Computers in Industry 64 (2013) 951-965

Contents lists available at ScienceDirect

Computers in Industry

journal homepage: www.elsevier.com/locate/compind

Model-driven approach to enterprise interoperability at the technical ()
service level

CrossMark

Ravi Khadka **, Bramhananda Sapkota®, Luis Ferreira Pires ",
Marten van Sinderen®, Slinger Jansen ?

@ Utrecht University, P.O. Box 80.089, 3508TB Utrecht, The Netherlands
b University of Twente, P.O. Box 217, 7500AE Enschede, The Netherlands

ARTICLE INFO ABSTRACT

Article history:

Received 12 October 2012
Accepted 25 July 2013
Available online 23 August 2013

Enterprise Interoperability is the ability of enterprises to interoperate in order to achieve their business
goals. Although the purpose of enterprise interoperability is determined at the business level, the use of
technical (IT) services to support business services implies that interoperability solutions at both the
business and technical level should be aligned. This paper introduces and demonstrates the suitability of
an approach based on model transformations to automate enterprise interoperability. We start by
considering that a set of enterprises are willing to interoperate in the context of their individual goals.
The interactions necessary for their cooperation are then properly captured in terms of a so-called
choreography. Our approach allows a choreography to be mapped and transformed to an orchestration,
which defines the operation of the actual technical services of the interoperating enterprises. The paper
discusses the technical challenges of implementing the transformation, and illustrates our approach

with two application scenarios.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Enterprise Interoperability (EI) can be defined as “the ability of
enterprises to interoperate in order to achieve their business goals
without special effort from the customer or user” [1]. Although the
purpose of enterprise interoperability is determined at the
business level, the extensive use of technical (IT) services to
support business services implies that interoperability solutions at
both the business and technical level should be aligned, in order to
enable effective and efficient inter-enterprise collaborations [2].
However, problems caused by incompatibilities between technical
enterprise systems (e.g., data inconsistencies, inconsistent inter-
faces) have been obstacles to El. This holds especially in dynamic
business environments, in which enterprises have to quickly adapt
to changes in the internal organisation of the enterprise, in market
demands and opportunities, in partners and intent of business
collaborations (e.g., due to mergers and acquisitions), and in the
supporting technologies [3].

* Corresponding author. Tel.: +31 612053704.
E-mail addresses: r.khadka@uu.nl (R. Khadka), b.sapkota@ewi.utwente.nl
(B. Sapkota), l.ferreirapires@ewi.utwente.nl (L. Ferreira Pires),
m.j.vansinderen@ewi.utwente.nl (M. van Sinderen), slinger.jansen@uu.nl
(S. Jansen).

0166-3615/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.compind.2013.07.006

Service-Oriented Architecture (SOA) has been introduced as a
design principle for business and technical services [2,4-7]. SOA
promotes reusability, since it prescribes the use of the service
abstraction to decouple business functions from technology
platforms, bringing many benefits to EI at both business and
technology levels. Model-Driven Architecture (MDA, [8]) is an
approach to systems development that prescribes the use of
models to capture system abstractions, and the use of model
transformations to automate development tasks [9,10]. The
potential benefits of applying MDA to SOA at both business and
technical service levels have been extensively acknowledged in the
literature [4,6,11].

This paper aims at introducing and demonstrating the
suitability of an approach based on model transformations to
automate EI. This paper assumes that interoperability require-
ments from the business level are already captured by choreogra-
phies of technical services, and proposes an MDA-based
transformation approach to move (semi-)automatically from these
choreographies to interoperable technical services supported by
orchestrations. The paper discusses our approach in detail, by
considering the technical challenges of implementing the ap-
proach and its limitations. We start by assuming that a set of
enterprises are willing to interoperate, i.e., they identify common
grounds for meaningful interactions in the context of their
individual goals. Based on these interactions, a model of the
cooperation is defined, in terms of a so-called choreography. The

952 R. Khadka et al. / Computers in Industry 64 (2013) 951-965

proposed approach allows a choreography to be mapped and
transformed to an orchestration, which defines the behaviour of an
orchestrator component that coordinates the operation of the
actual technical services of the interoperating enterprises. The
transformation from a choreography to an orchestration can be
automated to a large extent, which enhances the efficiency and
accuracy of the development process.

This paper is further structured as follows: Section 2 gives the
background of this work, Section 3 introduces and justifies the
mappings between choreographies and orchestrations supported in
our approach, Section 4 describes our transformation approach in
more technical detail, Section 5 explains the implementation of the
model transformations developed in this work, Section 6 presents
two application examples, Section 7 discusses related work, Section
8 presents our design decisions and the limitations of our approach
and Section 9 presents the conclusions and future work.

2. Background

Once enterprises agree to collaborate at the business service
level, their technical services have to interoperate in order to
support the business goals of this collaboration. The interopera-
bility of technical services needs to be described at different levels,
not only to allow the definition of interoperability requirements,
but also to precisely prescribe the interactions (message
exchanges) that are necessary in order to fulfil these interopera-
bility requirements. The fulfilment of interoperability require-
ments determines the effectiveness (correctness) of the
collaboration, and indirectly implies that the business goals are
properly supported. Therefore techniques are necessary to allow
the description of interoperability requirements and the derivation
of proper technical solutions to fulfil these requirements. In our
approach we want choreographies (message exchanges) ultimate-
ly to be enforced by an automated system, therefore a transfor-
mation from choreographies to orchestrations is necessary. Such
transformation enforces the automatic derivation of proper
solutions at technical service level, by fulfilling the interoperability
requirements defined at business service level.

2.1. Choreographies

In our research, we assume that a collaboration among
enterprises is described using a choreography model. A choreog-
raphy model relates to technical services, but at the highest
possible abstraction level. It abstracts from the internal processes
of business actors, and constrains the interoperation of business
actors in terms of abstract message exchanges. The relationship
between enterprise collaboration at the business level and the
most abstract technical level has been covered by several authors,
and is outside the scope of this paper. For example, in [12,13], the
authors describe a method to derive a choreography (a coordina-
tion model) from an enterprise collaboration model that focuses on
the value exchange between business actors (a value model). In
[14], value models and goal models (i.e., models that focus on the
goals of the business partners in a collaboration) are considered in
combination as a starting point for deriving a web services
composition that support the enterprise collaboration.

A choreography defines the common behaviour of interacting
parties in terms of ordering constraints, alternatives and time
constraints [15]. Choreographies describe public message
exchanges, in the sense that they do not reveal how each particular
interacting party is internally organised to comply with the
prescribed common behaviour. Since they abstract from the
contribution of each partner to the collaboration and ignore the
internal structure of the participants, choreographies are consid-
ered to be at a relatively high-level of abstraction [15-17].

We illustrate the choreography concept with a purchase order
scenario, which consists of a customer, a sales department, a
manufacturing department (manufacturer in short), a stock
department, a shipment department and a billing department.
The sales department receives the purchase order from customer
and forwards it to the manufacturer, which in its turn requests the
stock department service to check the availability of the ordered
goods. In response, the stock department provides the information
and the status of the ordered goods to the manufacturer. The
manufacturer then requests the shipping department for the
arrangement of the shipment of the goods, and receives a

Customer Sales Dept. Manufacturer Stock Dept. Shipment Dept. Billing Dept.
| Iniialize | | l 1 1
| | | | | |
} SendPO } 1 1 1
| | | | |
| | | |
} StockInfo } } }
| | |
1 1 1
| | |
} StockResponse } }
! K== I I
| SendShipinfo | |
| | | |
| \ |
} ShiplnfoResponse }
: Kt :
I i SendBillinfo I I
| | | !
| I I
1 1 1
| ! |
} BillinfoReponse }

I K———mm === fmmm——————— H—————————

} POResponse } } }

I K————————- - I I I

} Response } } } }

oo T | | | |
| | | |

Fig. 1. Sequence diagram of purchase order scenario.

R. Khadka et al./ Computers in Industry 64 (2013) 951-965 953

Listing 1
Example of WS-CDL collaboration constructs.

<roleType name = “ManufacturerDept”>
<behavior name ="ManufacturerBehavior"/>

</roleType >

<relationshipType name ="”ManuToBilling”>
<roleType typeRef=" tns:ManufacturerDept "/>

<roleType typeRef=" tns:BillingDept"/>
</relationshipType>

<participantType name=” ManufacturerDeptParticipant”>
<roleType typeRef="tns:ManufacturerDept® />
</participantType>

<channelType name=”BillingChannel”>

<reference>

<token name="tns:BillingRef” />
</reference>
</channelType>

<roleType behavior= “BillingBehavior” typeRef="” tns:BillingDept” />

confirmation from the shipment department as response. Concur-
rently, the manufacturer invokes the billing department to
calculate the total cost. Upon receiving the billing information,
the manufacturer sends the purchase order response to sales
department, which includes the date of the shipment and the total
cost of the goods. Finally the customer receives the purchase order
response through the sales department. Fig. 1 shows a sequence
diagram that describes these interactions at a high-level of
abstraction, representing the choreography of the collaboration
between the services of the different departments.

Many languages have been defined in the last years to describe
choreographies, such as WSCI [18], WS-CDL [19] and BPEL4Chor
[20]. In this paper we consider choreographies described using
WS-CDL, which is a W3C recommendation and as such it is widely
used. WS-CDL is a declarative, XML-based language to specify
choreographies in terms of collaborations, and is supported by
(Eclipse) tools, like the Pi4SOA WS-CDL editor.

A collaboration in WS-CDL is specified with the participantType,
roleType, relationshipType and channelType constructs. A partici-
pantType represents an entity that plays a particular set of roles in
the collaboration. A roleType represents a role in terms of a
particular observable behaviour performed by a participant. A
relationshipType defines the relation between roleTypes. A chan-
nelType is a point of communication between the participantTypes,
and specifies where and how message is exchanged. Listing 1
describes the collaboration between the manufacturer and the
billing department in the purchase order scenario presented in
Fig. 1.

In addition, WS-CDL offers constructs to handle information
and to define activities (behaviours), which are described as
actions to be performed by one or more participants. Detailed
information on WS-CDL is outside the scope of this paper, for
which we refer to [19].

2.2. Orchestrations

An orchestration defines the coordination between services
defined from the point of view of an orchestration process that
handles this coordination [16,17]. An example of orchestration can
be identified in Fig. 1, if we concentrate on the behaviour of the
manufacturer service, and define it so that it can be performed by
an orchestration engine.

1 http://pi4soa.sourceforge.net/.

Some languages have been defined to describe orchestrations,
like WSFL and XLANG, which have been combined in BPELAWS
[21], and its successor WS-BPEL [22]. In this paper we consider an
orchestration defined using WS-BPEL since it is an OASIS standard
and is strongly supported by (commercial) tools.

Similar to WS-CDL, WS-BPEL is XML-based, i.e., processes
described with WS-BPEL are instances of the WS-BPEL XML
schema. WS-BPEL is a language for describing the behaviour of a
business process based on interactions between the process and its
partners in either an executable or declarative (abstract) way. A
business process can use services to invoke business functions, and
the process itself can be exposed as a service. A process is at the root
of a WS-BPEL process definition. A partnerLink allows the definition
of relations between ports of the WS-BPEL process and ports of
other services, and the assignment roles in these relations (myRole
and partnerRole). Process variables are used to hold data that are
needed to maintain the state of the WS-BPEL process.

WS-BPEL also allows the definition of basic and structured
activities to define process behaviours. Some basic activities can be
used to define an interaction with a partner, such as, for example,
invoke to invoke a partner service, receive to receive a service
invocation and reply to send a response message for a service
invocation. Other basic activities are assign to update the value of
variables, and throw to generate a service level fault. Structured
activities are normally used to represent the ordering of the
activities, and include sequence to represent sequential ordering,
flow to represent activities executed in parallel, and if, while and
switch to represent conditional execution, looping and conditional
branching, respectively. Listing 2 shows an excerpt of the
manufacturer process of the purchase order scenario discussed
in Fig. 1.

Detailed information on WS-BPEL is outside the scope of this
paper, for which we refer to [22].

3. Mapping choreographies to orchestrations

Since a choreography defines the common behaviour of
cooperating services without considering how the individual
contribution of these services is performed, a choreography can be
considered to be at a higher level of abstraction than the
orchestration(s) that implement the choreography. Furthermore,
a given choreography can in principle be refined in terms of
orchestration(s) in many alternative ways, depending on the
responsibilities assigned to each individual orchestration or
service. In the literature, two general strategies have been

954 R. Khadka et al. / Computers in Industry 64 (2013) 951-965

Listing 2
Excerpt of WS-BPEL process for the manufacturer service.

<variable name="Billinglnfo" messageType="Billinglnfo" />
<sequence>
<flow>
<sequence>

outputVariable="..."/>

</sequence>
</flow>
</sequence>
</process>

<process name="ManufacturerDeptProcess" targetnamespace="http://www.pidsoa.org/purchaseOrder">

<partnerLink name="ManufacturerDeptParticipantType” myRole="ManufacturerDeptParticipantRole"
partnerLinkType="ManufacturerDeptParticipantLT"/>

<partnerLink name="BillingDeptParticipantType" partnerRole="BillingDeptParticipantRole"
partnerLinkType="BillingDeptParticipant"/>

<invoke operation="sendBill" inputVariable="BillInfo" partnerLink="BillDeptParticipant”

<receive operation="SendBill" variable="BillInfoResponse" partnerLink="BillDeptParticipant” />

identified to map choreographies to orchestrations, namely to use
decentralised orchestrations or a centralised orchestration [3,23,24].

In our approach, we consider the transformation from a
choreography to a centralised orchestration, because this strategy
is more widely practiced and yields simpler results. In a centralised
orchestration, an orchestrator component? is responsible for the
coordination of all the participating services [23]. Conceptually we
defined a mapping from the choreography to the orchestrator,
which is the central component that coordinates the cooperation.
This mapping embodies the design decision of applying centralised
orchestration which is explained in detail in [3,26]. Since we
consider that choreographies and orchestrations are defined using
WS-CDL and WS-BPEL, respectively, we defined a mapping from
WS-CDL language constructs to WS-BPEL language constructs
inspired by [27,28] that complies with our conceptual mapping.
Table 1 shows the mapping of WS-CDL to WS-BPEL language
constructs that we considered in this work.

4. Transformation approach

We aimed at automating the transformation of a choreography
specified in WS-CDL into a centralised orchestration specified in
WS-BPEL. In order to be able to perform this transformation, we
elicited the metamodels of these two languages, and defined a
transformation from WS-CDL metamodel elements to WS-BPEL
metamodel elements according to the mapping depicted in Table 1.
This allows the transformation to be performed by a transforma-
tion engine, such that any WS-CDL model (instance of the WS-CDL
metamodel) can be transformed into a WS-BPEL model (instance of
the WS-BPEL metamodel). Fig. 2 shows our model transformation
approach in terms of its MDA artefacts (metamodels, models and
model transformation). In Fig. 2 we omit elements like the
knowledge and pragmatics used to define the transformation.

This transformation approach has been defined (amongst
others) in [8] and characterises (metamodelling-based) model
transformation, which is one of the cornerstones of Model-Driven
Engineering. In our approach, a source WS-CDL model is
transformed into a target WS-BPEL model. The transformation
specification is defined using the Atlas Transformation Language
(ATL) [29] and defines transformation rules from WS-CDL
metamodel elements into WS-BPEL metamodel elements, accord-
ing to the mappings shown in Table 1. Since concrete WS-CDL and
WS-BPEL specifications are represented as XML documents that

2 The service offered by an orchestrator component is often called a mediation
service [25].

comply with their corresponding XML schemas, we had to elicit the
WS-CDL and WS-BPEL metamodels from their XML schemas in
order to define the transformation in terms of metamodel
elements. Initially, we automatically generated the WS-CDL and
WS-BPEL metamodels from their respective schemas as explained
in [30]. Many duplicated or unused model elements were
generated in this way, which unnecessarily complicated the
transformation process. Hence, we adjusted these metamodels
manually from their respective XML schemas by removing the
unnecessary elements. These metamodels are defined in Ecore,
which is the metametamodel language of the Eclipse Modelling
Framework (EMF).> This allows us to define and execute these
transformations in the Eclipse workbench. Appendix A shows the
WS-CDL and WS-BPEL metamodels used in the transformation
process.

Furthermore, concrete WS-CDL specifications are represented
as XML documents, and the ATL transformation engine expects
models in Ecore (serialised using the XMI format, [31]) so we
defined a transformation from the WS-CDL XML serialisation
format to the Ecore/XMI format. The ATL transformation engine
produces then an Ecore/XMI serialisation of the WS-BPEL model,
which has to be translated to WS-BPEL XML syntax, e.g., in order to
be executed by an orchestration engine. Therefore another
transformation is necessary from the Ecore/XMI serialisation of
the WS-BPEL model to its XML syntax. Fig. 3 shows the
transformation chain that results from the concatenation of these
transformations.

Fig. 3 shows the following transformations:

- Auxiliary transformations, to transform a WS-CDL specification
(XML syntax) to a WS-CDL model in XMI (T1) and to transform a
WS-BPEL model in XMI to a WS-BPEL specification (XML syntax)
(T3).

- Core transformation, to transform a WS-CDL model in XMI to a
WS-BPEL model in XMI (T2).

5. Transformation implementation

Fig. 4 shows the tools and languages we applied in order to
implement the transformation chain® of Fig. 3. We use the Pi4soa

3 http://www.eclipse.org/modelling/emf].
4 The source code and all metamodels used in the transformation chain are
available in http://people.cs.uu.nl/ravi/source/source.zip.

R. Khadka et al./ Computers in Industry 64 (2013) 951-965

Table 1
Mapping of WS-CDL to WS-BPEL language constructs.

955

WS-CDL constructs WS-BPEL constructs

Remarks

roleType process per role
participantType partnerLink
relationshipType partnerLinkType
variable variable
channelType correlationSet
sequence sequence
parallel flow

choice if-else

workunit

repeat = false, block = false if-else

repeat = true while

block = true -

interaction

action =request invoke

action =request receive

action =respond reply

action =respond receive

assign assign

Finalise compensationHandler
noAction empty
silentAction sequence with nested empty

bpel:targetNamespace attribute is derived from the cdl:targetNamespace of cdl:package

bpel:messageType attribute is derived from the cdl:type of related cdl:informationType
bpel:properties is derived from cdl:name of cdl:token within cdl:identity

bpel:condition is manually defined by process designer

bpel:condition is manually defined by process designer
bpel:condition is manually defined by process designer
No mapping

Current party is mentioned in cdl:fromRole

current party is mentioned in cdl:toRole

current party is mentioned in cdl:fromRole

Current party is mentioned in cdl:fromRole (synchronous reply)

silentAction is manually defined by process designer

WS-CDL editor to produce a choreography specification. Each
transformation is discussed in the sequel.

5.1. Core transformation (T2)

The core transformation T2 has been described using ATL
according to the mapping between WS-CDL and WS-BPEL
metamodel elements shown in Table 1, and has been executed
with the ATL engine for two different source models as explained in
Section 6. The ATL engine reads a WS-CDL XMI source model as
input, executes the transformation rules, and generates a WS-BPEL
XMI target model as defined in the ATL transformation specifica-
tion.

An excerpt of transformation T2 is shown in Listing 3, in which
the roleType construct of WS-CDL is transformed to a WS-BPEL
process. A roleType construct is used to specify the observable
behaviour of a participant in the collaboration. In our approach we
transform a choreography to a centralised orchestration, so we
generate a process for the centralised orchestrator (manufacturer).
The name and targetnamespace of the process is derived
accordingly from the WS-CDL specification. The variables associ-
ated with the process are derived from the variables of the WS-CDL
specification, partnerlinks of the process are generated from other
roleTypes of the WS-CDL specification, and the activity constructs
of the process are generated from the activity constructs of the WS-
CDL specification.

instance of Metametamodel instance of
F instance of
WS-CDL Transformation WS-BPEL
metamodel ses language uses metamodel
instance of P instance of instance of
Transformation
specification
P executes
WS-CDL souree Transformation target WS-BPEL
model engine model
Fig. 2. Transformation approach.
WS-CDL WS-CDL WS-BPEL WS-BPEL
XML 9@9 model 9@9 model 9@9 XML
Syntax (XMI) (XMI) Syntax

Fig. 3. Transformation chain from a WS-CDL specification to a WS-BPEL specification.

956

pi4soa

[(Choreography modeling)

R. Khadka et al. / Computers in Industry 64 (2013) 951-965

<<xml>>
WS-CDL specification

WS-CDL (XML) to WS-CDL(XMI)

<<atl>>

l

/

2 AM3 framework (T1) Legend
Transforms WS-CDL(XML) to WS-CDL(XMI)
Tools
¢ Task performed
<<xmi>> <<atl>> <<format>>
WS-CDL(XMI) WS-CDL to WS-BPEL artefact
‘ / [step no.]

ATL framework (T2)

3
31 Gransforms WS-CDL (XMI) to WS-BPEL(XMID

:

<<xmi>>
WS-BPEL(XMI)

WS-BPEL(XMI) to WS-BPEL(XML)

<<atl>>

)

4 AM3 framework (T3)
4] Transforms WS-BPEL(XMI) to WS-BPEL(XML

:

<<xml>>

WS-BPEL process

A/D

Fig. 4. Implementation steps.

Fig. 5 shows a diagrammatic representation of the transforma-
tion depicted in Listing 3 in terms of the mappings between
metamodel elements.

5.2. Auxiliary transformations (T1 and T3)

The auxiliary transformations T1 and T3 have been implemented
by leveraging the ATL’s XML injector and extractor for injecting and
extracting XML models into and from the XMI metamodel syntax,
respectively. We used the AtlanMod Megamodel Management®
(AM3) framework to implement the XML injector in transformation
T1 and the XML extractor in transformation T3. In order to perform
these transformations, we have used the XML metamodel, adapted
from the AM3 z00,° as shown in Fig. 6.

The code excerpt in Listing 4 shows part of transformation T1 in
ATL between the XML source model and the WS-CDL XMI target
model. However, running this code directly in the ATL engine does
not result in the desired WS-CDL XMI format, so we use the XML
injection mechanism. Similarly, in the transformation T3 we use
the XML extraction mechanism to extract WS-BPEL XML code from
the WS-BPEL XMI format.

The code excerpt in Listing 5 shows the ATL Ant task that
invokes the XML injection of transformation T1. Task am3.load-
Model loads a model with injectors and task am3.atl executes the

5 http://wiki.eclipse.org/AM3.
5 http://www.emn.fr/z-info/atlanmod/index.php/Ecore#XML_1.1.

cd2xmi.atl transformation. Finally, task am3.saveModel is used to
save the model in XMI format. Similarly XML extraction is also
carried out in transformation T3 to transform WS-BPEL XMI model
to WS-BPEL XML model.

Transformation T3 successfully generated the WS-BPEL skele-
ton from the given WS-CDL specification. The choreography has a
higher abstraction level than the orchestration, so the choreogra-
phy lacks the internal details of the participating services of the
collaboration. Therefore, we had to manually add some missing
details to the generated WS-BPEL process. After these details have
been included, the WS-BPEL specification was validated for
conformance with the WS-BPEL XML schema. We also imported
the WS-BPEL process in the Eclipse BPEL designer tool [32] to check
the behaviour of the orchestrator, and tested this behaviour for
correctness, with successful results. The details of the auxiliary
transformations can be found in [3,33].

6. Application examples

We validated our approach with two application scenarios: a
purchase order scenario and a build-to-order scenario. The
application scenarios are explained in the sequel.

6.1. Purchase order scenario

The purchase order scenario is used as an example to illustrate
the usability of our approach, and is already introduced in Section

R. Khadka et al./ Computers in Industry 64 (2013) 951-965 957

Listing 3
Excerpt of transformation T2.

-- @path CDL=/test2Bpel/CDL.ecore
-- @path BPEL=/test2Bpel/BPEL.ecore
module cdlToBpel;

create OUT : BPEL from IN : CDL;
helper def : orchestrator : String = "Manufacturer’;
helper def : isOrchestrator() : CDL!RoleType =

CDL!RoleType.allInstances() ->
select(r | not r.isConnectedToChannelType()
and r.name = thisModule.orchestrator)->first();

rule roleType2BPELprocess{

from
s: CDL!RoleType (not s.isConnectedToChannelType()

and s.name = thisModule.orchestrator)

to
t: BPEL!Process(
name <- s.name+'Process’,
targetNameSpace <- s.getTargetNamespace(),
variables <- s.getVariables()
->collect(v | thisModule.varToVar(v)),
partnerLinks <- s.getRoleTypes(),
scopeElementActivity <- CDL!Activity.allInstances(),
correlationset <- CDL!ChannelType.allInstances()

)}

2.1. The WS-CDL choreography specification has been produced
using Pi4soa WS-CDL editor, and transformations T1, T2 and T3
have been performed on this specification. We obtained a WS-BPEL
skeleton for the manufacturer process as result, which was
validated against the WS-BPEL XML schema. The generated WS-
BPEL specification was then imported in the Eclipse BPEL designer
to check the behaviour of the orchestrator, which complies with
the behaviour of choreography. Fig. 7 shows the WS-BPEL process
of the orchestrator in the Eclipse BPEL designer.

6.2. Build-To-Order scenario

The Build-To-Order (BTO) application scenario, adopted from
[27], is also used as an example to illustrate the usability of our
approach. We briefly introduce this scenario with the sequence
diagram shown in Fig. 8.

The BTO scenario consists of a customer, a manufacturer, and
suppliers for CPUs, main boards and hard disks. The manufacturer
offers assembled IT hardware equipment to its customers and has

Interaction 1.7 ! Activit Activity
ctivi
+name N g LA
+operation tinteracton | | | e
+align 0 T
+initiate Package | | el
+name +participantType [T +activity ;
+author . "
; - Process e
+version = 4 ScopingElement
& +argetNameSpace | L1 | +name
@o +roleType ParticipantType| | .~ +targetNameSpace
N tname | | +queryLanguage /D
o S N e T H+expressionLanguage
- 0. A 1. +suppressJoinFailure
........ - +exitOnStandardFault
ChannelType RoleType +@ :] _________ PartnerLink
....... +name N
+name ‘+name . +location %
+usage 1 [Y .| HimportType
+action +myRole * & " i
. . O CompensationHandler
pas§%g +behavior Variable +pgﬂn§rRob . 4.@
] - iresidesat |TM@me +initializePartner Variable T CorrelationSet
+mutable +name
Behaviour +free >
+name 1 |*silent
+interface +ofType Y
1 Legend
-------------- . Corresponds to
WS-CDL WS-BPEL

Fig. 5. WS-CDL RoleType to WS-BPEL Process transformation.

958 R. Khadka et al. / Computers in Industry 64 (2013) 951-965

Node
+startLine
0..1 +startColumn
< +endLine
+endColumn
+parent +name
+value
C
o
o
<
0.*¥%
Root Element Attribute Text

Fig. 6. XML metamodel.

adopted a BTO business model in which it holds a certain part of
the individual hardware components in stock and orders missing
components if necessary. The customer sends a quote request with
details about the required hardware equipment to the manufac-
turer. The latter sends a quote response back to the customer. As
long as the customer and the manufacturer do not agree on the
quote, this process is repeated. Upon reaching a mutual agreement,
the customer sends a purchase order to the manufacturer. If the
manufacturer needs to obtain hardware components to fulfil the
purchase order, it sends an appropriate hardware order to the
respective supplier. In turn, the supplier sends a hardware order

Listing 4
Excerpt of transformation T1.

response to the manufacturer. Finally, the manufacturer sends a
purchase order response back to the customer.

Initially, the choreography of BTO was modelled using the
Pi4soa WS-CDL editor, and subsequently T1, T2 and T3 transfor-
mations have been performed. The WS-BPEL skeleton for the
manufacturer process was obtained as result, which was validated
against the WS-BPEL XML schema. The generated BPEL specifica-
tion was then imported in the Eclipse BPEL designer to check the
behaviour of the orchestrator, which complies with the behaviour
of the choreography. Fig. 9 shows the WS-BPEL process of the
orchestrator in the Eclipse BPEL designer.

7. Related work

Several approaches [24,25,30] reported in the literature have
addressed transformations from WS-CDL to WS-BPEL.

In [28], the transformation from a WS-CDL choreography to a
WS-BPEL based orchestration process is presented. The mapping of
WS-CDL constructs to WS-BPEL constructs is provided, which is
implemented in recursive XSLT as a proof-of-concept to realise the
transformation. The transformation is bidirectional, i.e., the XSLT
script can generate a WS-BPEL process from a WS-CDL specifica-
tion, and vice versa. In [27], a WS-CDL to WS-BPEL transformation
approach is proposed in which Service Level Agreements (SLAs),
which are defined as the annotations of the WS-CDL specification,
are also transformed into WS-BPEL policies. The transformation
mapping from WS-CDL to WS-BPEL is inspired by [28] and the
transformation is implemented using Java.

Weber et al. [34] propose a transformation approach to
generate a WS-BPEL process from a WS-CDL specification that

module cdl2xmi;
create OUT : CDL from IN : XML;

rule Root2Package{
from
s : XML!Root
to
t : CDL!Package(
name<-'Package’,
children<-Sequence{name, author, tgnsp, version,
s.informationType, s.relationType,
s.participantType, s.roleType,
s.tokenLocator, s.token,
s.choregraphyPkg, s.channelType}),

)

Listing 5
Illustration of XML injection (ant task).

<project name="CDL2BPEL" default="transformAll">
<!-- other tasks -->
<!--Inject source model -->

<injector name="XML"/>
</am3.loadModel>
<!-- Transform XML model into CDL model -->
<am3.atl path="/project/cdl2xmi.atl">
<inModel name="IN" model="xmlModel"/>
<inModel name="XML" model="XML"/>
<inModel name="CDL" model="CDL"/>
<outModel name="OUT" model="cdlModel" metamodel="CDL"/>
</am3.atl>
<am3.saveModel model="cdlModel" path="/project/cdl.xmi"/>
</project>

<am3.loadModel modelHandler="EMF" name="xmlModel" metamodel="XML" path="/project/po.cdl">

R. Khadka et al./ Computers in Industry 64 (2013) 951-965

Sequence ‘
=]

000

% Sequence ‘
5 J

@] Receive
& Invoke

@] Receive

=

= Sequence ‘ & Sequence
= =]

& Invoke & Invoke

@) Receive ‘ v @] Receive

= =

= Sequence
=]

&] Reply

(R 1]

Fig. 7. Manufacturer WS-BPEL process of the purchase order scenario.

introduces the concept of information gap to represent the
different levels of details between a choreography and an
orchestration. They also indicate that the sum of orchestrations
contains more knowledge than the choreography they implement.
The proposed approach is implemented in Java. Unlike our MDA

959

based transformation approach, the transformation approaches
mentioned above are either based on XSLT or on general purpose
programming languages like Java. Such transformations are in
general harder to maintain and understand when compared to
MDA-based transformations [10].

Recently, Model-Driven Interoperability (MDI) for EI has
received significant attention in academia and has resulted in
various interoperability frameworks such as the IDEAS Interoper-
ability Framework [35] and the ATHENA Interoperability Frame-
work (AIF) [36]. The IDEAS interoperability framework focuses on
structuring interoperability issues into business, knowledge,
semantics, and architecture and platform issues. Based on IDEAS,
the AIF defines interoperability at the following levels: enterprise/
business, process, service, and information/data. The service level
of the AIF defines the Platform-Independent Model for Service-
Oriented Architecture (PIM4SOA) metamodel and the toolset
facilitates the transformation of a PIM4SOA model to a WS-BPEL
model, as an alternative to the transformation from WS-CDL to
WS-BPEL. The COIN research project aims at studying, developing
and prototyping open, self-adaptive, generic ICT solutions for
enterprise collaborations and EI [37]. An EIl baseline framework has
been developed in this project to facilitate EI using MDI and
semantic mediation interoperability [38]. Further, the Manufactur-
ing Service Ecosystem (MSEE) research project has also proposed
model transformations within MDI to achieve EI [39]. However, the
COIN and MSEE projects do not explicitly address transformations
from choreographies to orchestrations, so that their work can be
considered complementary to ours.

8. Discussion

In the both application scenarios, transformation T3 success-
fully generated a WS-BPEL skeleton of the orchestrators from their
respective WS-CDL specifications. Choreographies have a higher
abstraction level than orchestrations, since a choreography does
not represent the internal details of the participating services in
the collaboration. Therefore, in general it is not possible to generate
a complete executable WS-BPEL process, with all the necessary

Customer Manufacturer Supplier CPU Supplier Mainboard Supplier Harddisk
| requestForQuote : : ! :
1 A | | |
i QuoteResp]_I : ! !
S . | | |
i updateQuote : : ! :
1 1 | | |
| QuoteResp]_I : | |
koo . | | |
| | | | |
: sendPurchaseOrder : : : :

| I
F I I
! orderCPU | : :
| | |
! CPUOdrResp ! :
| K - | |
: OrderMainboard i |
I 4 Il I
i MainboardOrdResp U !
: K——————————- dom oo T :
| : OrderHarddisk | |
| | | |
i | HarddiskOrdResp | U
| R S—— R ———
: PurchaseOrdResp | | |
I I
S e | | |
! | | | |
! | | | 1
| | | |
| |
Fig. 8. Sequence diagram of BTO application scenario.

960

R. Khadka et al. / Computers in Industry 64 (2013) 951-965

= Sequence

= Sequence

= Sequence

@/ Receive

= Sequence

Empty

&) Reply
@) Receive

&) QuoteBartering
* Sequence

@ Receive

= Sequence

Empty
&) Reply

@/ Receive

= Sequence

* Sequence

@ Choice_CPUnotinStock

Choice_CPUnotinStock Else
= Sequence = Sequence
& Invoke = Assign

* Sequence

@ Choice_HDnotInStock

Choice_HDnotInStock Else
© Sequence = Sequence
& Invoke = Assign

* Sequence

@ Choice_MBnotInStock

Choice_MBnotinStock Else
= Sequence = Sequence
& Invoke = Assign

= Sequence

@ PO_success

PO_success

= Assign

Else

= Assign

Fig. 9. WS-BPEL process of the manufacturer process of the BTO scenario.

internal details of the participating services, from a choreography.
In our approach, the process designer has to manually provide the
missing details to the generated the executable WS-BPEL
specifications. These missing details are indicated in the transfor-
mation mappings depicted in Table 1, i.e., the process designer has
to specify the conditions manually. Particularly, a process designer
has to add implementation-specific information to the resulting
process, which includes the conditions of the WS-BPEL if-else
constructs and the activities of the related parties in case silent
activities have been defined in the WS-CDL specification. After
these details are added, the WS-BPEL specifications can be

validated against the executable schema of the WS-BPEL standard
and imported to the Eclipse BPEL designer. For example, Listing 6
depicts an excerpt of the WS-BPEL process skeleton generated for
the manufacturer process of the BTO application scenario, in which
the process designer has to manually add a condition to replace the
empty condition default = 0.

The WS-CDL specifications of both application scenarios and
the generated WS-BPEL specifications of both the orchestrators are
available in [3].

Our choice of generating centralised orchestration in WS-BPEL
follows from the popularity and simplicity of this choice. The

R. Khadka et al./ Computers in Industry 64 (2013) 951-965 961

Listing 6
Excerpt of the generated WS-BPEL process skeleton.

<flow name ="parallel">
<if name ="Choice_CPUnotInStock">
<condition>"default=0"</condition>
<sequence>
<invoke operation ="orderCPU" ../>
</sequence>

</flow>

generation of decentralised orchestrations introduces various
issues, such as distribution and partitioning of responsibilities of
each participant in the choreography accordingly in each
orchestration process. These issues make it difficult to generalise
the transformations, therefore hindering the automation of the
transformation process. Furthermore, multiple orchestrations are
required to run, possibly in different orchestration engines, so that
proper runtime support for error handling in each process is
necessary [24].

The approach proposed in this paper uses a metamodelling-based
model transformation, in which we represent the abstract syntax of
both source and target models in the definition of the WS-CDL and
WS-BPEL metamodels, respectively. The relationships between
source and target model are presented as transformation mapping,
and we implemented this transformation mapping in the ATL
transformation language. This approach falls under the “transfor-
mation language support” category [10], in which a language is used
that provides a set of constructs for explicitly expressing, composing,
and applying the transformation. We use metamodelling to express
the source and target models at a higher level of abstraction when
compared with transformations implemented using a general-
purpose programming language, such as Java, C#, or transformations
based on scripting languages like XSLT. It has been acknowledged
that transformations implemented with general-purpose program-
ming languages tend to be hard to write, comprehend, and maintain
while XSLT-based transformations require experience and consid-
erable effort to define and implement [10].

9. Conclusions

In this paper we presented an approach to facilitate enterprise
collaboration by addressing EI problems caused by system
heterogeneity and business-technology misalignment in the
context of continuous change. Our approach uses a largely
automated model transformation to obtain a centralised orches-
tration from a choreography, and, hence, improves the efficiency
and accuracy of the enterprise collaboration process. A choreogra-
phy defines the common behaviour (message exchanges) of the
interoperating enterprises, abstracting from the internal details of
the participants. In contrast, an orchestration defines the
coordination between the interoperating services from the

perspective of an orchestrator process that handles this coordina-
tion. We used WS-CDL to specify choreographies, WS-BPEL to
specify centralised orchestrations and a chain of transformations,
implemented in ATL, to transform a given WS-CDL choreography to
a WS-BPEL process. The approach has been illustrated with an
implementation prototype and its feasibility and general applica-
bility have been demonstrated with two simple yet representative
application scenarios. We also discussed the technical challenges
of implementing the WS-CDL to WS-BPEL transformation. Our
transformation represents an improvement over the currently
existing manual transformations. In particular, our transformation
facilitates collaboration at business service level by preserving the
interoperability requirements captured in choreographies when
moving from the choreography to the orchestration level.

With our proposed approach, we demonstrated the suitability
of model transformations to (semi-) automate EI. In particular, we
claim that our approach offers the following contributions to EI: (i)
draws on the important service-orientation trend in business, (ii)
links business interoperation requirements (expressed as a
choreography of services) to technical interoperability solutions
(in terms of a service orchestration process), and, (iii) is suitable for
the changing business context for EI, where occasional drastic
technology-based changes are replaced by more frequent changes
driven by evolving requirements and emerging opportunities for
value creation in business networks.

Several directions have been identified for future work. More
resilient industrial case studies could be performed to validate the
current approach and assess its practical applicability for
deployment in industry. The results of these industrial case
studies could be compared with similar case studies in which the
transformations are manually performed by domain experts. An
interesting line of work is to enhance the proposed approach to
include in the transformations service level agreements (SLA)
defined as annotations in the WS-CDL specification, which should
be transformed into WS-BPEL policies. Another possible direction
is the automatic generation of WSDL specifications for each
participant from the choreography description, which can ease the
deployment and testing of the behaviour of the generated WS-BPEL
process. A more challenging direction is to investigate the support
of some patterns of distributed orchestrations, and to build tools
that allow designers to choose the transformation strategy.

962

Appendix A. Metamodels

See Figs. A.1 and A.2.

R. Khadka et al. / Computers in Industry 64 (2013) 951-965

+workunit
ExceptionBlock
InformationType +name
Token tinformationToken 1
+name a-* type
e : ty -
informationType , 1 leelement 1.,
-+olen
1. WorkUnit
1 ’g FinformatonType | 0.~ Chorcography| *finalize +name
= -+
Identify 13 ¢ name P +guaer:l
usage +iholddes 1| 1 0.t [tcomplete 1 black
. g
5 TokenLocator 0. 1 [[1 4:,‘3:"”" +choreoyraphies
23 [+name Package *[elation coordination
+identity | 0.” B +informationType | +okenl: = 10 5.
1B :gﬂ:ry o [rautnor
::'ersu‘);\'; s 1z 1..% | FinalizerBlock
ChannelType AIgPENAMEVPAce ﬂS—;’ hame
[+name 0. r &
+usage nartich
participantTyge 1+
Faction #channelType 1 El 1 +containg Choice
. = 1
passing g : e
@] g
El 1 T 1
“x:; g| i I +choice
8l tiakes rn . | 5 . +activity
E ParticipantType > g 1 Activity any, 1 Parallel
1 2 tname RelationshipType _g .- 1 <l
¥ 1 Hname 2 - N
* 3 +hasHarform +payallel
M=
« | o %, Perform assign 1
: S
RoleType +role2 ; | 1 +choreagraphyName 1
+name +choreographylnstanceld TSo 5
:roe1 Variable block Sequenc
1..® . -+name
X -+residesat ﬂ"nulable . Exchange
b 14 name
o
1 [rsilent Ef faultN +ifteraction n
o 42 1 4 ofType A fautName Interaction
'§ s p I +behaviour s 3 Assign +HinformationType LA
B 5 @ HroleType +channel Type ¥ i
* = -action operation
* Behaviour 1 ralign
pr— Hinltiate
+interface 181 $] y
+dentifies 2| =2 L .
gl ¢
VariableRef gl 2
- VariableRecordRef
1 +fromRole +variable :
(]
(=1
‘+source bbeadiniins S
1t Record 11 +relationshipType g
‘+name N =
Hargel [+when ¥
+causeException srecord
1 1

Fig. A.1. WS-CDL metamodel.

963

‘[opowe3aw Tdd-SM TV “Std

R. Khadka et al./ Computers in Industry 64 (2013) 951-965

A
i sjoxBuLEds,
) sepadoids BloyAwe
Heqoy . 3 BUIBU4H] adApodusy]
UONeI0) +|

¥ INe4pIEPURISUONXE]
g ainpe qujorssesddns + u

&b 3 ebenbue . upouped
86 m r® aBenBuelenbay
80UR|SUjajRaD+ BUWENINE)+ b Hiieia soedgawenebie+ } AuOseoueigInssaoons+
R e Aidoy ¢ i alweus K»wo.%wauuo”‘ ebenBuequorssaidxe+)
3 S320. i |+ . saoueig
' L ' . = . soedsalueu
AI ' podw) seys 2
B18(1IU| 4] g 36urdoos
‘. UNePIBPURISUONXE)
«Sd}é) ” 4 PaRIos! +f
o, b o s .
N seys 3 uopipuoguonalduio)
¢ '
‘o .
I anjepsBiuno)|euy+
T, [Aumnovuonsesaul J:i:_ reun ' 2nfe\JalUNODLEIS Y uoanuoos| [uopspucod]
4 yoe3i04 Inunieaday "
1 Aaop- +
1 _ - M—' ' podesy +
readg - \

v %
g aunjie4uiorssadns|
L] licoA ~

A 4 =

oweNine) ' v
Yol .
dxe-sulpesp un-] g H
JajpueHney b | SR pfone|dxe-uonemI0 N siebser 3 w

wueyuo
) ey N v ¥
Aynnges [

whme | 4
JUdA3UO Mol alum @ouenbeg
. %u%.. R aweuy| ¢) u
Ayngoe- «..o . & ,..&% = YU+ ' -
3

do oo
‘M 8|qeuRAs
wurpoupeg | [dALrod

964 R. Khadka et al. / Computers in Industry 64 (2013) 951-965

References

[1] D. Konstantas, et al., Interoperability of enterprise software and applications (In-
troduction), in: Proceedings of the International Conference on Interoperability of
Enterprise Software and Applications (I-ESA 2005), Springer Verlag, Genéve, 2005.

[2] M. van Sinderen, Challenges and solutions in enterprise computing, Enterprise
Information Systems 2 (4) (2008) 341-346.

[3] R. Khadka, Model-Driven Development of Service Compositions: Transforma-
tion from Service Choreography to Service Orchestrations, Faculty of
Electrical Engineering, Mathematics & Computer Science, University of
Twente, 2010 .

[4] R. Jardim-Gongalves, A. Grilo, A. Steiger-Garcao, Challenging the interoperability
between computers in industry with MDA and SOA, Computers in Industry 57 (8/
9) (2006) 679-689.

[5] RM. Pessoa, et al., Enterprise interoperability with SOA: a survey of service
composition approaches, in: IWEI'08, IEEE, Munich, Germany, 2008.

[6] M. van Sinderen, M. Spies, Towards model-driven service-oriented enterprise
computing, Enterprise Information Systems 3 (3) (2009) 211-217.

[7] M.S. Li, et al., Enterprise Interoperability Research Roadmap in an Enterprise
Interoperability Community Document-Work Coordinated by the Enterprise
Interoperability Cluster of the Information Society and Media Directorate-
General, European Commission, 2006.

[8] OMG, MDA Guide Version 1.0.1, Object Management Group, 2003.

[9] D.C. Schmidt, Model-driven engineering, Computer 39 (2) (2006) 25-31.

[10] S. Sendall, W. Kozaczynski, Model transformation: the heart and soul of model-
driven software development, Software, IEEE 20 (5) (2003) 42-45.

[11]]. Touzi, et al., A model-driven approach for collaborative service-oriented
architecture design, International Journal of Production Economics 121
(2009) 5-20.

[12] H. Fatemi, M. van Sinderen, R. Wieringa, Value-oriented coordination process
modeling, in: 8th International Conference on Business Process Management
(BPM2010), Springer, Hoboken, NJ, USA, 2010.

[13] H.Fatemi, M. van Sinderen, R. Wieringa, E 3 value to BPMN model transformation,
in: Adaptation and Value Creating Collaborative Networks - 12th IFIP WG5.5
Working Conference on Virtual Enterprises, PRO-VE 2011, Springer, Sao Paulo,
Brazil, 2011.

[14] R. Mantovaneli Pessoa, M. van Sinderen, D. Quartel, Towards requirements
elicitation in service-oriented business networks using value and goal modelling,
in: Proceedings of the 4th International Conference on Software and Data Tech-
nologies (ICSOFT 2009), INSTICC, Sofia, Bulgaria, 2009.

[15] G. Decker, et al., Interacting services: from specification to execution, Data and
Knowledge Engineering 68 (2009) 946-972.

[16] C. Peltz, Web services orchestration and choreography, Computer 36 (10) (2003)
46-52.

[17] A. Barros, M. Dumas, P. Oaks, Standards for web service choreography and
orchestration: status and perspectives, in: C. Bussler, A. Haller (Eds.), BPM Work-
shops, Springer Berlin/Heidelberg, 2006, pp. 61-74.

[18] A. Arkin, et al, Web Service Choreography Interface (WSCI) 1.0, 2002 http://
www.w3.org/TR/wsci/.

[19] N. Kavantzas, et al., Web Service Choreography Description Language (WSCDL)
1.0, in W3C Candidate Recommendation, W3C, 2005.

[20] G. Decker, et al., BPEL4Chor: extending BPEL for modeling choreographies, in:
ICWS 2007, IEEE, Salk Lake City, UT, 2007.

[21] T. Andrews, et al., Business Process Execution Language for Web Services v 1.1.,
2003 Available from: http://www.ibm.com/developerworks/library/specifica-
tion/ws-bpel.

[22] A. Alves, et al., Web Services Business Process Execution Language Version 2.0,
OASIS, 2007.

[23] W.Binder, 1. Constantinescu, B. Faltings, Decentralized orchestration of composite
web services, in: ICWS’06, IEEE, 2006.

[24] G.B. Chafle, et al., Decentralized orchestration of composite web services, in:
Proceedings of WWW 2004 Conference on Alternate Track Papers and Posters,
ACM, NY, USA, (2004), pp. 134-143.

[25] G. Wiederhold, Mediators in the architecture of future information systems,
Computer 25 (3) (1992) 38-49.

[26] R. Khadka, et al., Model-driven development of service compositions for enter-
prise interoperability, in: M. Sinderen, P. Johnson (Eds.), Enterprise Interopera-
bility, Springer, 2011, pp. 177-190.

[27] F. Rosenberg, et al., Integrating quality of service aspects in top-down business
process development using WS-CDL and WS-BPEL, in: Proceeding of EDOC 2007,
IEEE, MD, USA, 2007.

[28]]J. Mendling, M. Hafner, From WS-CDL choreography to BPEL process orchestra-
tion, Journal of Enterprise Information Management 21 (5) (2008) 525-542.

[29] F.Jouault, et al., ATL: a model transformation tool, Science of Computer Program-
ming 72 (1-2) (2008) 31-39.

[30] Generating an EMF Model using XML Schema (XSD), 2004 (cited 20.09.12);
available from: http://www.eclipse.org/modeling/emf/docs/2.x/tutorials/xlib-
mod/xlibmod_emf2.0.html..

[31] F. Jouault, et al., ATL: a QVT-like transformation language, in: OOPSLA 2006
Companion, ACM, OR, USA, 2006, pp. 719-720.

[32] BPELDesigner Eclipse BPEL Designer, 2011 Available from: http://eclipse.org/
bpel/.

[33] R.Khadka, et al., WSCDL to WSBPEL: a case study of ATL-based transformation, in:
MtATL'11, Zurich, Switzerland, 2011 www.CEUR-ws.org.

[34] 1. Weber,]. Haller, J.A. Mulle, Automated derivation of executable business
processes from choreographies in virtual organisations, International
Journal of Business Process Integration and Management 3 (2) (2008)
85-95.

[35] K.Schulz, et al., A Gap Analysis - Required Activities in Research, Technology and
Standardisation to close the RTS Gap - Roadmaps and Recommendations on RTS
Activities, Deliverables D 3.4, D 3.5, D 3.6, IDEAS Thematic Network-No. IST-2001-
37368, 2003.

[36] A. Berre, et al., The ATHENA interoperability framework, in: RJ. Gongalves, et al.
(Eds.), Enterprise Interoperability II, Springer, London, 2007, pp. 569-580.

[37] S. Huber, C. Carrez, H. Suttner, Development of innovative services enhancing
interoperability in cross-organizational business processes, in: M. Sinderen, P.
Johnson (Eds.), Enterprise Interoperability, Springer, 2011, pp. 75-88.

[38] P. Sitek, et al., The COIN Book: Enterprise Collaboration and Interoperability,
Verlagsgruppe Mainz, 2011.

[39] E.M. Silva, C. Agostinho, R. Jardim-Goncalves, Achieving interoperability via
models transformation within the MDI, in: M. Zelm, et al. (Eds.), Enterprise
Interoperability: I-ESA’'12, Wiley, Valencia, 2012.

R. Khadka is a research assistant at the Department of
Information and Computer Science at Utrecht Univer-
sity, the Netherlands. His research interests include
legacy modernization and model-driven engineering
(MDE). He currently focuses in legacy to service-
oriented architecture (SOA) migration of financial
applications. Mr. Khadka holds a BE degree in Informa-
tion Technology (2006) from Nepal and an MSc degree
in Software Engineering from the University of Twente
(2010), the Netherlands.

B. Sapkota is Postdoctoral researcher at the University
of Twente, the Netherlands. His research interests
include distributed systems architecture, modeling
techniques, specification languages, and telematics
applications. He has been working on the application
of Semantic web and Linked Data technologies to user-
centric applications and service personalisation. He
contributed to various national and international
research projects and co-authored more than 30
research papers in international journals, conferences,
workshops and standards working groups. He is a
member of programme committee of a number of
international conferences and workshops. Dr. B. Sap-
kota holds an MSc degree in Telematics and a PhD in
Computer Science.

L. Ferreira Pires is Associate Professor at the University
of Twente, the Netherlands. His research interests
include design methodologies for distributed systems,
architecture of distributed systems, modelling and
specification techniques, middleware platforms and
telematics applications. More recently he has been
working on the application of Model-Driven Engineer-
ing (MDE) and Semantic web technologies to the design
of context-aware applications and services, and to
(dynamic) service composition. He contributed to
various national and international research projects,
and co-authored more than 100 research papers in
international conferences, workshops and journals. He
is a member of the Programme Committee of a number
of international conferences and workshops, and he is co-chair of the MODELS-
WARD conference. He is currently Education Director of the “Business Information
Technology” Education Programme of the University of Twente. Dr. Ferreira Pires
holds a BSc degree in Electronics (1983), an MSc degree in Electrical Engineering
(1989) and a PhD degree in Electrical Engineering (1994).

R. Khadka et al./ Computers in Industry 64 (2013) 951-965 965

Computing. He is also member of the Managerial Board of IFIP WG5.8 on Enterprise
Interoperability. Dr. Van Sinderen holds an MSc degree in Electrical Engineering and
a PhD degree in Computer Science.

MJ. van Sinderen is associate professor at the
University of Twente in the Netherlands. There he is
also leader of the strategic research orientation

“Applied Science of Services” at the Centre for Tele-
matics and Information Technology. His major research
interests are design methods and architectures for
networked information systems, particularly in the
area of next-generation collaborative enterprises and
smart consumer applications. He managed and partici-
pated in several national and international research
projects and coauthored more than 100 research
papers. He is a member of the Editorial Board of the
Enterprise Information Systems journal, published by
Taylor & Francis, and of the Editorial Board of the

S. Jansen is an assistant professor at the Department of
Information and Computer Science at Utrecht Univer-
sity. He is one of the leading researchers in the domain
of software ecosystems and co-founders of the Inter-
national Conference on Software Business and Interna-
tional Workshop on Software Ecosystems. He is lead
editor of the book “Software Ecosystems: Analyzing and
Managing Business Networks in the Software Industry”
and of several others. Besides his academic endeavors
he actively supports new enterprises and sits on the
boards of advisors of several start-ups.

Service Oriented Computing and Applications journal, published by Springer. He is
chair of the Steering Committee of the IEEE EDOC Conference on Enterprise

