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11
12 1. Introduction

13 The current academic and industrial product lifecycle manage-
14 ment (PLM) vision—that consists in setting up a comprehensive set
15 of models, methodologies, processes and information systems
16 covering the entire product lifecycle [1–3]—has not yet fulfilled all
17 life phases’ requirements [5,4,6]. This is particularly right at the
18 beginning-of-life (BOL) phase where product designers, process
19 engineers, and assembly planners are still working separately
20 without any recovery, overlap or feedback loop facilities/features

21in their tasks. Past research efforts have led to successful design
22for X (DFX) and knowledge-based techniques in product design
23in order to integrate all constraints of each life phases (i.e.
24manufacturing, assembly, disassembly and recycling) [7,8], but
25some gaps still exist in the management of the various technical
26entities and the control of information/decision/rationale flow
27through the product lifecycle [11]. This becomes a barrier for
28applying an efficient concurrent engineering philosophy in BOL
29and remains a huge challenge to be tackled [9,10].
30Previous work argued that companies required efficient concur-
31rent engineering (CE) [12] and PLM strategies [11] in order to
32maintain their business competitive edge. One particular industrial
33requirement is the need for concurrent considerations of lifecycle
34issues for different life aspects into the early product design process
35[13–15]. It is clear that current product geometry—based on
36traditional part and feature oriented modelling approaches—only
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A B S T R A C T

The current competitive industrial context requires more flexible, intelligent and compact product

lifecycles, especially in the product development process where several lifecycle issues have to be

considered, so as to deliver lifecycle oriented products. This paper describes the application of a novel

product relationships management approach, in the context of product lifecycle management (PLM),

enabling concurrent product design and assembly sequence planning. Previous work has provided a

foundation through a theoretical framework, enhanced by the paradigm of product relational design and

management. This statement therefore highlights the concurrent and proactive aspect of assembly

oriented design vision. Central to this approach is the establishment and implementation of a complex

and multiple viewpoints of product development addressing various stakeholders design and assembly

planning points of view. By establishing such comprehensive relationships and identifying related

relationships among several lifecycle phases, it is then possible to undertake the product design and

assembly phases concurrently. Specifically, the proposed work and its application enable the

management of product relationship information at the interface of product-process data management

techniques. Based on the theory, models and techniques such as described in previous work, the

implementation of a new hub application called PEGASUS is then described. Also based on web service

technology, PEGASUS can be considered as a mediator application and/or an enabler for PLM that

externalises product relationships and enables the control of information flow with internal regulation

procedures. The feasibility of the approach is justified and the associated benefits are reported with a

mechanical assembly as a case study.

� 2013 Elsevier B.V. All rights reserved.
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37 represent a limited view of product lifecycle information, and have
38 limited benefits for CE and PLM strategies [16,17]. To overcome
39 these difficulties, this paper proposed a Product design Engineering
40 based on Generative Assembly SeqUenceS planning (PEGASUS)
41 application and it is aimed to bring the potential benefits of CE into
42 this integrated and concurrent product design and assembly
43 sequence planning (ASP) stages.
44 Using previous research results related to assembly oriented
45 design (AOD) and PLM issues [18], the paper presents the
46 implementation of an approach, which aims to reveal the
47 relationships among product parts and operations as well, and
48 maximize the usage of these relationships whilst maintaining
49 information consistency [19] and seamless flow between product
50 design and ASP phases [11].
51 In Demoly et al. [20–22] a research background and framework
52 entitled Proactive ASsembly-Oriented DEsign (PASODE) as well as
53 a multiple views model called MUltiple Views Assembly Oriented
54 (MUVOA) [23] and the Product RelatiOnships Management
55 Approach (PROMA) to manage product relationships have been
56 described in detail [11]. Here, the implementation of PROMA into a
57 new PLM hub application called PEGASUS is detailed and it is
58 carried out by using framework and models described in [22]. This
59 approach implementation also uses web service technology to
60 provide wider and easier access and distributed design and
61 working, which is part of latest implementation efforts in PLM
62 systems [25]. The whole approach is intended to extend the
63 traditional PLM systems capabilities to be a new lifecycle oriented
64 application with new theoretical model.
65 Section 2 presents a survey on current PLM systems imple-
66 mentations status in industry. This survey is followed in Section 3
67 by the description of the research background in terms of model,
68 framework and approaches. Section 4 introduces the description
69 of the PROMA application in PEGASUS, which is based on web
70 service technology and used C# as programming language. The
71 implementation aims to enable the reasoning and control of
72 information flow between PDM (Product Data Management) and

73MPM (Manufacturing Process Management) systems, and CAD
74(Computer-Aided Design) applications. Last, considering the
75implementation as a prototype, an industrial case study has been
76undertaken and is detailed in Section 5, so as to demonstrate the
77applicability and the benefits of PROMA and PEGASUS.

782. Survey on application status of PLM systems in industry

79Introduced at the beginning of the 2000s, the PLM strategy
80consists of the management of the whole product data-informa-
81tion-knowledge for its entire lifecycle [1,6]. This research topic has
82since also received much attention from industry where current
83practices are more focused on the management of product
84technical data and associated workflows through various engi-
85neering systems [24]. As such, many industrial engineering
86departments have tackled PLM issues, essentially in BOL and
87Middle-Of-Life (MOL) of the product, by implementing methodol-
88ogies into various systems such as PDM, Computer Aided X (CAX),
89MPM, Enterprise Resource Planning (ERP), and Supply Chain
90Management (SCM) systems in a single and global digital
91environment, where all enterprise departments have a role to
92play [20].
93In the above defined context of CE, several research issues have
94to be investigated and tackled on current industrial practices in
95PLM systems, especially on PDM and MPM systems [26,27].
96Specifically, a PDM system is intended to ensure that the right
97information is available for the right person at the right time and in
98the right format by introducing various functionalities such as
99versioning, bill of material (BOM) management, workflow
100management, check-in/check-out procedures, and engineering
101change and configuration management to name a few [28,29].
102Regarding engineering design data that consists of parts, sub-
103assemblies, BOMs, specifications, analysis results, configurations
104and so on, PDM systems can be considered as product model
105storage systems and still be centred on product information
106usually embedded and sometimes hidden in files and documents
107[11].
108In addition to the above concerns, a lack of associativity in PLM
109systems has also been highlighted [30], where only ‘‘parent–child’’
110(i.e. ‘‘is part of’’ class) relationship exists. For a large scale company,
111the management of relative positions of parts using positioning
112matrices is implemented in PDM systems in order to be more
113closely related to geometric models defined in CAD systems, and to
114facilitate change management and part positioning [32]. Further-
115more, other authors [33,34] have proposed an advanced PDM
116system based on a property-driven development/design (PDD)
117approach by introducing the handling of predicted engineering
118characteristics (i.e. structure, shape and material) and properties
119(i.e. product’s behaviour) of the product with their interdepen-
120dencies in a separate manner. However, information related to
121product relationships and assembly process engineering is not
122effectively treated in their proposal. PLM systems have moved
123towards web-based and web service technologies, in order to
124facilitate information exchange and access in distributed and
125extended enterprises [7,25]. An additional effort towards ontology
126and semantic web can also be found [35–38]. Recently, Cantamessa
127et al. [39] in their PLM implementation survey have stressed a
128similar need about the future role of PLM in supporting and
129coordinating knowledge by allowing easier access to product data
130and embedded tacit knowledge.
131According to the above applications and approaches, a lack of
132support of associability among product models using product
133relationships still exists and is a barrier for effective and integrated
134lifecycle oriented design [16,30,17].
135At the interface of Computer Aided Assembly Process Planning
136(CAAPP) and ERP systems, MPM systems enable the management

Nomenclature

PLM product lifecycle management

PDM Product Data Management

MPM Manufacturing Process Management

CAD Computer-Aided Design

CAPP computer-aided assembly process planning

BOL beginning-of-life

DFX design for X

CE concurrent engineering

ASP assembly sequence planning

AOD assembly oriented design

PROMA product relationships management approach

PASODE proactive assembly oriented design

MUVOA MUlti Views Oriented Assembly

ASDA Assembly Sequence Definition Algorithm

ERP Enterprise Resource Planning

SCM Supply Chain Management

BOM bill of material

eBOM engineering bill of material

mBOM manufacturing bill of material

BOR bill of relation

UML Unified Modeling Language

XML eXtensive Markup Language
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137 of all the information (i.e. assembly operation, assembly sequence,
138 manufacturing BOM and resource) related to assembly process
139 engineering in order to cope mainly with assembly sequence
140 planning [31] and assembly line balancing issues. The future trend
141 for these kinds of system is to integrate current procedures used in
142 PDM systems, so as to provide an integrated management approach
143 (i.e. multi-BOM, product/process configuration management) in the
144 broader context of PLM [40]. As such, Jun et al. [41] have introduced
145 the closed-loop PLM concept, which describes new information
146 flows in PLM (i.e. from use phase to design and manufacturing

147phases). Fig. 1 presents a research map of current PLM systems
148through the BOL (i.e. engineering design, assembly process
149engineering) and the related orientation management in order to
150situate the proposed application focus, enabling a better interaction
151between product and process data management systems.

1523. Research background: model, framework and approaches

153Over the past five years, the authors have addressed particular
154attention to the development of model, methods and tools, which
155cover the assembly-oriented design field, by considering concur-
156rently product design and assembly sequence planning [18]. In the
157following subsections, a brief description of the research back-
158ground is introduced.

1593.1. MUVOA as a multiple views model

160As part of an initial effort, the MUVOA model has been defined
161for describing product-process concepts, their related associations
162and structures so as to be used in an integrated and proactive
163manner. This model has been organised into several view models
164(functional, structural, behavioral, contextual, geometric and
165technological), which are consistent with viewpoint, concern,
166and purpose associated to each stakeholder (i.e. product architect,
167designer, assembly planner and process engineer) involved in
168product design and ASP phases (Fig. 2) [42,43]. A detailed
169description of this model can be found in [23] on which a
170proposed information flow in PROMA facilitating information
171propagation [11] is considered in the PEGASUS application,
172especially on concepts relationships (i.e. both in contextual view
173in product domain and assembly domains).

Fig. 1. PLM systems and CAX tools at the BOL phase [11].

Fig. 2. UML class diagram describing the MUVOA model [23].
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174 3.2. PASODE as a comprehensive framework and

175 related approaches

176 Based on this multiple views model which covers product
177 design and ASP concerns, a general and comprehensive framework
178 called PASODE has been proposed in order to promote a proactive
179 AOD vision in the early product development process before
180 defining product geometry (Fig. 3). This framework incorporates
181 two mathematical algorithms related to two approaches:

183 �184 called Assembly Sequence Definition Algorithm (ASDA) based on
185 DFA and ASP heuristics rules, associated to a tolerance analysis,
186 which defines an optimal assembly sequence by considering as
187 input the definition product relationships at various abstraction
188 levels [20,22,21];
189 �190 called SKLeleton-based Assembly Context Definition (SKL-ACD)
191 based on kinematic and technological pairs, which describes
192 design intents from a top-down manner and therefore supports
193 product modelling activity in CAD application through skeleton
194 entities and structure [32].

195 As such, the act of defining an assembly sequence using part-to-
196 part relationships information enables the definition of assembly
197 skeleton (i.e. geometric entities) related to lifecycle engineering
198 issues for geometric product modelling in CAD applications
199 [15,32]. Fulfilling current stakes in AOD issue, the PASODE
200 framework consists of various steps, in which four stakeholders,
201 such as considered within MUVOA, are involved. At this stage the
202 product architect can be considered as a highly skilled and
203 experienced system designer who has an overall vision of the
204 product or system definition and functionality. His major role is to
205 define the product overall functionality and lifecycle requirements
206 and generate a product architecture which fulfils functional

207and technical requirements related the product lifecycle stages.
208At lower abstraction levels, the designer is more concerned with
209the sub-assembly and parts definitions by taking into account the
210product architect’s definitions for each of these parts or sub-
211assemblies. The assembly planner is concerned with planning task
212of putting parts together once they are completed and manu-
213factured through the process engineer’s inputs (i.e. technological
214information). So this framework presented in Fig. 3 can be
215deployed as follows:

217Step 1. 218Based on functional requirements, geometric requirements
219—such as Performance Key Characteristics (PKC)—are
220deployed into the PDM system through the engineering
221BOM (eBOM).
222Step 2. 223The part-to-part relationships definition phase is carried
224out by the product architect at various abstraction levels
225such as functional, behavioural, technological and geomet-
226ric. Each layer of relationships information is computed to
227optimise part number and generate admissible assembly
228sequences.
229Step 3. 230For each admissible assembly sequence, a consistency
231checking procedure related to constrained degrees of
232freedom is processed to highlight specific requirements
233namely Assembly Key Characteristics (AKC).
234Step 4. 235All admissible assembly sequences and related AKC are
236introduced in a tolerance analysis tool in order to find
237which assembly sequence fulfils all geometric require-
238ments of the product.
239Step 5. 240So the selection of the well-balanced assembly sequence
241can be carried out by introducing AKC interval values.
242Step 6. 243Once the assembly sequence is defined, several information
244embedded PLM systems views can be generated, including
245manufacturing BOM (mBOM) in MPM system, product

Fig. 3. PASODE framework [18].
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246 structure and skeletons-based assembly context in PDM/
247 CAD systems.

248 Fig. 3 illustrates various mechanisms (grey boxes) and related
249 input/output information (white boxes) to show the aforemen-
250 tioned steps. The relevance of part-to-part relationships as well as
251 product relationships in these above-mentioned approaches
252 requires emerging needs in their management so as to capture
253 an original state of the product-process, propagate information
254 from PDM system and CAD application and check information
255 consistency with assembly technologies in MPM system.

256 3.3. PROMA as an internal regulation approach

257 Key to the concurrent development of product solution as well
258 as assembly planning, a novel approach entitled PROMA has been
259 developed as a critical technology in PEGASUS to improve the
260 capabilities of current PLM systems (i.e. CAD, PDM and MPM
261 systems) by introducing procedures of managing product relation-
262 ships at various abstraction levels of information for a better
263 information control and flow. It is the core mechanism to support
264 the use and management of relationships extracted from product
265 and assembly process domains in PLM systems (Fig. 4) [44]. It
266 therefore provides a new support to control and organise
267 information flow between product and assembly process domains
268 in PLM systems. In such a way, a proactive and interactive
269 concurrent product and assembly plan development using
270 assembly process information, as a representative of lifecycle
271 process, is enabled. More specifically, in such a design session,
272 assembly process and information are used to externalise and
273 highlight any potential negative issues and impacts caused by a
274 product design decision.
275 For example, relying on the use of too many bolts and nuts for
276 assembling two or more parts together results in much long
277 assembly operations, hence higher assembly complexity and cost.
278 Through revealing such design decisions and its associated
279 consequences, it is possible and feasible to externalise these
280 decisions and their negative impact on the design. At the
281 same time, designers, assembly process planners and process
282 engineers are encouraged to explore alternative assembly meth-
283 ods, technologies or means to fulfil the assembly process
284 requirements.
285 In order to support this new and concurrent vision, the PROMA
286 approach has been initially developed in [11] and can be illustrated

287in Fig. 5 where it deals with various traditional PLM modules,
288establishes important links among lifecycle models and bridges
289the gap between lifecycle models, especially at the BOL stage.
290These relationship types existing in product lifecycle include those
291between product structure and its function and design rationale;
292product structure and overall assembly sequences; part features
293and assembly operations; product structure and CAD models;
294eBOM (engineering bill of material) and mBOM (manufacturing
295Bill of Material); component material and suitable manufacturing
296processes including disposing processes and so on. Further details
297can be seen in Fig. 5, where the centralization of parts, assembly
298operations and assembly skeletons relationships is described. As
299such and according to the aforementioned PASODE steps, PROMA
300will manage the information propagation through design and
301manufacturing data structures (i.e. eBOM, CADBOM and mBOM) by
302using the Bill Of Relations (BOR) concept [11]. In order to facilitate
303understanding, this paper only describes and focuses on the
304relationships identified between product design and assembly
305sequence planning phases as an example of lifecycle activity to
306illustrate the PROMA philosophy. Similar approach can be
307extended and applied to other lifecycle phases such as mainte-
308nance, disassembly and so forth.

3094. Implementation of PROMA in a PLM hub application

310Based on this additional description of PROMA approach [11],
311its relevance and feasibility need to be demonstrated. As such, a
312PLM hub application (PEGASUS) as prototype application is
313introduced to manage information flows and provide internal
314regulation procedures between design and assembly planning
315stages.

3164.1. Overview of PEGASUS introduction in current PLM systems

317The PLM hub application has to fulfil current ICT requirements
318in design and manufacturing fields, especially at their interfaces.
319As addressed in Section 2, some common issues in PLM systems
320such as PDM and MPM systems are the lack of associativity,
321understanding and reasoning based on knowledge in order to
322promote reactivity and agility in engineering design. This explains
323in part the traditional barrier between design and manufacturing
324phases as well as between manufacturing and production phases.
325In Fig. 1, an existing gap has also been highlighted between PDM,
326MPM and CAD systems, and therefore Fig. 6 illustrates an

Fig. 4. Capture of product relationships from product components and assembly operations networks [11].
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Fig. 5. Centralization of parts, assembly operations and assembly skeletons relationships.

Fig. 6. Introduction of the PEGASUS application in connection with PDM, MPM, and CAD systems.
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327 introduction of PEGASUS as a hub application which orchestrates
328 information flows between above-mentioned systems.
329 Currently PDM systems enable the management of engineering
330 technical data such as eBOMs, subassemblies, parts, product
331 structures, documents, configurations, and provide comfortable
332 support for designers and product architects. At the manufacturing
333 side, MPM systems enable the management of manufacturing/
334 assembly data such as mBOMs, operations, documents and so on,
335 and provide assistance in assembly planning and assembly line
336 balancing phases. At a lower abstraction level, CAD applications
337 consist in modeling product geometry including its parts,
338 subassemblies, forms, parameters, constraints to name a few.
339 The current information exchanges between these systems are
340 represented with dotted arrows, and can be understood as follows:

342 �343 a one-way eBOM–mBOM synchronization/reconciliation associ-
344 ated to product configuration capturing between PDM and MPM
345 systems;
346 �347 bidirectional procedures of check-in/check-out and versioning
348 between PDM and CAD systems;
349 �350 a one-way assembly features recognition between CAD and MPM
351 systems.

352 To overcome current PLM limitations and increase its capabili-
353 ties in information propagation and data consistency, a hub
354 application is introduced as a central application which supports
355 the orchestration and maintains associations between design and
356 assembly technical data/information. As such, new technical
357 entities, such as relations, bill of relations (BOR), assembly
358 skeletons and so on, are introduced in order to provide an
359 additional state of product-process information (i.e. a new picture
360 of product-process engineering efforts), therefore enabling the
361 understanding for both sides [11]. Thus this novel application
362 integrates procedures associated to the PASODE framework in
363 order to impact existing views in PDM, MPM and CAD systems
364 [22,21]. Based on these explicit representations of relationships,
365 PEGASUS reasons and highlights the relevant relationships to

366enable concurrent product and assembly process development.
367Moreover, the aforementioned exchange procedures are reviewed
368in order to be used and triggered in a central manner. These new
369exchange procedures will be described in detailed in the
370implementation section.

3714.2. Functional specification of PEGASUS

372PEGASUS, the so-called hub application, has to support four
373types of stakeholders of a product development process, namely,
374the product architect, assembly planner, designer and process
375engineer. Within PEGASUS, the tasks which are normally
376performed in a sequential fashion by the product architect and
377the assembly planner have been identified and represented as a
378generic set of integrated product development tasks. The potential
379inherent relationships between these two groups of tasks are also
380shown in Fig. 7 and they are vital for the concurrent design solution
381and assembly sequence generation. For example, when the product
382structure is defined, all key part-to-part relationships are then
383finalised. Using this information, it is possible to concurrently
384generate all admissible assembly sequences. Similarly, using the
385product or component material information in conjunction with
386product geometry information, it is possible to define the
387manufacturing context as well partial manufacturing process
388and assembly operations. This concurrent model can then be used
389to validate the design solution in terms of meeting product
390manufacturability, such as successfully tackled with assembl-
391ability issues [21].
392The development of the proposed application first requires
393functional specifications in consistency with expected PASODE
394mechanisms and future PEGASUS functionalities before full
395implementation. Basically, the interlinked and concurrent tasks
396for stakeholders such as the product architect and the assembly
397planner have to be identified and represented first and in this
398research; they have been represented in a UML (Unified Modeling
399Language) use case diagram as shown in Fig. 7. It is important to
400emphasise that this representation introduces new integrated

Fig. 7. UML use case diagram of PEGASUS application.
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401 management functionalities to address the identified needs for
402 PEGASUS application underlined in Section 3. At this stage, PROMA
403 is considered as an additional stakeholder for facilitating
404 information propagation through product and process views. This
405 UML diagram also provides further engineering tasks derived from
406 current PLM systems. In addition, the MUVOA model presented in
407 Fig. 2, as proposed in [23], has been implemented as a data model
408 on which PROMA approach is based, and PEGASUS consequently.
409 Once UML use case and class diagrams have been completed, a
410 new UML diagram—considered as a macroscopic sequence
411 diagram—is introduced in Fig. 8 to show expected scenarios in
412 PEGASUS application. This UML sequence diagram is intended to
413 provide an example of the chronology of concurrent tasks and
414 automated operations embedded in PEGASUS and enabling the
415 definition of the product and the assembly process models in a
416 concurrent manner.
417 This UML sequence diagram (Fig. 8) illustrates information
418 flows through tasks in the PEGASUS application in greater details
419 and is an expansion of the PASODE theoretical framework [21]. It is

420now important to allocate views based on the MUVOA model
421illustrated in Fig. 2, which is considered as the data model of the
422PEGASUS application. Table 1 presents such a proposed allocation
423that highlights the implementation of the main view that is product

424contextual view into PEGASUS, in which part-to-part relationships
425are captured and managed. Once this view is defined, product
426design stakeholders can then focus on developing in-depth
427relationships, based on which integrate product design and
428assembly sequence planning can be achieved.

4294.3. PEGASUS architecture and implementation

430As a result, the PEGASUS application has been developed as a
431research demonstrator and Fig. 9 shows the proposed architecture
432of the system. Amongst the required functional modules, the
433PEGASUS architecture is composed of:

435� 436a product relationships definition module, which captures the
437required input (i.e. relationships) at various abstraction levels for
438processing and reasoning in design and assembly planning
439phases;

Fig. 8. UML sequence diagram related to PEGASUS interactions.

Table 1
Allocation of MUVOA views to PLM systems.

Domain View PEGASUS PDM MPM CAD

Product Functional * * * *
Contextual * * * *
Technological * * * *
Structural * * * *
Geometric * * * *

Assembly process Structural * * * *
Contextual * * * *
Behavioural * * * *
Technological * * * *

Fig. 9. Resulted PEGASUS architecture.
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440 �441 an assembly sequence definition module, which uses algorithms for
442 assembly process planning (e.g. including generation/assess-
443 ment of admissible assembly sequences) based on previously-
444 defined part-to-part relationships;
445 �446 a product structuring module, which manages the product
447 structure based on the resulting assembly sequence, product
448 relationships and part number optimization;
449 �450 a control of information flow and exchange module, which
451 maintains data consistency and ensure the propagation of
452 information between PDM, MPM and CAD systems;
453 �454 a web service module, which enables interoperability over web
455 with PDM, MPM and CAD systems.

456 The PEGASUS application has been developed in order to
457 implement the PROMA approach. This PLM-based application
458 actually uses the Model View ViewModel (MVVM) design pattern to
459 support the development and is also mainly part of the technical
460 specifications (Fig. 10). This emergent pattern includes three
461 information layers such as the Model, View and ViewModel. The
462 Model, as the first element, represents the content of actual state.
463 The View, considered as the presentation layer, describes
464 references to all elements, which are displayed by the graphical
465 user interface (GUI). Last, the ViewModel represents the link
466 between the Model and the View, so as to process the data through
467 the context and therefore binding the model object properties to
468 the View fields. This latter level also allows the control and
469 propagation of changes made by the user to the Model. From that
470 point of view, the ViewModel contains therefore the business logic
471 aspect. Here the bindings enable the two-way data binding
472 interactions between the View and the ViewModel. The related
473 command allows the View to request a method related to the
474 ViewModel.
475 Towards this end, Fig. 10 presents an overview on the MVVM
476 architecture to AOD vision (i.e. including framework, approach,

477model and involved actors). An allocation is proposed for each
478layer of the MVVM architecture, as follows:

480� 481MUVOA model will be considered as Model layer (a formal
482ontology integration called PRONOIA is also planned in order to
483reason on semantic and logic aspects [45]);
484� 485PROMA approach will be implemented as ViewModel;
486� 487PASODE framework will be instantiated as View layer;
488� 489involved actors will mainly use the View layer (i.e. the PASODE
490framework).

491Furthermore, since PEGASUS will be used simultaneously and in
492different geographic areas, its model needs to be considered in a
493distributed way. A web service has therefore been specifically
494developed in order to share concepts between different users in an
495immediate manner. This module is actually based on open
496standards and protocols. The XML-based syntax is used to encode
497the data and information independent of computing platforms. In
498addition, the Simple Object Access Protocol (SOAP) is considered as
499a communication protocol that enables the transmission of
500messages among computer entities [46]. However, this protocol
501does not define yet what messages can be exchanged to get a
502successfully interaction. The Web Service Description Language
503(WSDL) is also used in order to describe operations offered by the
504service, inputs and the outputs [47]. With such WSDL language, it
505is then possible to define the service location and communication
506protocol to be used.
507On another level, the implementation of the PASODE frame-
508work sounds more complicated. It can be considered as a set of
509interaction rules, on which the user carries out an action via the
510View. Afterwards the ViewModel executes the related action and
511updates the Model. As such, the implementation of the framework
512is made at the ViewModel layer, therefore considering the
513interaction rules and the conditions to be executed. Since

Fig. 10. PROMA, PASODE and MUVOA considered from the MVVM architecture.
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514 computer infrastructure is quite specific to each company, it is
515 assumed that all business applications are accessed by using web
516 services. With such a technology, the PEGASUS application will be
517 able to evolve in a heterogeneous business applications environ-
518 ment.

519 5. Case study

520 The above described implementation has been applied to a
521 well-known mechanical assembly as a case study in order to
522 demonstrate the potential benefits and relevance of such an
523 integrated and proactive engineering relationship management
524 paradigm, especially at the interface of product design and
525 assembly sequence planning phases. The chosen part is a
526 PLAYMOBIL1 toy. A number of tools and facilities developed for
527 PEGASUS have been used to demonstrate the working principles
528 and processes how this PROMA approach tackles the research
529 issue.

530 5.1. PLAYMOBIL1 and its design problem formulation

531 Built on the PASODE framework, and deploying the MUVOA
532 model, this research derives a novel management approach called
533 PROMA to tackling product relationships management. In order to
534 achieve a successful product development, it is necessary to
535 emphasise the importance and capture the relationships between
536 parts and sub-assemblies of a product. This provides the basis to
537 promote and control information sharing and flow in a proactive
538 and intelligent manner.
539 From a lifecycle engineering point of view, this case study
540 requires information consistency procedures between product
541 design and assembly process specifications. Currently, all product
542 parts are manufactured and assembled by the same company. The
543 closer integration of assembly process and the product develop-
544 ment process is crucial to meet success and avoid much rework.
545 This whole thing is to apply PROMA approach within PEGASUS as
546 early as possible in product design stage.
547 The proposed case study is illustrated in Table 2 and Fig. 11,
548 where a parts list, and a previously developed isometric and
549 exploded views of the final solution are presented. This description
550 enables the understanding and contrast of traditional product
551 development process versus the concurrent product design and
552 assembly process planning. Currently, this product includes nine
553 parts as listed in Table 2.
554 Moreover, three systems have been introduced in order to be
555 connected with PEGASUS (i.e. PLM hub application enabling
556 the definition and management of product relationships and
557 the control of product-process information flows), namely as
558 follows:

560 �561 ACSP (in French: Atelier Coopératif de Suivi de Projet) which is a
562 legacy web-based PLM system and here used as a PDM (Product
563 Data Management) system for the experimentation.
564 �565 NOTIXIA which is a commercial platform enabling the manage-
566 ment of assembly process information and here considered as a
567 MPM (Manufacturing Process Management) system.

568� 569CATIA v5 which is used to define and visualise assembly
570skeletons of the product and here used as a CAD (Computer Aided
571Design) application.
572By introducing this prototype and the aforementioned com-
573mercial systems, it would be possible to evaluate the effectiveness
574of the approach, and at the same time, the practical difficulties one
575would face in implementing the PROMA approach.

5765.2. System execution

577Based on the above described technical implementation and
578case study, the proposed PEGASUS implemented within PLM
579systems is illustrated in Fig. 12, in which each step (steps–7) is
580presented consistently with the PASODE framework mechanisms.
581All information exchange procedures are supported by eXtensive
582Markup Language (XML) language format, i.e. X-oriented BOR (Bill
583Of Relations) [18]. So PEGASUS is considered as a hub application at
584the interfaces of PDM (ACSP), MPM (NOTIXIA) and CAD (CATIA v5)
585systems, which enables the centralisation, processing, and
586orchestration of information and knowledge of product-process,
587as described in the following steps:

589Step 1. 590PEGASUS captures the initial eBOM which has been defined
591by the product architect in the PDM system (ACSP), by
592using the PDM-oriented BOR. At this stage, the product
593structure and part-to-part relationships are not yet defined.
594Step 2. 595Based on the definition of part-to-part relationships within
596PEGASUS, the embedded ASDA algorithm enables the
597generation of admissible assembly sequences, and so the
598selection of the well-balanced one to be exported to MPM
599system (NOTIXIA). As such, the resulting assembly
600sequence is sent to MPM via the MPM-oriented BOR in
601order to build the assembly operations structure.
602Step 3. 603Once the assembly operations structure is defined, the
604assembly planner and process engineer incorporate tech-
605nological information for each assembly operation. This
606information is sent to PEGASUS via the MPM-oriented BOR
607and enables the definition of a technological layer of the
608product.
609Step 4. 610Within PEGASUS, these relationships enable the product
611structuring based on the early-defined assembly sequence.
612This is done via the PDM-oriented BOR to PDM system
613(ACSP).

Table 2
Parts list for the case study.

No. Part name No. Part name

1 Body 2 Thorax

3 Legs 4 Head

5 Hair 6 Left arm

7 Left hand 8 Right arm

9 Right hand

Fig. 11. Isometric and exploded views of a previously developed PLAYMOBIL1toy.
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614 Step 5.615 At the same time, PEGASUS generates skeleton-based
616 geometry related to kinematic and technological pairs such
617 as defined within PEGASUS. These skeleton entities enable
618 the definition of an assembly context for designers. This can
619 be done by considering the resulted product structure and
620 assembly skeletons structure as captured in the CAD-
621 oriented BOR.
622 Step 6.623 Based on this assembly skeleton structure, the product
624 designer can allocate volume, shape, values related to each
625 skeleton. At this stage, he is not allowed to directly change
626 the assembly skeleton but a change request can be sent to
627 PEGASUS via such CAD-oriented BOR.

628Step 7. 629Once designer has defined all product geometric char-
630acteristics, the CAD models are stored by using check-in/
631check-out procedures in PDM system (ACSP).

632As a consequence, this case implementation has been broken
633down into seven steps in order to reach objectives of the proposed
634PROMA approach. First, the process begins with the definition the
635initial eBOM (product structural view) in the ACSP system which
636is actually performed by the product architect (Step 1) as illustrated
637in Fig. 13. Based on this, the product architect has the possibility
638to define part-to-part relationships at various abstraction
639levels (product contextual view) in PEGASUS (Fig. 14) using the

Fig. 12. Proposed implementation of PROMA within PEGASUS in connection with ACSP, NOTIXIA and CATIA v5.

Fig. 13. Initial product structure (eBOM) in ACSP.
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640 relationship types in [18]. The end results of this exercise is fully
641 described in Table 3. Indeed, this actor has an overall view on the
642 product, its function, its characteristics, etc., and so the authors
643 have proposed to assign the product architect this new task.
644 Afterwards and based on a manufacturing context (process

645 contextual view, Fig. 15), product relationships are automatically
646 computed (Step 2) in order to generate all admissible assembly
647 sequences and the well-balanced assembly sequence is identified
648 through a tolerance analysis [18] (Fig. 16). This sequence (process

649 behavioural view) can be represented in NOTIXIA with the MPM-
650 oriented BOR generated by PEGASUS (Step 2) (Fig. 17). Once the
651 assembly planner has obtained the assembly sequence, assembly
652 operations (process structural view) can be defined and planned in
653 NOTIXIA (Fig. 17) and the information automatically comes back to
654 PEGASUS (Step 3). PEGASUS takes into account the assembly
655 sequence and generates the PDM-oriented BOR in order to impact
656 the initial product structure (product structural view) in ACSP
657 system (Step 4) (Fig. 18). Then, starting from the assembly
658 sequence and the updated product structure, PEGASUS computes
659 again the product relationships to define and allocate geometric
660 skeleton entities (product geometric view) in the product structure

661through the CAD-oriented BOR (Step 5) (Figs. 19 and 20), therefore
662providing a lifecycle oriented context for product modelling in
663CATIA v5.
664From now on, the designer can start the product geometry
665definition phase (product geometric view), and—in the case where a
666relation is suspected—will able to send a change request with an
667updated CAD-oriented BOR to PEGASUS in order to modify the
668nature of the relationship (Step 6). Once the product modelling
669phase is completed, the product geometry embedded in CAD files is
670stored in ACSP system through the updated product structure
671(product structural view) (Step 7), and networks of product parts
672and assembly operations are synchronised through PEGASUS.

Fig. 14. Definition of product relationships in PEGASUS.

Table 3
Description of part-to-part relationships.

Relation name Kinematic pair Technological pair

R1–2 Rigid Press fit

R1–4 Revolute Snap fit

R1–6 Revolute Snap fit

R1–8 Revolute Snap fit

R2–3 Revolute Snap fit

R4–5 Revolute Snap fit

R6–7 Revolute Snap fit

R8–9 Revolute Snap fit
Fig. 15. Definition of manufacturing/production context in PEGASUS.
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673 6. Discussion

674 The authors have argued all along the paper the novelty
675 of such a product relationships management approach in its
676 ability to support proactive assembly oriented design philosophy.
677 This approach therefore bridges the gap between engineering

678management approaches [48] in product development and
679assembly process planning by integrating these two important
680aspects together. The proposed implementation in PEGASUS and
681experimentation through a well-known case study and PLM
682systems has highlighted strengths and weaknesses of PROMA. The
683case study shows the added value of PROMA in two aspects. Firstly,
684this approach enables better utilisation information and its flow
685between product engineering and process engineering by extract-
686ing the cross-view relationships of product development in a
687separate way [49]. This leads to the introduction of the concept of
688bill of relations (BOR) to facilitate information exchange between
689existing PLM systems at the beginning of the product lifecycle.
690Secondly, PROMA provides an effective support to apply the
691proactive framework PASODE in product multi-view relationship
692management as described in previous work [18]. Although the

Fig. 17. Definition of assembly operations in NOTIXIA based on the generated

assembly sequence in PEGASUS.

Fig. 16. Generation of admissible assembly sequences and export to CATIA within

PEGASUS.

Fig. 18. Updated product structure (eBOM) in ACSP.
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Fig. 19. Part description of a CATscript file generating the product structure in CAD.

Fig. 20. From initial eBOM to updated eBOM including assembly skeletons within CATIA v5.
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693 proposed approach and implementation have been applied small
694 assembly, some additional industrial case studies have been tested
695 and proved benefits.
696 Nevertheless, the introduction of such an effective engineering
697 relationship management paradigm has highlighted the informa-
698 tion exchange problems because the various heterogeneous
699 systems involved at the beginning of the product lifecycle do
700 not support seamless information sharing and exchange. This is
701 mainly due to the limitation of the implementation of commercial
702 systems used in this study [2]. If these were implemented as
703 theoretical systems, there would have been no such an issue,
704 which from the research point of view, will not present any
705 problem.

706 7. Conclusions and future work

707 Current status and challenges in assembly oriented design and
708 the related support of data-information-knowledge systems such
709 as PLM systems highlight urgent needs for a better interaction,
710 flexibility and information sharing between product and lifecycle
711 oriented models [50]. Based on this need, a product relationship
712 management approach called PROMA is proposed and implemen-
713 ted in a new application called PEGASUS in connection with PDM,
714 MPM and CAD systems. The proposed approach enables the control
715 of internal regulation procedures between product design and
716 assembly sequence planning phases, so as to provide a proactive
717 and interactive support for lifecycle oriented product develop-
718 ment. Specifically, the PROMA approach is based on a PASODE
719 framework which is featured by an assembly sequence definition
720 algorithm (ASDA) [22] and a multiple view model (MUVOA) [23].
721 Hence, the proposed paper has addressed this urgent need and
722 taken advantages of rich information available from lifecycle phase
723 using assembly as an example, by proposing and investigating in a
724 new product engineering management vision to support the
725 dynamic and proactive aspect of assembly-oriented design.
726 Managing product relationships and their evolution at various
727 abstraction levels is a central issue to PLM strategy [17]. This paper
728 has demonstrated a novel approach to product relationship
729 extraction, sharing and proactive design support using these vital
730 cross-view relationships, especially at lifecycle phase assembly. It
731 is this area that the paper provides contribution beyond the
732 current state of the art in broad concurrent engineering and PLM
733 implementation in industry.
734 Further research is required to address the compatibility issues
735 and extension of a similar approach into other life phases. The
736 implementation of PROMA in PEGASUS addresses interoperability
737 and compatibility issues related to others PLM systems such as
738 PDM, MPM and CAD and this will be discussed in future work. In
739 addition, more relational information among other life phases will
740 be considered and captured, especially between the BOL and end of
741 product lifecycle phases, such as maintenance, disassembly and
742 recycling, where lifecycle oriented sequences have to be managed
743 in a coherent way [51].
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