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1. Introduction

This paper concerns aiding mass customization, or, more
accurately, how the two activities of product configuration and
production planning can be achieved, optimized and computer
supported in a concurrent way. An example relevant to the
configuration and planning of a small aircraft illustrates our
propositions all along the paper.

1.1. Concurrent configuration and planning

Product configuration can be defined as deriving the definition
of a specific or customized product (through a set of properties,
sub-assemblies or bill of materials, etc.) from a generic product or
a product family [1] or [2]. Similarly, deriving a specific
production plan (operations, resources to be used, etc.) from
some kind of generic process plan, while respecting the product
characteristics and the customer requirements, can define
production planning with respect to product configuration [3]

or [4]. As the decisions relevant to each of these two activities are
closely dependent:

! decisions associated with the configuration of a product can have
strong consequences on the planning of its production process
(for example, a luxury finish requires additional manufacturing
time),
! planning decisions can imply tough constraints to product

configuration (for example, a given assembly duration prevents
from using a particular kind of engine).

It is necessary to associate them in order to avoid incon-
sistencies and the traditional sequence ‘‘product configuration,
then production planning’’. If many scientific works have been
independently achieved on configuration or planning, as far as we
know, scientific production is far less important when they are
considered concurrently. Some initial ideas where proposed by
Steward and Tate [5] and Schierholt [3]. More recent works can be
found in [12] or [6].

1.2. Different requirements, two configuration/planning steps

Most of the times, configuration techniques support interac-
tively the processing of customer requirements. This means that
the consequences of each ‘‘elementary requirement’’ are computed
and shown to the customer. By elementary requirement, we mean
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a restriction of the domain of a variable involved in configuration
(for example ‘‘plane capacity belongs to [6, 12]’’), or in planning
(for example ‘‘final assembly operation should be located in Italy’’).
As the goal of a company that uses concurrent configuration and
planning techniques is to put on the market a product diversity
that covers a large demand segment, the elementary requirements
can become very diverse and numerous. The process in turn can be
tricky and longer.

Each customer can be interested in different kinds of
requirements, for example customer ‘‘A’’ can be mainly interested
in the product ‘‘performance’’ (speed, altitude, etc.) while the
product ‘‘comfort’’ (finish level, seat-space, etc.) may mostly attract
customer ‘‘B’’. The idea is to limit the collection of requirements to
those that mainly interest each customer. These requirements are
named ‘‘non-negotiable requirements’’, while the remaining ones
are named ‘‘negotiable requirements’’. Therefore, a first step
interactively processes the non-negotiable requirements and then
asks the software to complete autonomously the processing of the
negotiable requirements in a second step. This autonomous
computation can be achieved either with default values or with
some multi-criteria optimization (cost, due-date, performances,
etc.). This paper focuses on this last optimization issue. For paper
clarity, we will only consider the two conflicting criteria cost and
cycle time.

We therefore consider the concurrent configuration and
planning process presented in Fig. 1 in two successive steps.
Step1: interactive configuration and planning which processes
non-negotiable requirements and provides a first solution space
reduction. Step 2: response optimization which processes nego-
tiable requirements and provides a Pareto front shown to the
customer for a solution selection. This paper is mainly concerned
by this second step.

1.3. Goal and organization of the paper

In a previous paper [7] we have proposed an original adapted
evolutionary algorithm for this problem ‘‘CFB-EA’’ (for constrained
filtering based evolutionary algorithm). However, the presentation
was mainly descriptive and only some initial experimental results
could be presented. Our objective in this paper is to prove that CFB-
EA is a good candidate for optimizing concurrent configuration/
planning problems. Thus, we propose to:

! evaluate the CFB-EA algorithm in detail. For that purpose, a
survey of the scientific literature will help us identify a
competitive evolutionary algorithm ‘‘FRB-EA’’ (for feasibility
rules based evolutionary algorithm), in order to set up
experimental comparisons,
! for a given problem, identify a size limit where exact optimiza-

tion, a branch and bound (B&B) in our case, cannot be used due to
computation duration and must be replaced by evolutionary
computations (CFB-EA or FRB-EA) in our case.

The paper is consequently organized as follows. In the next
section, we describe how the previous two steps approach can be
supported with constraint processing and discusses industrial and
practical issues. In the third section, we formalize the optimization
problem, review optimization techniques and finally detail the
three optimization algorithms that will be used for experimenta-
tions. In the last section, we present experimental results that
highlight the performance of CFB-EA and the limit where the exact
approach should be replaced by evolutionary computations.

2. Optimizing configuration and planning considered as a CSP

2.1. Concurrent configuration and planning as a CSP

Many configuration or planning studies have shown that each
of these two problems can be successfully processed when
considered as a constraint satisfaction problem (CSP). As far as
configuration is concerned, it has been explained by [8] or [9] while
good surveys about planning can be found in [10] or [11].
Assuming a CSP for each problem, it is possible to bring them
together in a single CSP and to process them concurrently in order
to achieve support for concurrent configuration and planning.

This concurrent process and the supporting constraint frame-
work present three main interests. Firstly, constraints linking
configuration and planning can be processed in both directions
(from product configuration to process planning, for example: a
large flying range requires a specific tank assembly resource–from
planning to configuration, for example: a given assembly duration
forbids such cabin layout). Secondly, product and planning
requirements can be processed in any order, avoiding the already
mentioned sequence: ‘‘configure product then plan its production’’
[12]. Thirdly, the CSP framework is well suited for interactive



processes, thanks to constraint filtering techniques, see [13] for
discrete constraints, [14] for numerical ones and [15] for piecewise
functions, whilst also being adapted to optimization thanks to the
various problem-solving techniques available (see [16]). In order to
highlight the benefits of filtering capabilities, as explained in [10],
we assume infinite capacity planning. This means that we consider
that production is launched according to each customer order and
that the production capacity is adapted accordingly.

In order to illustrate the problem under discussion, we consider
a very simple example dealing with the configuration of a small
plane and the planning of its production process. The constraint
model is shown in Fig. 2. The plane is defined by two product
variables: number of seats (noted Seats, with two possible values 4
or 6) and flight range (noted Range, with possible values 600 or
900 km). A constraint Cc1 forbids a plane with 4 seats and a range
of 600 km. The production process contains two sequential
operations: sourcing and assembling. (noted Sourc and Assem).
Each operation is described by two process variables: the resources
that can be used and the relevant operation duration. For sourcing,
the variables are the resource (noted R-Sourc, with possible
resources ‘‘Slow-S’’ and ‘‘Fast-S’’) and duration (noted D-Sourc,
with possible durations 2–4 and 6 weeks). For assembling, the
variables are the resource (noted R-Assem, with possible resources
‘‘Norm-A’’ and ‘‘Quic-A’’) and the duration (noted D-Assem, with
possible durations 4–7 weeks). Two constraints linking product
and process variables modulate configuration and planning
possibilities: one linking seats with sourcing, Cp1 (Seats, R-Sourc,
D-Sourc), and a second one linking range with assembly, Cp2
(Range, R-Assem, D-Assem). The allowed combinations of each
constraint are shown in the three tables of Fig. 2. The process cycle
time is the sum of the two operation durations obtained with a
numerical constraint (cycle time = D-Sourc + D-Assem).

Without taking constraints into account, this model shows a
combinatory of 4 for the product (2 " 2) and 64 for the production
process (2 " 4) " (2 " 4), providing a combinatory of 256 (4 " 64)
for the whole problem. When constraints are taken into consider-
ation, 12 solutions emerge (for product and production process),
with a cycle time belonging to the interval [7,13]. During the first
step of interactive configuration and planning, the user can input
any requirement and filter the constraints of the problem. For
example, a product requirement ‘‘Range = 90000 will imply a cycle
time belonging to [8,13], while a process requirement of ‘‘cycle
time < 1000 will imply at least a fast sourcing resource (R-
Sourc, = ‘‘Fast-S’’). Once this first step has been achieved, all the
requirements that interest the user (the non-negotiable ones) are
taken into account and many solutions can remain. Therefore
finding the optimal solutions is the next natural step.

2.2. Optimizing configuration and planning concurrently

The addressed optimization problem corresponds with a
constrained multi-criteria optimization problem. A first specificity
of this concurrent configuration/planning problem is that the
solution space can be large. It is reported in [17] that a
configuration solution space of more than 1.4 " 1012 is required
for a car-configuration problem. When planning is added, the
combinatorial structure can become very large. In the last section,
we will conduct experimentations with a problem space of 1017. A
second specificity is that the size of the problem depends on the
quantity of negotiable requirements. A customer with many and
detailed requirements will have very few negotiable requirements
leading to a small optimization problem. Conversely, a customer
with low or weak expectations will generate a large optimization
problem. A third specificity is that the problem is not hardly
constrained, there are always many solutions as most companies
must propose many solutions to their customers. In our
experimentations the ratio constrained combinatory/uncon-
strained combinatory varies from 10% down to 0.001%.

A similar remark to the one in the previous concurrent
configuration and planning section proves relevant for optimi-
zation. We found many research works independently dealing
with the optimization of each activity. Many configuration
optimization studies show that evolutionary approaches are the
most appropriate, see for example [18] or [46]. The literature
dealing with production planning optimization is prolific
and many techniques can be used, as summarized in the recent
small survey [19]. But, as far as we know, very little can be
found considering them concurrently. Furthermore, the second
problem specificity (quantity of remaining negotiable require-
ments) allows considering either exact optimization (for small
problem instances) or meta-heuristics (for larger instances) for
investigations.

Various criteria can characterize a solution. On the product
configuration side, there are, for example, performance and
product cost. On the production planning side, the criteria could
be cycle time and process cost. Most of the time, product
performance is case-dependent, as explained in [20] and can
characterize various product parameters, such as speed, power,
energy consumption, etc. Cycle time matches the ending date of
the last production operation of the configured product. Cost is at
least the sum of the product cost and the process cost [21]. As these
criteria are in conflict, it is better for decision aiding to offer the
customer a set of possible compromises in the form of a Pareto
Front (for example, performance/cost, performance/time or time/
cost) rather than a single solution that aggregates criteria. For



clarity, as already said we assume only the two criteria, cycle time
and total cost.

In order to complete our example, we consider now a time/cost
compromise, and define total cost and cycle time criteria as shown
in Fig. 3. For cost, each product variable and each process operation
is associated with a cost parameter and a relevant cost constraint:
(C-Seats, Cs1), (C-Range, Cs2), (C-Sourc, Cs3) and (C-Assem, cs4)
and the total cost is obtained with a numerical constraint. The cycle
time is unchanged.

Total cost = C-Seats + C-Range + C-Sourc + C-Assem.
Cycle time = D-Sourc + D-Assem

The twelve previously-mentioned solutions are shown in Fig. 4,
with the Pareto front bringing together the optimal ones. In this
figure, all solutions are present.

As previously stated, when non-negotiable requirements are
processed during interactive configuration and planning, some of
these solutions are removed. Once all these requirements are

processed, the optimization step identifying the Pareto front can be
launched in order to propose a set of optimal solutions to the
customer.

2.3. Practical and operational issues

2.3.1. Industrial issues
All industrial companies producing in assemble to order (ATO)

or make to order (MTO) have to face the problem of configuring the
product and also providing the customer with a delivery date. Most
of the time, product configuration is achieved thanks to
configuration techniques but three kinds of solutions can be
found regarding delivery date computations. The first one or
simplest one is to provide a standard duration that is more or less
adapted to a small number of product and process key factors. The
second one or most complicated one takes into account inventory
levels and the availability of resources. They are very difficult to
maintain and require a strong integration with ERP. The one used
in this paper places itself between the two previous ones. It
assumes infinite resource capacity and infinite inventory levels but
respects production and sourcing cycle time.

It is also important to note that the problem, even if it is a strict
ATO, can be very different according to the quantity and the cost of
sub-assemblies and components. A simple product gathering 15
cheap components (as a personal computer for example) requires
much less optimization processing than a complex product
gathering hundreds of components and large customized sub-
assemblies (as for example the cement production plant discussed
in [47]). Needless to say that this issue totally differs depending on
the kind of configured products: a computer of 1 ks, a car of 50 ks,
a boat of 500 ks or a plane of 5 Ms. Therefore, if a 1 h process
sounds a maximum for processing the requirements of a computer
or a car, a night of computation would probably not be a problem
for the configuration of a boat or a plane.

2.3.2. Web site issues
Most companies proposing products with customization

possibilities show a configuration application on their web sites.

Fig. 3. Concurrent configuration and planning model to be optimized.



All car manufacturers have a configuration software on their web
site, as it often is with PC providers. In this way, the customer can
configure his product himself. However, most of the time there is
no production planning issues and no delivery date processing
associated with such configuration software as far as we know.
Web sites seem oriented toward selling and do not consider
production issues. If delivery dates are proposed, they are most of
the time based on standard durations.

The computation time necessary to provide some optimization
results can probably explain this lack of optimization possibilities
on the web. For business to customer (B to C) in particular, this
needs some kind of information exchange in order to be able to
send the optimization results after the end of the session. For
business to business (B to B) this sounds much more manageable
and requires a light customer/supplier relationship.

2.3.3. Software provider issues
Many software relevant to configuration and planning are

available on the market and most of the ERP systems (like for
example OracleTM or SAPTM) propose planning and configuration
modules.

With their integrated solutions, ERP editors provide sophisti-
cated optimization solutions that take into account inventory
levels and the availability of resources (second solution of previous
industrial issues). However, optimization requires the computa-
tion of solutions and each solution corresponds with the selection
of specific components, sub-assemblies, manufacturing or sourc-
ing resources. Therefore, complex queries that are time consuming
become necessary and tend to reserve this kind of optimization
techniques for industrial situations where gaining less than 1%
efficiency, cost or due date is important. Here are some examples
that can correspond with this situation: airplane cabin layout [22],
factory configuration [21], railway interlocking system [23] or
telephone switching system [45]. These are complex and costly
products mainly sold on a B to B basis.

Many configurator editors that are not ERP providers (like for
example TactonTM, BigmachinesTM or CaméléonTM) provide
optimization solutions. But as they do not manage any production
data (inventory levels and resource capacity), the previous
optimization of concurrent configuration and planning proves
almost impossible for them. By cons they can propose either
adapted standard durations or the one we propose. We have seen
some specifically design software modules showing a behavior
very similar to the one we propose.

2.3.4. Conclusion relevant to practical issues
The previous discussion shows that concurrent configuration

and planning with the relevant optimization problem has clearly
become a subject that interests both industrial companies and
software providers. But, as explained in a detailed survey about
configuration software [24], it is always very delicate to know
about configuration software possibilities. Furthermore software
vendors do not communicate much on how their solutions work
and handle specific cases. Likewise industrial companies are rather
secret about their knowledge about product quotation and
delivery dates policy. However, many authors agree that such
configuration and planning software are key element for mass
customization development in industry.

3. Optimization problem and evolutionary algorithm proposals

This section begins with a definition of the optimization
problem. This is followed by a literature review of constrained
evolutionary approaches. This bibliography study enables us to
select an EA approach (feasibility rule in our case) that will be used
for comparisons during the experiments. The last section will

present the three optimization techniques: CFB-EA, FRB-EA
and BB.

3.1. Definition of the optimization problem

As explained previously, the first step leads to the reduction of
the initial feasible space (left graph of Fig. 1) to a restrained area
(center graph of Fig. 1). This corresponds to the filtering of the
customer’s non-negotiable requirements. The filtering system
provides domain bounds for every criteria variable (minimal and
maximal values for total cost and cycle time). The restrained area
contains solutions corresponding to the different remaining
decisions to be taken. But this area also contains unfeasible
solutions, due to the constraints of the problem. The aim of the
optimization process is to find a selection of solutions close to the
Optimal Pareto front (right graph of Fig. 1). The problem of the
example of Fig. 3 is generalized as the one shown in Fig. 5.

The constrained optimization problem (O-CSP) is defined by the
quadruplet hV, D, C, fi where V is the set of decision variables, D the
set of domains linked to the variables of V, C the set of constraints
on variables of V and f the multi-valuated fitness function. Here, the
aim is to minimize both total cost and cycle time. The set V gathers:
the product variables and the process variables resource (we
assume that duration is deduced from product and resource). The
set C gathers: only configuration constraints (Cc) and process
constraints (Cp). The variables operation durations and cycle time
are linked with a numerical constraint that does not impact
solution definition and therefore does not belong to V and C. The
same applies to the product/process cost variables and total cost,
which are linked with cost constraints (Cs) and total cost
constraints. The filtering system allows dynamically updating of
the domain of all these variables with respect to the constraints.
The variables belonging to V are all symbolic or at least discrete.
Duration and cost variables are numerical and continuous.
Therefore, constraints are discrete (Cc), numerical (cycle time
and total cost) or mixed (Cp and Cs). Discrete constraints filtering is



processed using a conventional arc consistency technique (see
[13]) while numerical constraints are processed using bound
consistency (see [25]).

3.2. Overview of constrained optimization approaches

In their original versions, EAs were designed to deal with large
unconstrained search spaces [26]. Therefore, they need to be
adapted to take into account the constraints of the problem. Many
research studies try to integrate constraints in EA. C. Coello Coello
proposes a wide state-of-the-art study of these methods on (C.
Coello Coello web site [44]) and a synthetic overview in [27]. In this
part, we summarize the current tendencies in the resolution of
constrained optimization problems using EAs. Six kinds of
methods deal with this problem: penalty functions (PF), stochastic
ranking (SR), e-constrained (EC), multi-objective concepts (MO),
feasibility rules (FRs) and special operators (SO).

PF: Penalty functions are the traditional way to integrate
violation of constraints in an objective function (deb 2000). For
each individual, its fitness value is calculated according to the level of
constraints violation. The aim is to decrease the fitness of unfeasible
solutions in order to favor the selection of feasible solutions. The
main drawback of such an approach is that it requires a careful fine-
tuning of the weights (penalty factors) needed to aggregate the
violation of different constraints and these values are highly
problem-dependent [28]. Even if some improvements have been
proposed (for example: dynamic, adaptive, co-evolved, fuzzy-
adapted), penalty functions are, without extremely careful fine-
tuning, highly sensitive to premature convergence due to local
optima.

SR: Stochastic ranking [28] was designed to deal with the
shortcomings of penalty functions (over-and under-penalization
due to unsuitable values for the penalty factors). SR uses a bubble-
sort-like process to rank the solutions in the population and an
additional parameter that allows a pseudo-random selection of
some unfeasible solutions to build the next generation. SR is very
competitive while requiring a low number of fitness-function
evaluations, but it needs a ranking process.

EC: The e-constrained method [29], uses a relaxation mecha-
nism that considers as feasible any solution with a sum of
constraint violations under the limit e. The minimization of the
sum of constraint violations precedes the minimization of the
objective function. In this approach and its spin-offs, such as the a-
constrained method [30], the careful fine-tuning of a and e
remains the main shortcoming.

MO: Recently, approaches using multi-objective concepts have
been popular in the literature. They consider constraint violation as a
single objective function. Gong and Cai [31] merges the original
objective function with each constraint and gets as much objectives
as constraints. Ray et al. [32] considers two objective functions: the
original objective function and the sum of constraint violation. The
first method is limited to problems with a low number of constraints,
due to the lack of performance of the multi-objective algorithm. The
difficulty in the second method is to elaborate an effective algorithm
that preserves the diversity of individuals.

FRs: Feasibility rules were originally proposed for selection in
binary tournaments in [33]. It consists in three rules that allow
classification of the solution: (i) when comparing two feasible
solutions, the one with the best fitness function is selected; (ii)
when comparing a feasible and an unfeasible solution, the feasible
one is selected; (iii) when comparing two unfeasible solutions, the
one with the lowest sum of constraint violations is chosen. The
absence of user-defined parameters is one of its main advantages.
However, it may also lead to premature convergence [34].
Nowadays, it is a very popular constraints-handling approach
because of its simplicity and ability to be coupled to any sort of EA.

SO: The special operators class groups together methods that
try to deal only with feasible individuals, such as repairing
methods, preservation of feasibility methods [35] or operator,
which move solutions within a specific region of interest inside the
search space, as, for example, the boundaries of the feasible region
[36]. Generally, these methods are known to be efficient on non-
over-constrained problems (i.e. a feasible solution can be obtained
in a reasonable amount of time to be able to generate a population
of solutions). Our CFB-EA approach belongs to this family and aims
at preserving the feasibility of the individuals during their
construction. Kowalczyk in [37] proposed initial ideas for using
constraint consistency to prevent inconsistent individuals. But
their paper did not provide any details or experimentation. We
adopt this idea and focus on specific evolutionary operators that
prune search space using constraint filtering. The main difference
between our approach and others previously developed is that we
do not have any unfeasible solutions in our population or archive,
while other approaches try to exploit the information contained in
unfeasible solutions to improve optimization.

By looking for the most adequate concurrent optimization
approach, we have come to the following conclusions: (i) with
regard to penalty functions: after some unsuccessful tests and
because of our preference of a minimal intervention of the expert
for the tuning of the parameters, we did not retain this kind of
method for our study, (ii) with regard to multi-objective functions:
as our problem deals with multiple constraints, we did not retain
this kind of method, mainly for performance reasons, (iii) with
regard to stochastic ranking and e-constrained methods: they are
rather close to feasibility rules, but as they both require an extra
probability parameter, we did not consider them and put
feasibility rules in our short list, (iv) with regard to special
operators: we think that it is better to avoid inconsistent
individuals (as CFB-EA does) rather than trying to repair them,
thus we did not adopt this approach, (v) with regard to the
feasibility rule: with a low number of parameters to tune and a
behavior close to penalty functions, we decided to consider this
approach for our experiments. The following sections will
therefore deal with the three optimization techniques: con-
straint-filtering-based approach (CFB-EA), branch and bound
(BB) and feasibility-rule approach (FRB-EA). Next section describes
them briefly.

3.3. Description of the optimization algorithms used for
experimentation

3.3.1. Constraint-filtering-based evolutionary algorithm (CFB-EA)
The proposed evolutionary algorithm is based on SPEA2 [38]

with an added constraints filtering process that avoids unfeasible
individuals (or solutions) in the archive. SPEA2 is a useful Pareto-
based method founded on the preservation of a selection of best
solutions in a separate archive (archive on generation t is noted At
and population Pt). Six parameters are required: size of archive
(Narch), size of population (Npop), number of generation (T) (or
any stopping criterion), probabilities for crossover (Pcross for
individual selection, crossover of approximately half of the
chromosome) and mutation (Pmut for individual selection/Pmutg

for gene selection) operators. The archive size mainly impacts the
diversity of solutions; while population size defines how many
solutions are generated at each generation. This provides the
following six-step approach:

1. Initialization of individual set (P0) that respects the constraints
(thanks to filtering),

2. Fitness assignment (balance of Pareto dominance and solution
density),

3. Selection of individuals and archive update (At),

P. Pitiot et al. / Computers in Industry xxx (2014) xxx–xxx6



4. Stopping criterion test (time, nb. of generations or performance),
5. Individuals selection for crossover and mutation operators

(binary tournaments),
6. Individuals crossover and mutation that respect constraints

(thanks to filtering) to generate next generation (Pt)
7. Return to step 2.

For initialization, crossover and mutation operators, each time
an individual is created or modified, every gene (decision variable
of V) is randomly instantiated into its current domain. To avoid
the generation of unfeasible individuals, the domain of every
remaining gene is updated by constraint filtering. As filtering is
not fool proof, inconsistent individuals can be generated.  In this
case, a limited backtrack process is launched to solve the
problem. For full details please see [7]. Notice that we have
designed the evolutionary operator so as to preserve diversity
(random selection of gene and state); thus, if an individual
become unfeasible – and in order to preserve individual
consistency – we backtrack on previous choices until an
individual becomes feasible again. Our approach also has the
advantage of not needing any additional parameter tuning for
constraint handling.

3.3.2. Branch-and-bound procedure using filtering system (BB)
The key idea of the branch and bound algorithm is to explore a

search tree, but using a cutting procedure that stops exploration
of a branch when a better branch has already been found. The first
tool needed is a splitting procedure that corresponds to the
selection of one variable of the problem and to the instantiation
of this variable with each possible value. The second tool is a
node-bound evaluation procedure. The filtering process is used to
achieve this task with a partial instantiation and is able to
evaluate if the partial instantiation is consistent with the
constraints of the problem. If this is the case, it can provide
the lower bound of each criterion cycle time and cost. When the
search reaches a leaf of the search tree, or complete instantiation,
the filtering system gives the exact evaluation of the solution.
Thus, the values of leaf solutions can be used to compute the
current Pareto front and then to cut remaining unexplored
branches that are dominated by any aspect of the Pareto front
solution (e.g. the upper bounds of the leaf solution dominate the
minimal bounds of the branch to cut). This provides the following
steps:

1. Select a remaining un-instantiated variable and split on each
possible value.

2. Evaluate each value with constraints filtering system.
3. Cutting of every Pareto-dominated branch by a complete

solution that has already been found.
4. Return to step 1 on the lowest node value until there are no more

unexplored branches.

3.3.3. Feasibility–rules-based evolutionary algorithm (FRB-EA)
Two possible implementations of feasibility rules (FRs) in an EA

can be investigated. The original one was to incorporate FRs in the
selection process. In order to avoid unfeasible individuals, we
prefer to use feasibility rules while comparing pair-wise solutions
during the fitness assignment. In the SPEA2 method, the Pareto
dominance concept is used to compare and evaluate solutions. We
added FRs in this Pareto dominance in the following way: (i) when
comparing two feasible solutions, the classic Pareto dominance
relation is used; (ii) when comparing a feasible and an unfeasible
solution, the feasible one will dominate; (iii) when comparing two
unfeasible solutions, the one with the lowest sum of constraint
violation will dominate. This leads to the following dominance
comparison algorithm:

1. If one solution of the two solutions compared is unfeasible, it is
dominated.

2. If both are unfeasible, the one with the highest sum of constraint
violation is dominated.

3. If both are feasible, the classic Pareto dominance algorithm
defines which one is dominated.

This method is simple to implement and allows for comparative
study. Furthermore, some promising improvements have been
proposed for a FR-EA as a distribution-based stopping criterion
[39], or for various diversity preservation mechanisms [40,41].
These proposals highlight the interest of this approach.

4. Experimental results and discussions

The aim of this section is to compare concepts that allow
integration of constraints handling in an evolutionary optimization
process (filtering vs. feasibility rules) in the context of our two-step
aiding process. A comparison with an exact approach (BB) is also
made in order to estimate the limit where the exact approach
should be replaced by evolutionary computations. We want to
define the limits of each approach, according to the size of the
problem, its constraints level and the difficulty of parameter
setting. The size of the problem to solve varies greatly according to
the number of choices made in the first step of the proposed aiding
approach. The constraint level of the model is also a key point when
selecting an optimization technique. It regulates the ratio between
feasible and unfeasible space. Finally, we assume that the user is
not an expert in optimization techniques, so the difficulty of tuning
optimization parameters is essential in our context.

The optimization algorithms were implemented in C++
programming language and interacted with the filtering system
coded in Perl language. All tests were done using a laptop computer
powered by an Intel core i5 CPU (2.27 GHz, only one CPU core is
used) and using 2.8 Go of ram.

For a multi-objective aiding problem, the user expects an
efficient and diversified set of solutions in a reasonable lapse of
time. To evaluate the algorithm results, we used the hypervolume
metric defined by Zitzler [42] and illustrated in Fig. 6. It measures
the hypervolume of space dominated by a set of solutions. It thus
allows both convergence and diversity proprieties to be evaluated
(the fittest and most diversified set of solutions is the one that
maximizes hypervolume).

In first section, we study the models used for experimentation.
Then, we compare the three approaches (BB, FR-EA and CFB-EA) on
various small instances. In a third section, the results of FRB-EA and
CFB-EA on two sizes of model (small and large) and for three
constraints levels are compared. Finally, these results are discussed
in the last experimental section.



4.1. Models used for experimentation

Every model used in these experiments derives from a large
real-world-like model named ‘‘full_aircraft’’ corresponding with a
small commercial aircraft (between 4 and 12 passengers). This
model has been established during the four years project ATLAS
project funded by the French National Research Agency (ANR)
whose objective was to study interactions between product design
and project planning in aerospace industry within the Aerospace
Valley industry cluster (http://www.aerospace-valley.com/). Some
aspects of this model can be consulted in [7] and [6].

The model used in this paper groups 92 variables (symbolic,
integer or float variables) linked by 67 constraints (compatibility
tables, equations or inequalities). Among these variables, we find
21 decision variables that will be manipulated by the optimization
algorithms (chromosome in EA). Twelve variables, with an average
of six possible values for each, describe the main product aspects.
In order to have a general idea, these variables are: SN (seat
quantity), AN (armchair quantity), SC (seat comfort level), AC
(armchair comfort level), FA (cabin finish level), FO (cockpit finish
level), OE (on-board electronics), FE (flight electronics), CZ (cargo
zone size), CS (cruising speed), FR (flight range), EN (engine
category). Nine variables, with an average of nine possible values
for each (in fact, the combination of 3 resource types and 3
resource quantities), describe the nine production operations that
compose the production process. These operations are: Op11
(structure sourcing), Op12 (components sourcing), Op21 (struc-
ture manufacturing), Op22 (components assembling), Op31
(structure assembling), Op41 (cabin assembling), Op51 (body
painting), Op61 (final testing), Op71 (delivery).

When constraints are not considered, this leads to a number of
possible combinations (around 1018 # 612 " 99 for ‘‘full_aircraft’’
model). For a first illustration, Fig. 7 shows a random sampling of
this model (solutions are small dark points) and the Pareto front
obtained with one run of CFB-EA (gray rhombuses). This figure also
presents a sampling of a model named ‘‘red4’’, based on a reduction
of the initial ‘‘full_aircraft’’, in order to simulate a reduction made
by the user in the first step of our approach and to test our
algorithm on a small instance.

According to the choices made during the first step of the
proposed aiding procedure, the size of the optimization problem
can vary considerably. We first evaluate the size where an exact
algorithm, BB in our case, could be used. To modulate the size of the
model, we have simulated five sets of user non-negotiable
requirements that instantiate various variables on the full aircraft
problem that provide five models to optimize (named red1 to red5
according to growing size). In model red1, on the product model
size: 6 product variables have been instantiated and the 6 others
have been reduced from 6 to 3 possible values (unconstrained
combinatory is around 729 # 16 " 36); on the process model size: 3

process variables have been instantiated and the 6 others have
been reduced from 9 to 3 possible values (unconstrained
combinatory is around 729 # 13 " 36). The combinatory of the
unconstrained model red1 is therefore around
0.53 " 106 # 729 " 729. For the other models (red2 to red5), the
process model is unchanged and the product model size is
increased thanks to modifications in the number of instantiated
variables (6–2) and the number of variables with 3 possible values
(6–10), as follows: red 1 (16 " 36), red2 (15 " 37), red3 (14 " 38),
red4 (13 " 39), red5 (12 " 310). Relevant unconstrained combina-
tory are shown in the Table 1.

The second goal is to investigate the impact of the constraint
level for EA algorithms. We therefore generated three models
derived from the model red5 with three constraint levels, by
modulating the number of allowed combinations in the constraints
belonging to the set C (configuration constraints Cc and process
constraints Cp). These models, named red5_MC1 to red5_MC4,
have a constraint level (ratio constrained combinatory/uncon-
strained combinatory) of around: 10% for red5_MC1, 5% for
red5_MC2, 2% for red5_MC3 and 0.5% for red5_MC4, as shown in
Table 1. These ratios and the estimated number of solutions were
obtained with a random sampling of every model (average for one
thousand individuals randomly generated).

Table 1 recapitulates the considered models. Without taking
into account constraints, the combinatory goes from half a million
to 43 million for small models (red1 to red5) and is around 1018 for
the ‘‘full_aircraft’’ model. The presence of constraints leads to a lot
of unfeasible solutions and Table 1 illustrates how constraints
reduce the number of feasible solutions. The hypervolume
obtained with the BB is also shown (unknown for full_aircraft
models).

Fig. 7. Search space and illustration of a Pareto front obtained with CFB-EA.



4.2. A comparison with an exact approach on small size models

As already said, a first goal of these experiments is to compare
the behavior of the EA methods with an exact approach for small
instances, BB in our case. The curves in Fig. 8 and the corresponding
values given in Tables 2 and 3 illustrate the results of the three
algorithms when the number of variables (red1 to red5 on left part
on Fig. 8 and Table 2) or the constraint level (red5_MC1 to
red5_MC4 on right part of Fig. 8 and Table 3) increase. The vertical
axis corresponds to the time spent (i) reaching optimal Pareto
Front with BB algorithm or (ii) reaching optimal Pareto Front with
CFB-EA and FRB-EA.

Notice that while the times shown for the BB in Fig. 8 and in
Table 2 and 3 are the times needed to reach the optimal, the BB did

not stop at this moment. It had to cut every remaining branch to be
sure that it reached optimal, and this can take a significant time.
Curves in Fig. 9 and corresponding values summarized in Table 2
illustrate the evolution of the hypervolume dominated by the
Pareto front solutions (the horizontal axis corresponds to the time
in seconds) for each approach investigated on model red5 (or
red5_MC1). The curves representing an EA performance are
average results for ten executions. The evolutionary settings used
to obtain these results were: Population size: 80, Archive size: 100,
Pmut: 0.3, Pmutg: 0.2, Pcross: 0.8. The ending criterion used is to reach
the optimal HV value (previously computed using the BB
algorithm) or a stagnation of the HV for more than 2 h.

Clearly, parameter settings are one of the main drawbacks for
an efficient use of evolutionary algorithms. The setting of
population and archive sizes is a compromise between speed
convergence and final performance. Indeed, a small population and
archive size leads to a quick improvement in solution quality but it
also increases the time needed to reach the optimal Pareto front.
Whereas larger population and archive sizes reduce the conver-
gence speed but allow the optimal Pareto front to be found quickly.

For the small models (left part of Fig. 8), the BB algorithm
reaches optimal Pareto front much faster compared with EA
performance (few seconds on red1 and red2 models against some
thousand seconds for EAs). On the other hand, EAs greatly
outperform the BB algorithm on larger models (time needed to
reach optimal HV: 6069 s for CFB-EA, 6522 s for FRB-EA and
20257 s for BB). CFB-EA and FRB-EA, after a rapid improvement of

Fig. 8. Experimentations with different model sizes and constraints levels.

Table 2
Comparison CFB-EA, FRB-EA and BB on small models.

Model Optimal HV BB CFB-EA FRB-EA

Total time Time to reach optimal Average time Time std_dev Average HV Average time Time std_dev Average HV

red1 1,23,576 16 14 2379 0.63 1,23,576 1874.1 0.40 1,23,576
red2 1,29,782 797 19 1476 0.38 1,29,782 2411.2 0.53 1,29,736
red3 1,41,914 7836 4063 4048 0.44 1,41,914 7107.7 0.29 1,41,655
red4 1,54,383 17,612 8908 4186 0.33 1,54,383 7141.6 0.49 1,53,380
red5 1,67,189 42,103 20,257 6069 0.40 167,189 6522 0.36 1,67,189

Table 3
Comparison CFB-EA, FRB-EA and BB according to constraints level.

Model Optimal HV BB CFB-EA FRB-EA

Total time Time to reach optimal Average time Time std_dev Average HV Average time Time std_dev Aver. HV

red5_MC1 1,67,189 42,103 20,257 6069 0.40 1,67,189 6522 0.36 1,67,189
red5_MC2 1,67,189 36,898 17,753 4674 0.26 1,67,189 6613 0.46 1,67,162
red5_MC3 1,67,189 17,708 8846 5162 0.22 1,67,189 6775 0.31 1,66,415
red5_MC4 1,38,714 7034 1407 2134 0.32 1,38,714 3501 0.23 138,714



hypervolume (for example on model red5, 99% of optimal HV is
reached in 2600 s for CFB-EA and 2830 s for FRB-EA), stagnate and
converge very slowly to the optimal Pareto front (less than 0.5% of
improvement on the last 3000 s). Indeed, this is one of the weak
points of classic EA approaches. A mimetic algorithm (coupling of
an EA with a local search approach) is actually prospected to
improve this aspect.

As expected, these tests show that BB algorithm must be
reserved for small size models where it is more accurate than
evolutionary approaches. But this report must be moderated
according to the constraint level as showed on right part of Fig. 8.
When the problem is more constrained, BB reaches faster the
optimal Pareto front, Table 3 shows values obtained on these
models. This is because the filtering allows more branches to be cut
on the search tree, in such way that the algorithm reaches leaf
solutions and, consequently, optimal solutions more quickly. The
EAs performance is more stable according to this criterion except
for the more constrained model (red5_MC4). This behavior is
probably links to the fact that this model has a very limited number
of possible solutions and an optimal HV easier to reach.

A first conclusion of this section is that the proposed EA
algorithms are clearly better than the BB algorithm when the size
of the problem increases. A second conclusion is that an increase in
the constraint level tends to very slightly limit the tendency of the
previous conclusion. A last important conclusion with respect to
our problem, EAs are much less sensible to modifications of
problem size and constraint level than BB algorithm. Therefore, in
the next section, we consider only the large model named

full_aircraft gathering thirty variables with various level of
constraint.

4.3. Comparison EA on a real-world-like problem

The goal of this section is to compare on larger problems only
the two EA algorithms as BB is unsuitable on this scale. They are
evaluated on the full_aircraft model and on three models derivate
from this one with various constraint levels. Curves on Fig. 10 and
corresponding values of Table 4 illustrate the results of the two
algorithms when the constraint level increases (MC1 lowest
constraint level up to MC-4 highest one). The vertical axis
corresponds to the hypervolume reach by each algorithm. The
curves are average results for ten executions of each EA.
Evolutionary settings used to obtain these results: population
size: 80, archive size: 100, Pmut: 0.3, Pmutg: 0.2 for CFB-EA and 0.1
for FRB-EA, Pcross: 0.8. The ending criterion used is a strict time
limit of one day (86,400 s).

These tests show that CFB-EA and FRB-EA belong to the same
range of performance. On the full_aircraft model (full_air-
craft_MC1), difference with FRB-EA is mainly on convergence
speed and quality of the Pareto Front. With CFB-EA, hypervolume
increases quickly and constantly (99% of final hypervolume is
reached in 30,000 s against 54,000 s for FRB-EA). Those character-
istics, especially the diversity of individuals, are promising for a
future hybridization with a local search. When the constraints level
increases (from around 10% of feasible solutions to less than 0.1%),
a gap between final performance of both EA can be seen. On the
more constrained model (full_aircraft_MC4), CFB-EA hypervolume
is around 15% better than the one obtained with FRB-EA. In fact
CFB-EA and FRB-EA are clearly two different ways to take into
account constraints in evolutionary optimization process. Table 5
gathers various indicators that allow comprehension of the
behavior of each approach. The main difference is the utilization
of the computing time.

In CFB-EA, around 98–99% of the computing time is spent to
both construct and evaluate solutions using filtering. Indeed, as we
manipulate only feasible solutions, lots of backtracking and

Fig. 10. Evolution of hypervolume with CFB-EA and FRB-EA on full models.



filtering are needed to obtain feasible solutions especially during
crossover operation (around 20,000 backtracks and 4,00,000
filtering needed to generate around 15,000 solutions). That leads
to long generations (around 600 s for each generation). In FRB-EA,
only evaluation of solution thanks to filtering algorithm represents
around 88% of the computing time. As there is no backtracking
(unfeasible solution are kept on evolutionary process), FRB-EA
generates more than twice solutions compared to CFB-EA, but
more than half of these solutions are unfeasible.

In the FRB-EA implemented in our work, those solutions are
most of the time unused in the evolutionary process; because
during the selection process, if an unfeasible solution is compared
to a feasible one, we systematically keep the feasible one.
Consequently, the time spent to generate those solutions is lost
without any benefit for the optimization process. That is also why
the hypervolume increases slower in this approach. This aspect is
already known by authors of feasibility rules principles: if no
further mechanisms are adopted to preserve diversity (particularly
paying attention to the need to keep infeasible solutions in the
population), this approach will significantly increase the selection
pressure [43].

To conclude this comparison, it seems that proposed CFB-EA
approach is relevant for the range of concurrent configuration and
planning problems addressed in this article (size and constraints
level). CFB-EA enables to propose, in a reasonable amount of time, a
set of solutions that permits the user to decide about his own cost/
cycle time compromise. A last operational advantage lies in the fact
that CFB-EA is robust with regard to evolutionary parameters
setting. We have tried various parameters settings with both EAs,
and CFB-EA was really constant in its performance compared to
FRB-EA.

5. Conclusions

The goal of this article has been to propose a detailed evaluation
of an evolutionary algorithm, called CFB-EA for Constraint filtering
based evolutionary algorithm, that deals with concurrent product
configuration and production planning. The problem has been
presented and modeled as a constraint satisfaction problem, and
then a two-steps approach, gathering an interactive configuration
and planning process followed by a multi-criteria optimization,
has been presented with a simple example. Once the optimization
problem highlighted, a detail survey of evolutionary algorithms
that handle constrained problem permits us to identify the most
suitable competing optimizing approach (FRB-EA for feasibility
rule based evolutionary algorithm). An exact branch and bound
procedure (BB) is also recalled for small instances.

For small instances, from 12 to 15 decision variables with 3
values for each (0.2–2.106 solutions), BB is globally better than EA
approaches. Logically the proposed EA works better when the size

of the problem gets larger compared to BB, however the tendency
goes to the opposite when the problem tends to be more
constrained. As the size of the optimization problem is directly
dependent of the quantity of negotiable requirements (first step
interactive configuration/planning), an interesting result is that it
is possible to propose a kind of limit that can trigger the selection of
BB or EA optimization. Of course this limit is specific to the
addressed problem. For these small instances, it must also be
pointed out that FRB-EA and CFB-EA have similar performances
(much less than 2 h) with a very low sensitivity to problem sizes
and constraint levels.

When the problem gets larger, BB cannot be considered. On a
problem of 21 decision variables (12 product variables with 6
values and 9 process variables with 9 values), when the constraint
level is low (solution space between 1015 and 1017), CFB-EA and
FRB-EA perform very closely, when the constraint level increases
(solution space between 1013 and 1014) CFB-EA is a little better. In
terms of convergence speed, CFB-EA reaches around 90% of the
hypervolume in less than 3 h and 99% in less than 10 h. The low
sensitivity of CFB-EA with respect to constraint level can be also
noticed.

That leads us to consider that the CFB-EA approach is
competitive for this kind of configuration/planning problems even
if some further improvements could be investigated for both EA
approaches. Therefore the two steps process object of this paper
can be considered with no doubt, as a significant assistance for
optimal configuration and planning achievement. It allows the
user to decide efficiently about his cost/cycle-time compromise
when dealing simultaneously with configuration and planning.

These promising results introduce some prospective studies:
convergence speed, evolutionary parameter tuning and also
problems with more than two objectives. For convergence speed
or larger problems, we are currently developing an iterative
optimization process that aims to reduce considerably the time
required to obtain a near-optimal Pareto front using a kind of zoom
on a specific area selected by the user during the optimization
process. For parameters tuning, we are thinking of considering the
possibility of an automated setting with a variable population and
archive size. Finally, configuration and planning problems taking
into account several objectives such as performance, risk, or
sustainable aspects are in our short list.
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