therefore, if the face is not in a standard pose, the point found could be completely 

wrong; however, if the face is in a standard pose, the point found will be the nasion.  
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2.3 Subnasal 

The subnasal (SN) is the point which lies exactly below the nose, in that dimple 

above the mouth. This point is characterized by: 

1. high values in 𝑔𝑔 and 𝐺𝐺; 

2. maximum in 𝑍𝑍(𝑣𝑣,𝑢𝑢) in the 𝑢𝑢-direction. 

Firstly, the algorithm finds the set of maximal points of 𝑍𝑍(𝑣𝑣,𝑢𝑢) for each 𝑣𝑣 in a region 

underlying the pronasal; next, it considers the point which maximizes 𝐺𝐺 (𝑢𝑢𝐺𝐺  and 𝑣𝑣𝐺𝐺 ) 

among points previously found and deletes from the set the points which have 𝑣𝑣-
coordinate greater than 𝑣𝑣𝐺𝐺 . Finally, among remaining points, the subnasal corresponds to 

the point that maximizes 𝑔𝑔. 
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2.4 Alae 

The alae (AL) are the two points which lie on the left and the right of the widest 

part of the nose: therefore their distance is exactly the nose width. These points have a 

particular behaviour in 𝑍𝑍; in fact, each point has a local maximum in the 𝑣𝑣-direction, as 

shown in Figure 12.  

 
Figure 7. Detail of the left alae. The horizontal lines are the curves at 𝒖𝒖-constant, while the 
vertical lines are the curves at 𝒗𝒗-constant. We can note that the curve at 𝒖𝒖-constant passing 
through the alae has a local maximum in it. 

In summary: 

1. the coefficient 𝑒𝑒 has two local maximums in them; 

2. 𝑍𝑍(𝑣𝑣,𝑢𝑢) has two local maximums in them in the 𝑣𝑣-direction. 

Firstly, the algorithm finds the local maximums in the 𝑣𝑣-direction for each 𝑢𝑢-parameter 

smaller than 𝑢𝑢𝑃𝑃𝑁𝑁 ,for the left side, or greater than 𝑢𝑢𝑃𝑃𝑁𝑁 , for the right side. Then, the 

algorithm chooses as alae the points which maximise the coefficient 𝑒𝑒, one for side. 
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2.5 Endocanthions 

The endocanthions (EN) are the two points at which the inner ends of the upper 

and lower eyelid meet. Since the upper and lower eyelid cannot be well defined in the 

mesh, the extraction of the endocanthions is not trivial. Therefore in this work the 

algorithm detects the two critical points, one for side, located between eye and nose, 

namely the inner hollows near the eyes. Since these points are very close to the real 

endocanthions, we call endocanthions the points detected. In a human face, these critical 

points are local minimums, but in a mesh this could be false (there is always a local 

minimum in the 𝑢𝑢-direction in 𝑍𝑍 but there could be a local minimum in the 𝑣𝑣-direction 

in 𝑍𝑍) due to the noise introduced by the scanner or the excessive use of filter to reduce 

the noise.  However, we may consider the local minimums in the 𝑣𝑣-direction in 𝑍𝑍 in the 

nose area, as shown in Figure 13. 

 
Figure 8. Detail of the endocanthion region. The horizontal lines are the curves at 𝒖𝒖-constant, 
while the vertical lines are the curves at 𝒗𝒗-constant. The endocanthion is behind the eyelid, but we 
can note that its 𝒗𝒗-coordinate corresponds to the local minimums of the curves at 𝒖𝒖-constant 
located on the side of the nose. 
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Firstly, the algorithm finds two local minimums of the coefficient 𝑒𝑒, one for side, 

in the nose area; in this way, two points (𝐸𝐸𝑁𝑁1𝑆𝑆𝑋𝑋 and 𝐸𝐸𝑁𝑁1𝐷𝐷𝑋𝑋) lying on the nose bottom 

are found. Then, the algorithm searches the local minimums: in particular, the 𝑣𝑣-
coordinates (𝑣𝑣𝐸𝐸𝑁𝑁𝑆𝑆𝑋𝑋  and 𝑣𝑣𝐸𝐸𝑁𝑁𝐷𝐷𝑋𝑋 ) are detected searching the local minimums in 

𝑍𝑍(𝑣𝑣,𝑢𝑢𝐸𝐸𝑁𝑁1𝑆𝑆𝑋𝑋 + 4) and 𝑍𝑍(𝑣𝑣,𝑢𝑢𝐸𝐸𝑁𝑁1𝐷𝐷𝑋𝑋 − 4), while the 𝑢𝑢-coordinates are detected searching 

the local minimums in 𝑍𝑍(𝑣𝑣𝐸𝐸𝑁𝑁𝑆𝑆𝑋𝑋 ,𝑢𝑢) and 𝑍𝑍(𝑣𝑣𝐸𝐸𝑁𝑁𝐷𝐷𝑋𝑋 ,𝑢𝑢). 

 
 

2.6 Exocanthions 

The exocanthions (EX) are the two points at which the outer ends of the upper and 

lower eyelid meet. The search of these two points is the most complicated due to their 

position on the face. In fact, the points do not have well defined geometrical features; for 

instance they are not critical points. Consequently, our algorithm uses in sequence 

various search methods from the most accurate to the least accurate. The most accurate 

uses stronger conditions, thus the search can sometimes find no points; in this case, the 

algorithm uses a less accurate search method to detect these landmarks. 
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The first research method uses these conditions: 

1. the Tangent Map must be in the range between 0.35 and 0.65 (0.35 ≤ 𝑇𝑇 ≤ 0.65); 

2. the Shape Index must be less than 0.5: 𝑆𝑆 ≤ 0.5; 

3. the coefficient 𝑒𝑒 must be in the range between -0.3 and 0.01: −0.3 ≤ 𝑒𝑒 ≤ 0.01; 

4. the coefficient 𝐸𝐸 must be in the range between 2 and 3.5: 2 ≤ 𝐸𝐸 ≤ 3.5; 

5. the 𝑥𝑥-component (𝑛𝑛𝑥𝑥) of the normal deviation vector must be: 

a. left eye: −0.79 ≤ 𝑛𝑛𝑥𝑥 ≤ −0.73; 

b. right eye: 0.73 ≤ 𝑛𝑛𝑥𝑥 ≤ 0.79; 

6. the coefficient 𝑓𝑓 must be positive for the left eye and negative for the right eye; 

7. the point stays in this parametric region: 

a. left eye: 𝑢𝑢𝑒𝑒𝑥𝑥 ≤ 𝑢𝑢𝑒𝑒𝑛𝑛 − 30,      𝑣𝑣𝑒𝑒𝑛𝑛 − 5 ≤ 𝑣𝑣𝑒𝑒𝑥𝑥 ≤ 𝑣𝑣𝑒𝑒𝑛𝑛 + 5 

b. right eye: 𝑢𝑢𝑒𝑒𝑥𝑥 ≥ 𝑢𝑢𝑒𝑒𝑛𝑛 + 30,      𝑣𝑣𝑒𝑒𝑛𝑛 − 5 ≤ 𝑣𝑣𝑒𝑒𝑥𝑥 ≤ 𝑣𝑣𝑒𝑒𝑛𝑛 + 5 

The normal deviation vector (𝑛𝑛𝑑𝑑 ) is obtained by the formula: 

𝑛𝑛𝑑𝑑 = 𝑛𝑛 − 𝑛𝑛� 

where 𝑛𝑛 is the normal of a point, while 𝑛𝑛� is the average of the normal of all points of the 

face. If the research finds no points, then the algorithm will perform a new research using 

only the conditions 7, 6, and 3; if the research finds no points again, then the algorithm 

will use the second research method. If the previous research finds a set of points, then 

the algorithm will consider up to 13 points (the points number obtained with the 

previous research could be less than 13) maximizing the derivative 𝑍𝑍𝑣𝑣𝑣𝑣  and of these, it 



21 
 

considers up to 8 point minimizing the derivative 𝑍𝑍𝑣𝑣𝑣𝑣 . Subsequently, the algorithm finds 

the coordinates of landmark in this way: 

1. finds the point which maximizes 𝐸𝐸 (this point has coordinate 𝑢𝑢𝑒𝑒𝑥𝑥  and 𝑣𝑣𝑒𝑒𝑥𝑥1); 

2. finds the point which maximizes 𝑘𝑘2 curvature in a neighborhood of 𝑣𝑣𝑒𝑒𝑥𝑥1 (high 

value of the 𝑘𝑘2 Principal Curvature). 

 

The second research method uses the same approach described in [15] ; therefore, 

the region of interest has these features: 

1. the Shape Index must be in the range between -0.625 and -0.375 corresponding 

to the surface of rut: −0.625 ≤ 𝑆𝑆 ≤ −0.375; 
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2. the coefficient 𝑒𝑒 must be in the range between -0.3 and 0.3: −0.3 ≤ 𝑒𝑒 ≤ 0.3; 

3. the coefficient 𝐸𝐸 must decrease; 

4. the coefficient 𝐺𝐺 must be in the range between 0 and 50: 0 < 𝐺𝐺 < 50; 

5. the coefficient 𝑔𝑔 must decrease and must be negative; 

6. the Gaussian Curvature must be positive: 𝐾𝐾 ≤ 0; 

7. the Curvedness Index must be in the range between 0 and 0.4: 0 ≤ 𝐶𝐶 ≤ 0.4; 

8. the derivative 𝑍𝑍𝑢𝑢  must decrease and: 

a. must be positive for left eye; 

b. must be negative for right eye; 

9. the derivative 𝑍𝑍𝑢𝑢𝑢𝑢  must be in the range between -1 and 1: −1 ≤ 𝑍𝑍𝑢𝑢𝑢𝑢 ≤ 1; 

10. the derivative 𝑍𝑍𝑣𝑣  must decrease; 

11. the derivative 𝑍𝑍𝑣𝑣𝑣𝑣  must decrease and must be negative; 

12. the coefficient 𝐹𝐹 must be positive for the left eye and negative for the right eye; 

13. the point stays in this parametric region: 

a. left eye: 10 ≤ 𝑢𝑢𝑒𝑒𝑥𝑥 ≤ 𝑢𝑢𝑒𝑒𝑛𝑛 − 25,      𝑣𝑣𝑒𝑒𝑛𝑛 − 4 ≤ 𝑣𝑣𝑒𝑒𝑥𝑥 ≤ 𝑣𝑣𝑒𝑒𝑛𝑛 + 10; 

b. right eye: 𝑢𝑢𝑒𝑒𝑛𝑛 + 25 ≤ 𝑢𝑢𝑒𝑒𝑥𝑥 ≤ 139,      𝑣𝑣𝑒𝑒𝑛𝑛 − 4 ≤ 𝑣𝑣𝑒𝑒𝑥𝑥 ≤ 𝑣𝑣𝑒𝑒𝑛𝑛 + 10. 

Firstly, the algorithm finds all points which satisfy the previous conditions; secondly, it 

considers as exocanthions the two points which maximizes the coefficient 𝐸𝐸, one for side. 
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The last research method is based on the definition of the exocanthions: they are 

the two points at which the outer ends of the upper and lower eyelid meet. The problem 

of this approach is the eye edge detection without the use of texture. In this work, the eye 

edges are detected through the analysis of the coefficient 𝑔𝑔; in particular, the algorithm 

starts from center of eye and analyzes some points moving to the left (for left eye) or to 

the right (for right eye). For each point analyzed having coordinates 𝑢𝑢𝑃𝑃  and 𝑣𝑣𝑃𝑃 , it finds 

the two maximums in 𝑔𝑔 along 𝑣𝑣-direction: one has a 𝑣𝑣-coordinate greater than 𝑣𝑣𝑃𝑃 , while 

the other has 𝑣𝑣-coordinate lower than 𝑣𝑣𝑃𝑃 . The algorithm stops when a point having a 

very small difference between the 𝑣𝑣-coordinates of the two maximums is found. 
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2.7 Other nose points 

These points are not landmarks but are detected to obtain the shape of the nose 

with a good approximation; in particular, there are two points on the ridge of the nose 

and four points (two for side) on the base of the nose. The two points on the ridge of the 

nose have respectively an ordinate equal to 1 3�  and 2
3�  of the distance between nasion 

and pronasal, while the other points stay on the two straight lines perpendicular to the 

ridge of the nose, each of them passing through the points on the ridge.  

The two points on the ridge of nose are detected this way: 

1. calculates coordinates using the following formulas: 

a. first point:  𝑦𝑦𝐶𝐶1 = 2∗(𝑦𝑦𝑝𝑝𝑛𝑛 −𝑦𝑦𝑛𝑛 )
3

+ 𝑦𝑦𝑛𝑛 , 𝑥𝑥𝐶𝐶1 = 2∗(𝑥𝑥𝑝𝑝𝑛𝑛 −𝑥𝑥𝑛𝑛 )
3

+ 𝑥𝑥𝑛𝑛 ; 

b. second point: 𝑦𝑦𝐶𝐶2 = (𝑦𝑦𝑝𝑝𝑛𝑛 −𝑦𝑦𝑛𝑛 )
3

+ 𝑦𝑦𝑛𝑛 , 𝑥𝑥𝐶𝐶2 = (𝑥𝑥𝑝𝑝𝑛𝑛 −𝑥𝑥𝑛𝑛 )
3

+ 𝑥𝑥𝑛𝑛 ; 

2. finds the 𝑢𝑢 and 𝑣𝑣 parameters (𝑢𝑢𝐶𝐶1, 𝑣𝑣𝐶𝐶1, 𝑢𝑢𝐶𝐶2, 𝑣𝑣𝐶𝐶2) of the coordinates previously 

found; 

3. finds the maximums in 𝑍𝑍(𝑣𝑣𝐶𝐶1,𝑢𝑢) and 𝑍𝑍(𝑣𝑣𝐶𝐶2,𝑢𝑢) in a neighborhood of the point 

𝑢𝑢𝐶𝐶1 and 𝑢𝑢𝐶𝐶2. 

The four point on the base of nose are detected this way: 
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1. two points (one for side), both called 𝐵𝐵1, are detected maximizing the coefficient 

𝑒𝑒 along straight line perpendicular to the ridge of the nose passing through 𝐶𝐶1; 

2. the other two points (one for side), both called 𝐵𝐵2, are detected maximizing the 

coefficient 𝑒𝑒 along straight line perpendicular to the ridge of the nose passing 

through 𝐶𝐶2. 

 

2.8 Other eye points 

Similarly, these points are not landmarks and are detected to obtain the shape of 

the eye with a good approximation. In particular, three point on the eye upper edge (𝑂𝑂2, 

𝑂𝑂3, 𝑂𝑂4) and three point on the eye lower edge (𝑂𝑂1, 𝑂𝑂5, 𝑂𝑂6) are detected. All points are 

researched through the maximization of the coefficient 𝑔𝑔 keeping constant the 𝑢𝑢-
parameter. The method: 

1. calculates the 𝑢𝑢-coordinates with the following formulas: 

𝑢𝑢𝑂𝑂1 = 𝑢𝑢𝑒𝑒𝑥𝑥 +𝑢𝑢𝑒𝑒𝑛𝑛
2

,  

𝑢𝑢𝑂𝑂3 = 𝑢𝑢𝑜𝑜1+𝑢𝑢𝑒𝑒𝑛𝑛
2

,  

𝑢𝑢𝑂𝑂4 = 𝑢𝑢𝑒𝑒𝑥𝑥 +𝑢𝑢01
2

,  

𝑢𝑢𝑂𝑂2 = 𝑢𝑢𝑂𝑂1, 

𝑢𝑢𝑂𝑂5 = 𝑢𝑢𝑂𝑂3,  

𝑢𝑢𝑂𝑂6 = 𝑢𝑢𝑂𝑂4;  

  
2. calculates the initial 𝑣𝑣-coordinates with the following formulas: 

𝑣𝑣𝑂𝑂1 = 𝑣𝑣𝑒𝑒𝑥𝑥 +𝑣𝑣𝑒𝑒𝑛𝑛
2

− 2,  

𝑣𝑣𝑂𝑂3 = 𝑣𝑣𝑜𝑜1+𝑣𝑣𝑒𝑒𝑛𝑛
2

+ 2,  

𝑣𝑣𝑂𝑂4 = 𝑣𝑣𝑒𝑒𝑥𝑥 +𝑣𝑣01
2

+ 2,  

𝑣𝑣𝑂𝑂2 = 𝑣𝑣𝑂𝑂1 + 4,  

𝑣𝑣𝑂𝑂5 = 𝑣𝑣𝑂𝑂3 − 4,  

𝑣𝑣𝑂𝑂6 = 𝑣𝑣𝑂𝑂4 − 4;  

 

3. finds the 𝑣𝑣-coordinates: 

a. for the upper the algorithm starts from the initial 𝑣𝑣-coordinates and 

searches the maximum of the coefficient 𝑔𝑔 by moving upward; 

b. for the lower the algorithm starts from the initial 𝑣𝑣-coordinates and 

searches the maximum of the coefficient 𝑔𝑔 by moving down. 
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3. Experimental Validation  

The algorithm for landmark extraction was elaborated and implemented in 

Matlab®. Thirty-six faces of nine people with different facial expressions were scanned 

with a Minolta Vivid 910 and used for the experimentation. The scanned people were all 

Caucasian, male and female, from 20 to 40 years old. The computing time of the 

algorithm is less than a second for each face surface. 

In the following paragraphs the results of the landmark extraction procedures will 

be presented (using one face as sample) in a graphical way, where the descriptor graphical 

behaviour is shown, while the corresponding landmark neighbourhood reduction is 

shown on the right one. 

 

3.1 Pronasal 

The zone-of-interest of the pronasal is found through a maximization process of the 

𝑘𝑘2 curvature. Then, the landmark is extracted finding a local maximum in 𝑍𝑍 in the area 

of the points-of-interest. 

                         
Figure 14. (left) the graph of the 𝒌𝒌𝟐𝟐 curvature; the higher values are in the pronasal region, 
therefore maximizing 𝒌𝒌𝟐𝟐 (white point on the right image) we can find the area-of-interest (the 
brightest region in the right image). 
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Figure 15. (left) representation of the z-coordinate (matrix 𝒁𝒁), namely of the face surface; (right) 
the landmark extracted by maximizing 𝒁𝒁 in the area-of-interest previously found. 

In the previous example the absolute maximum in 𝑘𝑘2 curvature corresponds to the 

pronasal, but in particular cases (for example hooked noses or noses with large nostrils) 

this is not true, as shown in Figure 16. 

               
Figure 16. (left) in white the 𝒌𝒌𝟐𝟐 curvature maximum which is very close to the left alae; (right) in 
blue the pronasal detected only by maximizing the z-coordinate. 

 

3.2 Nasion 

The search of the nasion is divided in three phases: firstly, the area-of-interest is 

found through a study of the face profile; secondly, a possible landmark is extracted by a 

search with geometric descriptors; finally, the landmark is detected through a search of a 

saddle point in the Tangent Map in a neighbourhood of the point previously found. 
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Figure 17. (top-left) the face profile of the region overlying the pronasal; (bottom-left) the face 
profile derivative (Figures 9 and 10 show a larger view); (right) in the bright area-of-interest, in 
blue the real nasion, and in white the point detected after the first phase: the 𝒗𝒗-parameter of the 
nasion is computed maximizing the face profile derivative, while the 𝒖𝒖-parameter is the maximum 
of 𝒁𝒁 in 𝒖𝒖-direction. 

                  
Figure 18. (left) in the brightest region there are the points whose Shape Index lies in the range 
corresponding to the surface of saddle ridge, saddle point, saddle rut, or rut in the zone-of-
interest; (right) the reduction of the neighbourhood of interest on the face applying this 
restriction. 
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Figure 19. (left) in the brightest region there are the points which satisfy the condition on the 
Gaussian Curvature (𝑲𝑲 ≤ 𝟎𝟎); (right) the reduction of the points-of-interest on the face applying 
this restriction. 

                 
Figure 20. (left) in the brightest region there are the points which satisfy the condition on the 
Mean Curvature (−𝟎𝟎.𝟓𝟓 < 𝑯𝑯 < 0.5); (right) the reduction of the neighbourhood on the face 
applying this restriction. 

                 
Figure 21. (left) in the brightest region there are the points which satisfy the condition on the 
coefficient f (−𝟎𝟎.𝟏𝟏 < 𝒇𝒇 < 0.1); (right) the reduction of the points-of-interest on the face 
applying this restriction. 
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Figure 22. (left) in the brightest region there are the critical points in the 𝒖𝒖-direction (𝒁𝒁𝒖𝒖); (right) 
the reduction of the neighbourhood on the face selecting these critical points in the previous 
region-of-interest. 

                  
Figure 23. (left) in the brightest region there are the critical points in the 𝒗𝒗-direction (𝒁𝒁𝒗𝒗); (right) 
the reduction of the points-of-interest on the face selecting these critical points in the previous 
region-of-interest. 

                 
Figure 24. (left) the coefficient 𝒈𝒈: the minimization is made in the brightest region; (right) in 
white the point extracted from the minimization of 𝒈𝒈, in blue the real nasion; in bright the area-of-
interest used in the next phase. This is the end of the second phase for the nasion extraction. 
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Figure 25. (left) the Tangent Map 𝑻𝑻; (right) the detected nasion, which corresponds to a saddle 
point in the Tangent Map. This is the third and ending phase of the process. 

 

3.3 Subnasal 

The process of extraction of the subnasal consists in a maximization of the 

coefficients 𝑔𝑔 and 𝐺𝐺. Firstly, the area-of-interest is found through a maximization of 𝑍𝑍 in 

𝑢𝑢-direction; Secondly, the 𝑣𝑣-coordinate is found through a maximization of the 

coefficient 𝐺𝐺; finally, the subnasal is detected maximizing the coefficient 𝑔𝑔 in a region 

underlying to the point extracted in the second phase. 

                   
Figure 26. (left) the coefficient 𝑮𝑮: the maximization is made in the brightest region; (right) in 
white the point which maximizes 𝑮𝑮; the brightest region is the new area-of-interest. 
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Figure 27. (left) the coefficient 𝒈𝒈: the maximization is made in the brightest region; (right) in 
blue the subnasal detected by maximizing 𝒈𝒈. 

 
 
3.4 Alae 
 

The extraction of the alae consists in two maximizations made in two zones-of-

interest. These areas are found by searching the maximum of 𝑍𝑍 in 𝑣𝑣-direction in the left 

and right region of the pronasal. Then, the alae are the points which maximize the 

coefficient 𝑒𝑒. 

                   
Figure 28. (left) the coefficient 𝒆𝒆: the maximizations are made in the brightest regions; (right) in 
blue the alae detected by maximizing 𝒆𝒆. 

 
 
3.5 Endocanthions 
 

The process of extraction of the endocanthions consists in two phases: firstly, the 

coefficient e is maximized in two areas-of-interest close to nasion; secondly, the 

endocanthions are detected through a search of two local minimums close to the two points 
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previously extracted. The search of the local minimum is performed with the method 

previously described. 

                   
Figure 29. (left) the coefficient 𝒆𝒆: the maximizations are made in the brightest regions; (right) in 
white the points detected by maximizing 𝒆𝒆, while the brightest regions are the new areas-of-
interest used in the next phase. 

                  
Figure 30. (left) representation of the z-coordinate (𝒁𝒁): the minimizations are made in the 
brightest regions; (right) in blue the detected endocanthions. 

 

3.6 Exocanthions 

The search of the exocanthions is performed through the use of the three search 

methods, from the most accurate to least accurate. 

 

3.6.1 The first research method 
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Figure 31. (left) in the brightest regions there are the points which satisfy the condition on the 
Tangent Map (𝟎𝟎.𝟑𝟑𝟓𝟓 ≤ 𝑻𝑻 ≤ 𝟎𝟎.𝟔𝟔𝟓𝟓); (right) the reduction of the points-of-interest on the face 
applying this restriction. 

                    
Figure 32. (left) in the brightest regions there are the points which satisfy the condition on the 
Shape Index (𝑺𝑺 ≤ 𝟎𝟎.𝟓𝟓); (right) the reduction of the area-of-interest on the face applying this 
restriction. 

                     
Figure 33. (left) in the brightest regions there are the points which satisfy the condition on the 
coefficient e (−𝟎𝟎.𝟑𝟑 ≤ 𝒆𝒆 ≤ 𝟎𝟎.𝟎𝟎𝟏𝟏); (right) the reduction of the neighbourhood on the face 
applying this restriction. 
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Figure 34. (left) in the brightest regions there are the points which satisfy the condition on the 
coefficient E (𝟐𝟐 ≤ 𝑬𝑬 ≤ 𝟑𝟑.𝟓𝟓); (right) the reduction of the points-of-interest on the face applying 
this restriction. 

                      
Figure 35. (left) in the brightest regions there are the points which satisfy the condition on the 𝒙𝒙-
component (𝒏𝒏𝒙𝒙) of the normal deviation vector (left eye: −𝟎𝟎.𝟕𝟕𝟕𝟕 ≤ 𝒏𝒏𝒙𝒙 ≤ −𝟎𝟎.𝟕𝟕𝟑𝟑; right eye: 
𝟎𝟎.𝟕𝟕𝟑𝟑 ≤ 𝒏𝒏𝒙𝒙 ≤ 𝟎𝟎.𝟕𝟕𝟕𝟕); (right) the reduction of the area-of-interest on the face applying this 
restriction. 

                      
Figure 36. (left) in the brightest regions there are the points which satisfy the condition on the 
coefficient f (positive for the left eye and negative for the right eye, so this coefficient is used to 
choose the side); (right) the reduction of the neighbourhood on the face applying this restriction. 
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Figure 37. (left) in the brightest regions there are the points which are taken into consideration 
for maximizing 𝒁𝒁𝒗𝒗𝒗𝒗; the method considers up to 13 points maximizing 𝒁𝒁𝒗𝒗𝒗𝒗 and, among them, it 
considers up to 8 points minimizing 𝒁𝒁𝒗𝒗𝒗𝒗; (right) the reduction of the points-of-interest on the face 
applying this restriction. 

                         
Figure 38. (left) in the brightest regions there are the points which are taken into consideration 
for maximizing the coefficient 𝑬𝑬; (right) in white the points in which the coefficient 𝑬𝑬 is 
maximum in the area-of-interest; in bright the zones-of-interest used in the next step. 

                     
Figure 39. (left) in the brightest regions there are the points which are considered for the 
maximization of the 𝒌𝒌𝟐𝟐 curvature; (right) in blue the detected exocanthions. 
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3.6.2 The second research method 

                        
Figure 40. (left) in the brightest region there are the points whose Shape Index lies in the range 
corresponding to the surface of rut; (right) the reduction of the points-of-interest on the face 
applying this restriction. 

                        
Figure 41. (left) in the brightest regions there are the points which satisfy the condition on the 
coefficient 𝒆𝒆 (−𝟎𝟎.𝟑𝟑 ≤ 𝒆𝒆 ≤ 𝟎𝟎.𝟑𝟑); (right) the reduction of the neighbourhood on the face applying 
this restriction. 

                        
Figure 42. (left) in the brightest regions there are the points which satisfy the condition on the 
coefficient 𝑬𝑬 (E decreases in the exocanthions zone); (right) the reduction of the area-of-interest on 
the face applying this restriction. 
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Figure 43. (left) in the brightest regions there are the points which satisfy the condition on the 
coefficient 𝑮𝑮 (𝟎𝟎 < 𝐺𝐺 < 50); (right) the reduction of the points-of-interest on the face applying 
this restriction.  

                        
Figure 44. (left) in the brightest regions there are the points which satisfy the condition on the 
coefficient 𝒈𝒈 (g decreases in the zone of the exocanthions and is negative); (right) the reduction of 
the area-of-interest on the face applying this restriction. 

                        
Figure 45. (left) in the brightest regions there are the points which satisfy the condition on the 
Gaussian Curvature (𝑲𝑲 ≤ 𝟎𝟎); (right) the reduction of the neighbourhood on the face applying 
this restriction. 
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Figure 46. (left) in the brightest regions there are the points which satisfy the condition on the 
Curvedness Index (𝟎𝟎 ≤ 𝑪𝑪 ≤ 𝟎𝟎.𝟒𝟒); (right) the reduction of the zone-of-interest on the face 
applying this restriction. 

                        
Figure 47. (left) in the brightest regions there are the points which satisfy the condition on the 𝒁𝒁𝒖𝒖 
(𝒁𝒁𝒖𝒖 must decrease and is positive for left eye, negative for the right); (right) the reduction of the 
zone-of-interest on the face applying this restriction. 

                        
Figure 48. (left) in the brightest regions there are the points whose satisfy the condition on the 
𝒁𝒁𝒖𝒖𝒖𝒖 (−𝟏𝟏 ≤ 𝒁𝒁𝒖𝒖𝒖𝒖 ≤ 𝟏𝟏); (right) the reduction of the points-of-interest on the face applying this 
restriction. 
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Figure 49. (left) in the brightest regions there are the points which satisfy the condition on the 𝒁𝒁𝒗𝒗 
(𝒁𝒁𝒗𝒗 decreases in the exocanthions zone); (right) the reduction of the neighbourhood on the face 
applying this restriction. 

                       
Figure 50. (left) in the brightest regions there are the points which satisfy the condition on the 
𝒁𝒁𝒗𝒗𝒗𝒗 (𝒁𝒁𝒗𝒗𝒗𝒗 decreases and is negative in the area); (right) the reduction of the points-of-interest on 
the face applying this restriction. 

                         
Figure 51. (left) in the brightest regions there are the points which satisfy the condition on the 
coefficient 𝑭𝑭 (this coefficient is used to choose the side: 𝑭𝑭 is positive for the left eye and negative 
for the right eye); (right) the reduction of the zone-of-interest on the face applying this restriction. 
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Figure 52. (left) in the brightest regions there are the points which are taken into consideration 
for maximizing the coefficient 𝑬𝑬; (right) in blue the landmarks detected by maximizing 𝑬𝑬. 

Comparing the points extracted using the second research method with the ones 

extracted using the first one, we can note that the second method is less accurate; in fact, 

the left exocanthion is located on the right of the detected point, while the right exocanthion 

is very close to the extracted point. 

 

3.6.3 The Third research method 

The general idea is to detect the upper and the lower eyelid and to find the outer 

end where they meet: this search is performed using the coefficient 𝑔𝑔. 

                       
Figure 53. (left) the brightest regions are the areas-of-interest where the upper and the lower edges 
will be detected; (right) the two white points are the upper and the lower eyelid of the left eye, 
while the two red points are the upper and the lower eyelid of the right eye. 
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Figure 54. (left) the brightest regions are the new zones-of-interest where the upper and the lower 
edges will be detected: we can see how the new areas are more external than the previous ones; 
(right) the two white points are the upper and the lower eyelid of the left eye, while the two red 
points are the upper and the lower eyelid of the right eye. 

                       
Figure 55. (left) the brightest regions are the new areas-of-interest where the upper and the lower 
edges will be detected; (right) the two white points are the upper and the lower eyelid of the left 
eye, while the two red points are the upper and the lower eyelid of the right eye. 

                       
Figure 56. (left) the brightest regions are the new zones-of-interest where the exocanthions lie; 
(right) the two blue points are the detected exocanthions. 
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3.7 Other nose points 

The search consists in two phases: firstly, the two points on the ridge of the nose 

are extracted through a search of maximums in the 𝑢𝑢-direction (the 𝑣𝑣-parameters are 

calculated by formulas previously described); secondly, the points on the nose base are 

detected maximizing the coefficient 𝑒𝑒 along straight lines perpendicular to the ridge of 

the nose passing through the points previously detected. 

                         
Figure 57. (left) the brightest regions are found by the formulas previously described; in these 
areas the maximums in the 𝒖𝒖-direction are extracted, detecting two points on the ridge of the 
nose (as shown in the right figure). 

                       
Figure 58. (left) the brightest regions lie along straight lines perpendicular to the ridge of the nose 
passing through the points previously detected; in these areas the maximums of the coefficient 𝒆𝒆 
are extracted, detecting 4 points on the base of the nose (as shown in the right figure). 

 

3.8 Other eye points 

These points are detected through the maximization of the coefficient 𝑔𝑔 in some 

areas-of-interest; there are calculated by formulas previously described. 
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Figure 9. (left) the brightest regions lie in a neighborhood of the points obtained through the 
formulas previously described; in these areas the maximums of the coefficient 𝒈𝒈 are extracted, 
detecting 6 points which delimit the eye (as shown in the right figure). 

 

4. Results 

The results of the algorithm, performed on nine faces belonging to different 

people, are shown in Figure 60, while in Figure 61 there are the results of the algorithm 

performed on three faces of the same person but with three different face expressions. 
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Figure 60. The extracted landmarks for nine of the thirty-six faces; the faces belong to different 

people. 

   
Figure 61. The extracted landmarks from faces belonging to the same person but with different 

expressions; (left) the face expression is disgust; (center) the face expression is enjoyment; (right) 

the face expression is sadness. 

The computing times could be divided in two types: 

1. the computing time of the algorithm, which is less than 1 seconds; 

2. the processing time of the parametric surface fitting on the point cloud, which is 

about 10 seconds. 

To verify the goodness of the extracted landmarks, a brief statistical study was 

performed. In this study we considered only the principal landmarks (pronasal, subnasal, 

two alae, two endocanthions, two exocanthions, nasion) since the others depend from the first 

ones and are not a biological meaning; furthermore, in our previous work [15] we 

extracted and detected only the principal landmarks.  

Firstly, the landmarks of thirty-three faces were hand-detected from a plastic 

surgeon, so that we could compare these with the extracted ones. Only the principal 

landmarks were considered, omitting the ones which define the nose and eye shapes. 

Subsequently, Euclidean distances between the correct landmarks and the respective 

points given by algorithms were computed. However, in order to compare them, a 

normalizing operation is necessary; the idea was to normalize the distances by dividing 
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them by the diagonal of the face bounding box. A bounding box is an invisible 

rectangular 3D box in which the face is somehow inscribed. 

 
Figure 62. The measures of the bounding box of a face standard; we can note that the face width 

is about 12 cm, the face height is about 15 cm and the face depth is about 7 cm; applying 

Pitagora’s theorem we can compute the diagonal of the bounding box (𝑫𝑫 ≈ 𝟐𝟐𝟎𝟎 cm). 

As shown in Figure 62, the sides of this box have a standard length, therefore, through a 

simple proportion, the normalization could be performed. The proportion is the 

following: 

𝑒𝑒 ∶ 𝑑𝑑𝑙𝑙 = 𝐷𝐷:𝑑𝑑𝑓𝑓 , 

where 𝑑𝑑𝑙𝑙  is the distance between the correct landmark and the detected landmark, 𝑒𝑒 is 

the normalized distance which must be computed  (we can call it error), 𝐷𝐷 is the diagonal 

of the bounding box of the face standard and 𝑑𝑑𝑓𝑓  is the diagonal of the bounding box of 

the face where the landmarks are detected. 

Once the normalized distances were computed, the sample mean 𝜇𝜇 and sample 

variance 𝜎𝜎 of these errors 𝑒𝑒𝑖𝑖  were calculated: 

𝜇𝜇 = 1
𝑁𝑁
∑ 𝑒𝑒𝑖𝑖 ,𝑁𝑁
𝑖𝑖=1                 𝜎𝜎 =  1

𝑁𝑁−1
∑ (𝑒𝑒𝑖𝑖 − 𝜇𝜇)2𝑁𝑁
𝑖𝑖=1 . 

Since the diagonal of the bounding box of the standard face is given in centimetres, the 

errors and the mean will be in centimetres, while the variance will be in square 

centimetres. 
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Table 1 shows the errors on the detected landmarks with the geometric method, while 

table 2 shows the errors on the detected landmarks with the previous method. 

 

Face PN SN 
Left 
alae 

Right 
alae 

N Left EN  Left EX  
Right 
EN 

Right 
EX  

A disgust 0.069171 0.000000 0.102939 0.123921 0.071087 0.000000 0.000000 0.097312 0.122469 

A 
enjoyment 

0.066893 0.000000 0.125730 0.128060 0.094019 0.067379 0.195063 0.094766 0.226491 

A fear 0.000000 0.259112 0.149469 0.167483 0.000000 0.000000 0.104483 0.000000 0.099717 

A anger 0.000000 0.067840 0.127325 0.127756 0.068132 0.000000 0.108492 0.097135 0.000000 

A straight 0.000000 0.142837 0.179085 0.000000 0.070954 0.070999 0.112884 0.000000 0.223418 

A surprise 0.114984 0.108180 0.156197 0.000000 0.116447 0.093057 0.207247 0.116473 0.129299 

A sadness 0.000000 0.127983 0.146393 0.156274 0.000000 0.000000 0.000000 0.104106 0.103056 

B crooked 
mouth 

0.074126 0.127731 0.000000 0.101559 0.000000 0.227978 0.000000 0.227402 0.306174 

B puffy 
cheeks 

0.101334 0.000000 0.000000 0.103273 0.000000 0.215730 0.207599 0.219302 0.000000 

B open jaw 0.000000 0.121855 0.000000 0.105569 0.072183 0.220197 0.105198 0.107886 0.219968 

B straight 0.000000 0.000000 0.000000 0.100350 0.097820 0.000000 0.123507 0.000000 0.096688 

B smile 0.000000 0.000000 0.000000 0.000000 0.100900 0.075040 0.000000 0.000000 0.000000 

C straight 0.000000 0.114335 0.106097 0.106188 0.080256 0.135223 0.107755 0.110031 0.107983 

D crooked 
mouth 

0.000000 0.000000 0.087976 0.000000 0.105260 0.000000 0.109156 0.107136 0.210427 

D puffy 
cheeks 

0.000000 0.000000 0.114842 0.130374 0.000000 0.000000 0.000000 0.109147 0.000000 

D open jaw 0.071371 0.000000 0.000000 0.122839 0.000000 0.106740 0.113939 0.112331 0.000000 

D straight 0.000000 0.123360 0.118684 0.000000 0.103075 0.110749 0.115518 0.112444 0.116453 

D smile 0.071398 0.071987 0.000000 0.000000 0.000000 0.109750 0.113182 0.108528 0.112773 

D crimped 
face 

0.073178 0.131339 0.000000 0.093595 0.073183 0.104346 0.000000 0.000000 0.000000 

E straight 0.073169 0.000000 0.098395 0.000000 0.000000 0.000000 0.000000 0.000000 0.117037 

G straight 0.000000 0.000000 0.126099 0.000000 0.000000 0.000000 0.284262 0.000000 0.438821 

H straight 0.000000 0.000000 0.000000 0.000000 0.000000 0.085962 0.125901 0.000000 0.202206 

I disgust 0.000000 0.150083 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

I enjoyment 0.223603 0.123796 0.000000 0.000000 0.000000 0.000000 0.000000 0.084974 0.000000 

I fear 0.000000 0.142259 0.000000 0.000000 0.000000 0.090407 0.000000 0.000000 0.000000 

I anger 0.071645 0.142161 0.000000 0.000000 0.215278 0.085699 0.087036 0.085460 0.000000 

I straight 0.000000 0.139943 0.000000 0.159684 0.087663 0.000000 0.089150 0.000000 0.000000 

I surprise 0.000000 0.147411 0.000000 0.000000 0.070279 0.000000 0.000000 0.000000 0.000000 

I sadness 0.072578 0.264788 0.145623 0.000000 0.000000 0.000000 0.120678 0.000000 0.106266 

L disgust 0.000000 0.000000 0.000000 0.162794 0.000000 0.000000 0.000000 0.000000 0.097149 

L 
enjoyment 

0.000000 0.000000 0.000000 0.092274 0.000000 0.092863 0.000000 0.000000 0.000000 
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L fear 0.000000 0.120756 0.150874 0.156420 0.000000 0.000000 0.000000 0.083277 0.000000 

L anger 0.081910 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.083499 0.000000 

L straight 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

L surprise 0.000000 0.000000 0.113773 0.000000 0.000000 0.080680 0.000000 0.000000 0.000000 

L sadness 0.000000 0.120888 0.000000 0.000000 0.000000 0.084069 0.000000 0.083885 0.000000 

Mean 0.032371 0.076351 0.056931 0.059400 0.039626 0.057135 0.067529 0.059586 0.084344 

Variance 0.002529 0.006033 0.004427 0.004366 0.002801 0.004667 0.006031 0.004112 0.011399 

Table 1. The errors on the detected landmarks with the new method, their mean and variance. 

 
Face PN SN Left 

alae 
Right 
alae 

N Left EN  Left EX  Right 
EN 

Right 
EX  

A disgust 0.000000 0.462384 1.377968 2.136248 4.781825 0.822180 2.965512 0.000000 3.198966 

A 
enjoyment 

0.092863 0.273609 0.800119 1.107198 4.995738 0.189145 2.773832 0.387509 3.526048 

A fear 5.302633 6.037101 1.618077 2.046464 2.769072 nd 1.174162 2.095775 0.879138 

A anger 0.000000 0.614204 0.831798 1.579049 5.792273 0.198926 3.301386 0.394830 3.251960 

A straight 5.578411 6.032036 1.501161 1.220283 3.734194 nd 0.723541 nd 1.478767 

A surprise 0.096215 0.690938 1.215083 1.814219 1.148803 0.000000 1.938825 0.812242 1.345096 

A sadness 0.091621 0.660839 0.639964 1.342685 5.193155 0.854284 3.191624 0.000000 3.183644 

B crooked 
mouth 

0.000000 0.095451 1.222273 1.429403 5.487973 0.552146 0.000000 0.415520 3.545822 

B puffy 
cheeks 

0.000000 0.000000 1.562388 1.411442 1.870658 0.406317 0.000000 0.407503 0.000000 

B open jaw 0.000000 0.093815 1.385636 1.694579 1.083590 0.966525 0.160395 0.898588 0.699424 

B straight 0.000000 0.159025 1.513443 1.529998 1.320302 0.565691 3.827539 0.627688 3.646372 

B smile 0.097797 0.000000 1.509481 1.420211 2.265855 0.837827 0.310812 0.655393 0.598336 

C straight 3.404893 2.625729 1.084339 1.497613 1.197322 0.000000 0.836250 0.000000 0.523755 

D crooked 
mouth 

0.000000 0.000000 1.247381 1.552350 0.267925 0.000000 0.778690 0.000000 0.554704 

D puffy 
cheeks 

0.000000 0.000000 1.046686 1.115114 0.682151 0.135822 0.949677 0.000000 1.516129 

D open jaw 0.000000 0.094580 1.325889 1.374958 0.678932 0.000000 0.894567 0.000000 1.296277 

D straight 0.136921 0.094441 1.400497 1.567730 0.703805 0.688054 0.897806 0.000000 0.950379 

D smile 0.000000 0.000000 1.116347 1.298311 1.250866 0.419763 1.201163 0.138033 1.021320 

D crimped 
face 

0.000000 0.000000 1.144163 1.439502 0.819671 0.000000 0.967131 0.000000 0.818975 

E straight 0.192742 0.283780 1.142788 1.406316 1.128696 0.261565 1.390415 0.326844 0.763752 

G straight 1.992700 1.088195 nd Nd 5.804329 0.000000 3.331233 2.548691 3.158839 

H straight 1.553049 0.573259 nd Nd 5.060891 0.948022 4.051764 0.788119 2.902754 

I disgust 0.000000 0.980362 2.150249 0.594056 nd 0.464803 0.827523 0.630289 3.688349 

I enjoyment 5.644865 4.960352 2.043826 1.871001 2.727443 nd 1.717792 nd 1.196462 

I fear 0.157299 0.572124 1.408674 2.035180 5.903441 0.764994 3.350541 0.264345 3.417757 
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I anger 0.000000 0.478551 2.066248 2.241016 nd 0.359521 3.467147 0.258844 3.494618 

I straight 0.000000 0.429635 1.781803 2.035776 5.781285 0.615706 2.989192 0.498771 2.695455 

I surprise 5.777090 6.386505 1.828581 1.971882 3.518407 nd nd Nd nd 

I sadness 0.000000 1.035113 2.079713 2.111924 nd 0.376088 3.420194 0.484326 2.318734 

L disgust 0.000000 0.000000 3.268479 1.530134 2.397277 0.648415 2.235085 0.263401 2.435169 

L 
enjoyment 

0.102192 0.000000 0.628435 1.014100 1.336682 0.481138 1.094927 0.847771 0.801169 

L fear 0.000000 0.493908 0.789340 1.640910 2.978528 0.254219 2.673390 0.463005 2.472777 

L anger 0.000000 0.109172 0.977452 1.861438 3.010985 2.500448 2.857788 0.576667 2.422708 

L straight 5.298176 5.910212 1.922673 3.373614 3.174130 1.431659 1.294068 nd 3.776546 

L surprise 0.000000 0.857835 0.914187 1.821694 nd 0.240388 3.943875 0.612449 3.007881 

L sadness 0.210671 0.326624 0.963366 1.458054 2.512631 0.603883 2.793119 0.255596 2.287509 

Mean 0.992504 1.178327 1.397309 1.633660 2.855589 0.518360 1.952313 0.489131 2.082160 

Variance 3.863761 3.919188 0.286411 0.224900 3.474020 0.252777 1.596996 0.313147 1.410543 

Table 2. The errors on the detected landmarks with the previous method, their mean and 

variance; the word “nd” means not detected. 

The comparison between the overall means of the two methods and the graphical 

representations of mean error and standard deviation (√𝜎𝜎) for each method are shown in 

Figures 63, 64, and 65.  
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Figure 63. A graphical representation, in logarithmic scale, of mean error of the two methods; the 

mean error for each detected landmark in the new method is lower than the one in the previous 

method.  

 

Figure 64. A graphical representation of mean error and standard deviation of the previous 

method. 
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Figure 65. A graphical representation of mean error and standard deviation of the new method; 

(top) the axis scale is the same of the Figure 64, to better compare the two methods; (bottom) the 

same chart with a more suitable ordinate scale. 

Figure 63 shows that, in the old method, the mean errors of the exocanthions are 

similar in the right and left parts of the face, while, in the new method, the values in the 

charts show a certain asymmetry between the two face sides. It may be due to the fact 

that, during the acquisition, the head was not perpendicular to the scanner, but slightly 

rotated to the left, which has led to a noisier acquisition of the right side; this has caused 

a bad detection of landmarks in the right side. The presence of noise in the right sides 

has somehow slightly altered descriptors behaviour. Furthermore, the exocanthions 
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regions-of-interest and search regions are more narrow in the new method than in the 

old one. The alteration of descriptors behaviour together with this change of restriction 

conditions in landmark extraction give rise to the asymmetry in the results values of the 

right and left exocanthions of the new method. Another fact to point out is that, whereas 

the exocanthions are not critical points and so it is difficult to detect them, the subnasal 

may be occluded, since its region could be acquired incorrectly if the head is slightly tilted 

forward during the acquisition. 

Concerning the quality of the results, all Figures 63, 64, and 65 point out that, in 

the new method, both the mean error and the variance error is generally lower than in 

the old one, with a deviation of one magnitude order. Numerically speaking, the mean 

error in the new method is lower than a millimeter for each landmark. In particular, the 

landmark that is detected more correctly is the pronasal (the mean error is about 0.03 cm), 

while the worst are the subnasal and the exocanthions (the mean errors are between 0.06 

and 0.08 cm). Nevertheless, the mean error reaches similar values for all landmarks, 

keeping them in a range between 0.03 and 0.08 cm. So, it can be said that the mean error 

has been stabilized for all the landmarks. This stabilization means that, with this new 

method, the error has been “contained” with respect to the old one. In other words, all 

the landmarks may be considered as well-localized and more precise than in the previous 

method. 

This behaviour could also be recorded with other graphical representations of the 

results, i.e. scatter plots and distribution functions for both the methods, shown in 

Figures 66, 67, 68, and 69. The scatter plot is a by-points representation on the Cartesian 

plane of the positions of the obtained landmarks. It is likely to put the found points in 

the same reference system, where the origin stands for the correct landmark position. The 

scattered points on the plane pretend to show the position of the points obtained by our 

algorithms, in particular the direction and the distance from the correct landmark. 

The distribution function shows how many landmarks (𝑛𝑛, on the ordinate axis) 

takes a particular distance value (|𝑒𝑒|, on the abscissa axis). For simplicity sake, the 

distribution is not continuous but discrete. To obtain it, we discretized the set of error 

distances splitting them up into 50 short ranges for both the old and the new method 

results. A minimum and a maximum distance has been chosen: the minimum is equal to 

0 and concerns the landmarks obtained by the algorithms which are in the same position 

of the correct landmarks; the maximum is equal to 5 cm and concerns the points whose 

distances from the correct landmark is equal or greater than 5 cm. Then, we subdivided 
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the range between 0 and 5 in short intervals all equal to 0.1 cm, thus obtaining a 

discretization of the range of distances in 50 short ranges. Then, a graphical 

representation was done with the split-up distance range from 0 to 5 on the abscissa axis 

and the number of occurrences of the distance ranges on the ordinate. 

 

Figure 66. Scatter plot of the previous method results. The origin of the axis represents the 

correct location of every landmark. The scattered points are the positions of the landmarks 

obtained with our old algorithm. In this representation, the direction of the positioning of the 

obtained landmark is kept equal to the real one, while the absolute value of the distance the bi-

dimensional distance on x and y axis, namely an approximation of the 3D distance. 

-8

-6

-4

-2

0

2

4

6

8

-4 -3 -2 -1 0 1 2 3 4

y 
[cm]

x 
[cm]

Scatter plot of the old geometric method

PN

SN

left AL

right AL

N

left EN

left EX

right EN

right EX



54 
 

  

Figure 67. Scatter plot of the new method results. The origin of the axis represents the correct 

location of every landmark. The scattered points are the positions of the landmarks obtained with 

our new algorithm. In this representation, the direction of the positioning of the obtained 

landmark is kept equal to the real one while the absolute value of the distance the bi-dimensional 

distance on x and y axis, namely an approximation of the 3D distance. 
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Figure 68. Distribution function for the results of the old method. The discrete distribution 

function shows how many landmarks (𝑛𝑛, on the ordinate axis) takes a particular distance value 

(|𝑒𝑒|, on the abscissa axis). 

 

Figure 69. Distribution function for the results of the new method. The distribution function 

shows how many landmarks (𝑛𝑛, on the ordinate axis) takes a particular distance value (|𝑒𝑒|, on the 

abscissa axis). 
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As can be seen from Figures 66 and 67, while in the scatter plot of the previous 

algorithm the points are more sparse on the plane, with this new method the error has 

been kept below a certain limit and all the points could be considered as correctly 

localized. Figures 68 and 69 show the same respective behaviour of the previous ones. 

The distribution of the old method fluctuates around the value 10, namely there are 

roughly 10 landmarks for each distance range, meaning that many detected landmarks 

have a not negligible distance from the real one. On the contrary, the distribution of the 

new method approximately has an exponential decreasing; in fact, there are no landmarks 

whose distance between “true” and “obtained” is greater than 0.438821 cm. In particular, 

170 distances are equal to zero. This confirms the extraction correctness and gives further 

confirmation onto goodness of the proposed method. 

It was also asked to a plastic surgeon to judge our results. He stated that our 

obtained landmarks could be considered as correctly extracted in the faces. Furthermore, 

the value 0.438821 cm was considered as an acceptable and reliable threshold for a 

correct localization of the points of interest. Considering that most of the obtained 

landmarks have a distance from the real one which is much lower than this threshold, the 

surgeon confirmed the accurateness of the results. 

 

5. Conclusion 

In this paper we proposed an improvement to our previous geometric method. 

The general idea was to consider the face like a free-form surface and to use the 

Differential Geometry to detect and to extract the landmarks. Compared to our previous 

method,  the algorithm has been refined with new geometrical descriptors and new 

conditions on the old ones. As a result, this new method is much more precise than the 

old one, in particular, in the worst case the error of the new method is about 0.5 cm, 

while, in the old method, some landmarks have not been even detected. As a further 

endorsement, a plastic surgeon confirmed not only the correction, but also the accuracy 

of the results. 
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