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Abstract

In the context of smart industries, learning maehiourrently have various uses such as self-requmafiion or
self-quality improvement, which can be classifioatforecasting problems. In this case, learninghimas are
tools that facilitate the modeling of the physisgstem. Thus, it is obvious that the model mustevaith
changes in the physical system, thereby leadirgl&ptability/reconfigurability problems. Among th&rious
tools reported previously, real-time systems seebetthe best solution because they can evolvaantously
according to the behavior of the physical systanihé present study, we propose a method for usarging
machines efficiently in an evolving context. Thigtimod is divided into two components: (1) modelagption
by defining the objective function and influentiattors, setting up data collection, and learnisiggi multilayer
perceptrons; and (2) monitoring system conceptiith thie aim of tracking the misclassification rate,
determining whether the physical system is driftiugd reacting by model adaptation based on theaton
charts. This paper focuses on the model monitggnegedure because the model conception procedgretes
classical. The proposed method was applied to ehmeark derived from previous research and themto a
industrial case of defect prevention on a robatiating line for which other methods have provedugnessful.
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1 Introduction

In the smart industry domain, the elements of thesigal system share information with each otheraith a
real time decision-making system. These decisigtesys must evolve and adapt according to the philystiate
of the environment. For example, in the qualitytcoindomain, we may consider the impact of envirental
factors (such as temperature and humidity) on &asting process (Thomas et al. 2004) or a lacoggmiocess
(Noyel et al. 2013a), as well as the impact of twer on the finished surface in a machining pro¢8&ck
2002). Other examples of real-world change detegiioblems include modeling in bio-medicine morniitgr
and industrial processes, as described by Bassawvil Nikiforov (1993).
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These different contexts lead to classificatioswgpervised classification problems, which can Iselked using
machine learning algorithms, where various techesgean be applied, including logic-based algoritfsnsh as
decision trees and rule-based classifiers), neataborks (NNs such as multilayer perceptrons (MLats)
radial basis function networks), statistical leagn{such as naive Bayes classifiers and Bayesiavors), and
support vector machines (SVMs). The present stadydes on classification problems where continulatia
are mainly considered. In this case, Kotsianti©®{@Mas highlighted that the most suitable appreseine logic-
based algorithms, NNs, and SVMs.

To extract a classifier from data using machineriegy, the complete learning dataset is providethédearning
machine, which obtains descriptions for the undeggoncepts in the dataset (Lazarescu et al. 200@3 type
of learning is called batch learning. However, tdrget concept may be non-stationary and it cangdhaver
time, thereby leading to concept modification (Mitdki et al. 1986). Gama (2010) separated this el
evolution into concept drift when the evolutiorgisntle and concept shift when the evolution is sadéFor
example, a concept drift may result from tool wesfilter clogging, whereas a concept shift maywcfter the
replacement of parts or a system modification. Wéneoncept shift or concept drift occurs, the madehined
using batch learning may no longer be accuratereftue, incremental algorithms, online algorithiasd
anytime algorithms have been proposed to respotids@roblem. Incremental algorithms consider miata in
order to adapt the model without restarting the glete learning process (Salperwick et al. 2009)in@n
algorithms are used when the stream of data isreemis and the data are used individually and swtally
(Salperwick et al. 2009). In these two approacties|earning must be faster and the data are ggnera
presented only once to the algorithm. Anytime leagnis defined as learning the best model (considea
given criterion) until a break occurs (such as esa arrival) (Dean and Boddy 1988). In these three
approaches, the learning and exploitation of thdehmust be performed simultaneously, so the coatjmuial
time required may be prohibitive in real-time apptions, even if anytime approaches include regourc
constraints. These learning approaches may exiditer convergence than batch approaches, thezeljng
to an inaccurate model. Moreover, because theatatased individually, outliers may have a deletesiimpact
on the model obtained. Finally, incremental leagnimust address the plasticity-stability dilemmaBleachia
2011), which demands a compromise between thdistabid reconfigurability of the model.

Due to the limitations of the online approachesctéearning is useful because it can be perforimedal time
whereas learning is performed offline. Batch leagnian approximate every nonlinear function with desired
accuracy, as well as using a variety of algorithonavoid bad local minima or the overfitting profleand
cross-validation can be performed based on theatidin dataset. None of these processes can b mperd
with incremental learning, and Sarle (2002) shothed it is generally more difficult and unrelialifan batch
learning. Considering the drift or shift conceptewas changes to be detected during batch learmsind,change
detection can be performed with different approadialperwick et al. 2009), as follows:

- Relearning the classifier from scratch,

- Adapting the classifier,

- Adapting the data summary used in the classifigy.,(ehe kNN model),

- Using the sequence of classifiers that is learned time in a classifier ensemble as example (Bifet
and Gavalda 2007).

Using of classifier ensemble allows to improve dleseuracy of the classification. However, many indiial
classifiers must be evaluated simultaneously aisdfélet may be time consuming during the explaitaphase
of the model. Adapting the classifier by parametetsarning allows to limit the computational cbgt
considering that even if a drift occurs, the oragimodel is not so far of the desired one. Howeivecase of
major context change, the model structure itselte corrected. In this case, the classifier haselearned
from scratch.

We propose an adaption of the classifier in orddintit the computational cost. We focus on the ofsa MLP
classification model due to its adaptability to mhe. In fact, the adaptation of a MLP classifieyrba
performed by a learning process based on the neagatausing the initial model parameters as tharpater set
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for initialization. It is assumed that even if ancept shift or concept drift occurs, the initiahssifier is no more
accurate but its parameter set will remain closhécoptimal set.

The following different approaches may also be used¢hange detection (Gama et al. 2014):

- Using sequential analysis (e.g., sequential prdibabatio test (Wald 1947), Page-Hinkley test
(PHT) (Page 1954, Hinkley 1971), and cumulative ¢Bage 1954));

- Using statistical process control (SPC) (Klinkergband Rentz 1998, Gama et al. 2004,
Bouchachia 2011);

- Monitoring the distribution based on two differg¢ime windows (Dries and Ruckert 2009, Adae
and Berthold 2013);

- Contextual approaches (Harries et al. 1998, Bouda&)11).

Sequential analysis approaches are very sengitithetchoice of the detection threshold (Ragot.et%90). The
main limitation of time window-based approachethes possibility of high memory consumption (Gamalet
2014). Contextual approaches are used mainly ijunction with incremental learning. Thus, in thegent
study, a SPC approach is used to determine whearnéhg is required. However, even if a changeteaed
and the need for relearning is evident, a questamins: What dataset should we use for relearridtdj? can
estimate the time when a drift or shift concepttstéRagot et al. 1990); thus, PHT may be usedimjunction
with SPC to build the relearning dataset. Finatigustrial datasets are often affected by outbers robust
learning algorithm is required in order to limietmpact of outliers on the classifier.

The main contribution of this paper is the proposibf a model monitoring procedure which assosi&@EC
and PHT algorithms in order to adapt the modehimnge (by using relearning procedure). MLP is wsed
model and its adaptation is performed by using pasgagation algorithm. SPC is used to estimataésa of
model’s adaptation. PHT is used to determine thasga which must be used during the relearningguioe.

In the following, after explaining the batch leamgiapproach for designing the monitoring systemdiseuss
the impact of changing the context. The need fap#ation is highlighted and the proposed methati®loped
in two steps: determining when the system is findiifting using control charts and evaluating hawch data
must be relearned. Finally, the proposed appraatdsted on both a benchmark case and an indusise] i.e.,
a quality monitoring problem for a lacquering compa

2 Description of the batch lear ning process

To predict the behavior of a real system, a classipproach involves the design of a forecastindeh(~igure
1). The behavior of this forecasting system, whécparallel to the physical one, is as similar asgible to that
of the real system. It can measure different pataraén the physical system and compare its foteasish
reality. For classification problems, the considi@ecasting system can predict the class of theub data;
therefore, it can be used to evaluate the dectsicen upstream.

Forecasting
model

Physical +
system

Figure 1 - Relationship between the forecastingehadd physical system.

The classical approach to the design of the fotemamodel employs a learning machine in ordendoaet the
forecasting model directly from the data using bagarning. This task is performed according téeasical
knowledge discovery and data mining (KDD) procegsich comprises two main steps: collecting the sktta
(including identification and data collection aneé{processing) and the data mining task (which si¢edefine
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the training and validation datasets) (Patel amttRa 2012). This KDD process is summarized byrég2iand
the two main task will be more detailed in the fiwthowing subparts.

Identification and collect
of required data
Data pre-processing angd
transformation

» Definition of training set

Parameter tuning >  Data mining

I

Evaluation with test set

)

No Results Yes |
OK?

Classifier

Figure 2: The process of supervised machine learning (Kotsiantis 2007).

2.1 Dataset collection
To design the dataset collection, the first step define the objective function, which is thepuitof the
forecasting model and it corresponds to the charatics of the physical system that we aim to rmyni

Next, the factors that are most likely to affea tibjective function must be identified. Differefficient
strategies may be used in order to identify theieantial factors, such as the Ishikawa method.

After the objective function and influential facsdnave been identified, the values of these diftgparameters
must be collected. This step should aim to imprtrecinstrumentation by adding some captors in cimer
collect influential factors that have not yet beeflected. However, in some cases, automatic ddtaction is
not possible and manual data collection must bfapaed. Unfortunately, manual data collection isof
viewed as a waste of time by the operators, antbtheriority given to this task often leads to mgtion of the
dataset by outliers. To reduce this risk, it isessary to ensure that the operators consider theriemce of this
task and to make the interfaces as intuitive ancdkoas possible (Noyel et al. 2013b).

The data preparation process required before lggincludes selecting, preprocessing, and transfyme
data. For example, the data must be preprocessedean to synchronize the different databasesteleldent
outliers, and digitalize qualitative data (e.g.cakrs) (Patel and Panchal 2012).

After these steps, a dataset can be used to ektraatiedge with learning tools.

2.2 Datamining or learning

Management and quality improvement using data rginiethods were discussed by Kusiak (2001). Data
mining is the main part of the KDD process, whigtdlves data analysis to summarize the data irfattme of
useful information. The KDD process may be perfatrn@identify valid, novel, useful, and understauida
patterns by exploiting the full volume of data eclied.
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As shown by Agard and Kusiak (2005), the volumedait that needs to be analyzed is often largesiCklby,
the collected dataset is divided into two partserglone is used for learning the model and ther dtine
validation. This procedure allows us to check thatmodel exhibits the same behavior as the phlysjystem.

Different tools may be used to perform the dataimginask, such as Naive Bayes, decision trees, S¥hts
NNSs. Decision trees are faster at classifying ti@ ¢but they do not work well with noisy data (Pated
Panchal 2012); therefore, this approach is notiefit with industrial data. Naive Bayes is apprajgrifor the
treatment of discrete data, so we need to diserétiz data to apply this approach to continuous. ddth
SVMs and NNs employ very similar concepts, and they yield very similar results, where SVMs somets
give better results (Meyer et al. 2003) whereas Ridy give the best at other times (Paliwal and Ku2@®9).
These four tools (SVM, MLP, decision trees, and jNblve been tested and compared based on the real
example used in this study, and MLP obtained tfs¢ t@sults (Noyel 2015). The proposed approacrepted
section 3 may be adapted to each type of model.edexyin the present study, we focus on the useMEP
with only one hidden layer, a sigmoidal activatfanction, and an output neuron. Its structure v@giby the
following formula (1):

z:gz(gvf.g(gvﬁq.ﬁ+ pj+ % (1)

where x? denote they inputs of the MLP,w, indicate the weights connecting the input layeth®hidden
layer, bt represent the biases of the hidden neurguis,refers to the activation function of the hiddezurons

(in this case, the hyperbolic tangent}, denote the weights connecting the hidden neumttset outputb
indicates the bias of the output neurgi,) represents the activation function of the otitpauron, and denotes

the network output. This problem involves classifion between two classes 0 and 1g&9 is selected as
sigmoidal in order to allow the evolution of thetput value between these two bounds 0 and 1.

In order to determine the number of hidden neusntbto discard spurious inputs, the learning pktags with
an overparameterized structure. This structuraides all the variables collected during the prempdiep and a
number of hidden units clearly greater than necggb@tween 2 and 3 times greater than the inputsher).
The weights of this overparameterized structurdrati@lized using classical Nguyen and Widrow altom
(Nguyen and Widrow 1990lathworks 2016), and the learning of these weight is performedi&ing the
Levenberg—Marquard algorithm with a robust criter{@homas et al. 199®%/1athworks 2016) in order to
avoid the outliers impact on the resulting modele@o the overparameterized structure, the regultiadel
presents overfitting. In order to avoid it, a waighmination algorithm (pruning) is used to distapurious
inputs and hidden nodes (Thomas and Suhner 2athworks 2016). All this procedure is performed on a
part of the available dataset called learning @atdthe accuracy of the obtained model is deterghimeusing
the remaining data (not used for the learning)iarwdlled validation dataset.

The completion of this process yields a classificatmodel, which can be used as a forecasting sys$te
monitor the real system. However, this model idictevhereas the system or its environment can evolv
Therefore, an adaptation procedure is needed tioefimodel to the real system if changes occur.

3 Proposition of classification neuronal model adaptation process

3.1 Limitsof batch learningin a changing context
Two different types of changes can occur in the itooed system (Sebastiédo and Gama 2009):

e A “concept shift” refers to an abrupt change;

* A“concept drift” is associated with gradual change
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Concept drift is more difficult to detect and itaen confused with noise. However, this is thgetpf change
that we must identify in order to ensure that tehdvior of the monitoring system remains as clogedlity as
possible.

In our previous study (Noyel et al. 2013a), we hgtied two reasons why the behavior of the fortngs
system starts to deviate from reality. The firsda@rns the evolution of the input parameters. Thith, a
learning model, the learning outcome is valid dnlyhe learned domain. In many cases, the datarahich
can be determined with the dataset collected (Wwealkds) don’t correspond to the complete evolutaoge of
the considered variable (strong bounds). As exaniphe study the evolution of output temperaturdaris
during January 2016, the bounds of the evolutiolgea(weak bounds) are -4.4°C and 13.9 °C. Howéoer,
considering all the dataset available since 18&3eamperature has evolved between -14.9°C and@&dd we
can imagine that these record values may be ootmeedd in the future and so, the strong bounds akaawn.
For the learning process, the main risk is encainge situation where one factor is outside therls of the
learned domain (weak bounds) because the modebtgive a correct answer. For the example shown in
Figure 3, the strong bounds are given by dashed kivhen the colored sectors correspond to the kmange
given by the dataset. In this figure, forecastspargsible in cases 1 and 2 but not in cases J(fads out of
weak bounds) and 4 (factor 2 is out of weak bouritis¢se points may be outside the learning domaéntal
concept drift (e.g., a gradual change) or conckift @.g., a pressure drop due to a compresshurdéi

FEIEERERE FEIEFRERRE FL{FR2[F]ra]rs FL{FR2[Fra]rs

Figure 3 - Situations where a forecast may or n@ybe possible.

The second reason concerns the uncontrolled matidit of the behavior of the real system. In fédg
possible to affect the behavior of the real sysdtgrnahanging a parameter (voluntarily or not) tisatét an input
of the forecasting system.

Therefore, the main issue is synchronization wétidity, where we have to optimize the synchrondarati
frequency because synchronization is time consuif@ngvision of the model can take several mintdes
several days). It is better to rely on statistfaadings (using SPC tools as example) rather tlwarsiclering the
resynchronization frequency in terms of the respdosvents (such as the arrival of new informatiom one
of the connected devices (incremental learningoticitation by an operator) or over a period (eegery hour
or week). Among the seven basic tools, controltshatso known as “Shewhart charts” or “processalih
charts” (Shewhart, 1931), are useful SPC toolséngroposed monitoring system.

First, a prerequisite for detecting changes isathity to verify hypotheses after being informdubat reality.
This step requires an improvement to the infornmatéchnology system in order to collect data astiiput
from the real system. We can monitor the differdoe®veen theory and reality by comparing these @itathe
system hypotheses, where this value is calledrtioe ete. The evolution of this rate can be diséar by the
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normal production noise. At first glance, it appgetar be difficult to determine when the systemcisially
drifting in reality.

3.2 Principe of classification neuronal model adaptation process

To take account these limitations, a model monigpéapproach is proposed for adapting the foreaastiodel.
The principle of model monitoring is illustratedkigure 4 and is an extension of the classicalgsspresented
figure 1. In this approach, a forecasting modebisacted from a dataset in the first step by usittpssical
KDD process. In the second step, a monitoring poeeis used to detect the occurrence of drifttangact.
The main objective of this paper is related to thanitoring process.

Model
Monitoring
.| Forgcasting
odel
R Physical +
- system g

Figure 4 - Monitoring the forecasting model.

Many optimization algorithms are subdivided in eifnt tasks in order to reach their goals. We @enas
example, pruning algorithms which tend to deterntiveeoptimal structure of neural network after téag step
(Thomas and Suhner 2015), or METSK-HD algorithmdi@at al. 2014) which combines a classical
evolutionary learning of fuzzy model in a firstst@nd a post processing step allowing to perfodmsalection
and tuning of membership function. In this papen main tasks must be performed to design the mong
system, each of which is subdivided into differsuivtasks, as follows.

1) Design the forecasting model (batch learning predescribed section 2)
a. dataset collection (described section 2.1)
b. data mining or learning (described section 2.2)
2) Design the model monitoring system
c. Collect the data
d. Detect the occurrence of drift between the foréegsind physical systems (described later
section 3.3)
e. Construct the relearning database (estimate thtistee of the drift) (described later section
3.4)
f.  Adapt the forecasting system

The first main task (1) is a classical KDD procasd it is described in section 2. It allows to abtae initial
forecasting model.

The design of the model monitoring system (2) idekithe collect of data during the production ifa)rider to
construct the dataset. It corresponds to the saowegs as that one described section 2.1. Thisetdtaused
firstly to detect a drift occurrence by using Si®Gl$ (d) and then to estimate the start time ofttife in order to
define the relearning dataset by using PHT (e)s $tart time estimated allows to design the datassd during
the last sub step (f). This dataset includes alldita collected between the estimated start timddle present
time. The last step is a relearning step (f). ttalgs to fit the model with the reality by adajfithe parameters
of the forecasting model to the detected drift.

The process presented in Figure 5 can be followediapt the model to changes.
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0 - Initialization

l

1 — Supervision |
(new data)

No

Yes

3 — Database
relearning
design

A 4
4 — Set up
(relearning)

Figure 5 - Adaptation process.

The initialization process was described in secBi@and it corresponds to the design of the for@ugshodel,
which is a classical KDD task, including here tlaadet collection (and pre-processing), and the whétiing
step (including initialization, learning and prugisub steps). The supervision step is conductdteatame time
as model exploitation. During this step, the ressalitained by the monitoring model are compared thi¢ data
collected from the physical system in order to detiee emergence of drift between both and itsemtion. The
step employed to detect the occurrence of dritissussed in section 3.3. The relearning databast ne
constructed when drift is detected. This stepssuised in section 3.4. The setup of the classsfigre
relearning step which is performed by using thesital learning algorithm as during the KDD procésse,
the Levenberg—Marquard algorithm with a robusecitin (Thomas et al. 1998Jathworks 2016). The
relearning is initiated and performed as soon @sfiis detected, its start time estimated andrétearning
dataset constituted.

3.3 Determining whether the system isdrifting by using control charts

Control charts are particularly useful for dynamintrol based on time-series data (Tague, 20043. mathod
is useful for statistically determining whether thimensional variation of parts is no longer unclantrol.
Indeed, it is known that even when a process iguadntrol, there is a probability of approximatél7% that
a point will exceed 3-sigma bilateral control lim{PPareto). These few isolated points should ngger
relearning, but an increase in the number of paiiitdoe detected to indicate the presence of @ispeause,
even if it is not yet known.

We propose the combination of a NN with controlrth#o exploit the robustness of statistical analgsd the
adaptability of the NN. Du et al. (2012) studied thverse combination of both tools by using a gedtion
algorithm for control charts and NNs to obtain tdén the case of quality problems, as well as igliag clues
to identify the causes.
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Figure 6 — Control chart for monitoring the reahd forecasting model.

Control charts (p-charts) (NIST/SEMATECH 2012) dordetermine whether the misclassification rate is
drifting according to the principle illustrated kigure 6, where each point in the figure corresgdodhe
misclassification rate obtained with a samplé& dhata and corresponds to the sample sikeés(selected
according to several criteria such as criticalitg &requency). Traditionally, two bounds are deiaesd with
control charts in order to define an acceptableeZonthe misclassification rate (dashed greenraddines on
the graph). The misclassification rate is an ave@geveral values, so we assume that if thisisadatside the
green bounds, then many values are outside thedispand thus the system is effectively driftingeiiéiore, we
need to perform relearning when the misclassificatate obtained for one sample (e.g., sampleFiguare 6)
falls outside these bounds. The dotted lines inifeid represent the evolution of the misclassificatate when
no relearning is performed. Three examples arespted which present the evolution of the misclastibn
rate if the relearning needed at tfe 23" and 34' samples (misclassification rate > UCL95%) are not
performed.

Two pairs of bounds may be determined using théidemce level. The warning bounds, i.e., the lower
(LCLgs%) and upper (UClse) bounds, are defined with a confidence level ¢%69as follows.

LCL,, = p-1.9 @

UCL,,, = p+1.9 @

The forbidden bounds, i.e., the lower (Légky) and upper (UClos) bounds, are defined with a confidence
level of 99.8%, as follows:

f 1-
LCL99.8%= p-3 w
3
1—
UCLgg g0 = p+3\/—p( K P)

wherek corresponds to the size of the sample migdthe center line, which must be estimated. Tdwger line
corresponds to the misclassification rate obtafoethe validation dataset (defined section 2.2)rduthe initial
learning process (Noyel et al. 2013b).
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The decision about relearning may be made whemtkelassification rate of a sample is outside tlaening
bounds (e.g., for sample 7 in Figure 6). This stighlights when to trigger relearning and the regp
determines the amount of data required to perfbimaction.

3.4 Determining theamount of datarequired for relearning

Control charts allow us to determine whether trateay is actually drifting. To correct our forecagtsystem,
we need to perform relearning based on a specifmuait of new data. The relearning is achieved lygua
batch second order backpropagation algorithm winicludes the determination of hessian and gradtettix
whose size depends on the number of parameterplewity of the model) and on the number of datagsif

the dataset) (Thomas et al. 1999). So the re-legquspeed is improved by reducing model size (pastep,
section 2.2) and reducing re-learning datasetnfesion of the start time of the drift). It can betined that the
re-learning speed is not crucial. In fact, re-léagrmust be launched only when a new drift is debty SPC,
and so wheik new data corresponding to the size of one sampBC are collected since the last supervision
step (figure 5). The re-learning step disposes®time of collect of thedenew data to run.

The control charts enhance the data if driftindegected, but they cannot determine when the stdfted, and
thus they cannot estimate the precise amount afréguired to perform relearning. The following teases
must be considered.

e The time since the last relearning process is natial because it is possible to perform relearning
based on all of the newly available data. Thustdkk is very simple and fast (similar to classical
learning).

e The time since the last relearning process is aluand to save time, it is possible to restartethiére
learning process based on a defined amount of watre we can consider “sliding windows.” This
solution allows the system to forget old behavibet may no longer be relevant so the behavionef t
forecasting system is more flexible. The best datalow size must be defined correctly. Thus, the
system will learn the noise if it is too short, wes there will be insufficient flexibility if itsitoo long.
The aim is to determine the point of inflexion bdea the error rate, i.e. the estimated start tifrtbe
drift.

Different methods may be used to determine thetmdimflexion, such as adaptive windowing (ADWI{Bifet
and Gavalda 2007), SPC (Gama et al. 2004), thd fienulative windows model (FCWM) (Sebasti&o et al.
2010), and PHT (Page, 1954). Sebastido and Gard@)&sted and compared these different algorithvhseye
the results suggested that PHT and SPC are lesstinsuming than ADWIN and FCWM. This is crucial
because one of the main objectives is to reducealreilation time by optimizing the relearning datisize.
SPC cannot estimate the time when drifting beginstitan determine the drift detection time. Tisigmportant
because the difference between these two timesbeaignificantly large, and thus many data thatuaeful for
relearning might be discarded from the relearniagsiet. PHT can detect a drift (not used in thegirestudy)
and estimate the time drifting begins.

The goal of PHT is to detect a mean jump in a @msignal polluted by white noise (Page 1954; Hink 971;
Basseville 1986). This test can determine whethemg occurs and estimate the time of this jumpuncase,
the signal considered is the absolute value oéthar obtained based on different data, where welect a
search to determine the time drifting occurs betwbe behavioral model and the real system. Thisasimay

be represented by a sequence of random GaussiablearE = [e], i = 1, ...,|, with varianceo? and meam.
According to the hypothesis that only one jump osat an unknown timewith 1<r <l , detecting this jump
corresponds to accepting hypothdsisof a change rather than hypothdsisof no change.

H,: e~N(m,0%), RAeg=Reo #1-,|I
H,: e~N(m,0?), A= KO #1,,F1 4
e ~N(m,0o®), Re=H@E F 5|

The use of this test implies that the two meanesiw andmy are knowra priori. In our case, the meam may
be estimated based on the mean of the error obtéinehe validation dataset during the forecastipgtem

design task. However, the meamis unknown and the minimal absolute value of tmplitude of the jumpd,
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that needs to be detected is fixed, where the &sts are performed in parallel to detect an inereasl a
decrease in the mean, respectively. These testbeagiculated recursively to detect the increaghé mean
as follows:

U,=0, U, =U,_ +e —m,—% izl

L 5
Yo =0, Yy =min(y_, U,) i1
and the time; of the last increase in the mean is given as¥dlo
r=max(U; =) 6
For the decrease in the mean, the test is given by
o, .
=0, T=T,+e- ”El+7 'Ell 7
’70:01 7 :min@i—l!Ti) ’iZ]
and the timey of the last decrease in the mean is given asvisllo
ry = max( ITi =) 8

Therefore, if the control chart detects that redéay is required at timke then relearning must be performed
using all of the data collected between timandl, wherer given by:

r=min(;.ry). °

Tests (5) and (7) use the minimal absolute valub®Bmplitude of the jump,,, which may be fixed as a
multiple of the standard deviatiom of the error obtained for the validation datasethle present study, we set
9, as:

0 =2, 10
3

In function of the complexity of the neural modeufnber of parameters) and in the goal to avoidfiiiag the
minimal size of the relearning dataset must betéichto a threshold such that-r > A. It can be noticed that the
overfitting risk is limited by the use of a roblsarning criterion (Thomas et al. 1999).

4  Application to a benchmark

In order to propose a simple and comprehensiveiGgtign of the proposed approach, a simulation gtars
used to illustrate the procedure, which is derifr@in the example proposed by Lin et al. (2000). TiesEn
advantage of this simulation is the possibilitycteate artificially drifts (concept shift and coptelrift) and to
evaluate the capacities of the approach to detectitifts, evaluate their start time and fit thedeloto the new
reality. This example considers a population thahgrises two subpopulations. The positive subpdiouma
follows a bivariate normal distribution with meady Q)" and covariance matrix diag(1, 1), whereas the thega
subpopulation follows two bivariate normal distriimms with mean (2, 2)and covariance diag(2, 1) for the first
subpopulation, and mean (-2, L&)ith covariance diag(2, 1) for the second subpatpoh. The population is
unbalanced where the positive and negative subptipng account for 80% and 20% of the total poparat
respectively. The negative subpopulation is baldrared follows two different laws in order to enstinat the
two classes cannot be linearly separable.

4.1 Initial forecasting model

The first step is to determine the initial fore@agtmodel as presented section 2. A dataset comg@ri©00
pieces of data is constructed and divided intodatasets with 500 pieces of data in each: onesfoning and
the other for validation. A classification modekisnstructed using these data. The initial strecisiconstructed
with two inputs and 10 hidden neurons. A pruninggehallows the deletion of three of the 10 hiddeurons.
The resulting model obtains a misclassificatioe kt8.1%.
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Figure 7 — The validation dataset divided into tlasses and the limits between the two classes.

Figure 7 shows the validation dataset and the aéiparof the input space into the two classes ghsethe
forecasting model.

Two supplementary datasets are constructed in ¢od#ustrate the procedure, i.e., a concept snfl a
concept drift.

4.2 Impact of concept shift

A dataset comprising 2000 pieces of supplementaty id constructed for the same simulation exangiegpt
the means of the normal distributions change a 880. At this time, the mean of the positive patiah
becomes (1.5, ®land the means of the two normal distributionsfiernegative population become (3.5, @&)d
(0.5, =2J. The covariance matrix remains unchanged.

A control chart is constructed to monitor the f@asting model. The sample size for the control cisdiked to
100. Two relearning procedures are used to adjestiodel to reality. The first uses all of the &akzle data
based on the last relearning process, whereagtioed uses the PHT procedure described in thequevi
section.
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Figure 8 — Monitoring the forecasting model: cortcapft.

Figure 8 shows the control chart used to moniterftinecasting model, where Uglsy,and LClgg s are shown
in the graph, but they are not useful. Each paintside the range [LGs« — UCLosy] triggers relearning. The
evolution of the control chart without relearnirsgshown by the dotted cyan line, whereas that reitarning
by using PHT to determine the appropriate sizdefdataset is represented by the dashed line dndethat
with relearning using all of the available datadzhen the last relearning process is representethgenta. The
concept shift in the real system occurs at time, 30@ the control chart detects this concept Slaifed on the
fourth sample (which corresponds to time 400 bez#us size of each sample is 100). If relearningpis
performed, the forecasting model cannot maintamdgaccuracy. The two relearning strategies allowowsdapt
the model to the new behavior of the system evethir relearning steps are required after timetd@faintain
the accuracy of the forecasting model. The reslitained by the two relearning strategies are edgit. Using
the two strategies, no sample is outside the fadadoounds.

Table 1 — Number, dataset size, time, and duratiorlearning: concept shift.

number of relearnirlg time to relearning size of tatadel duration

400 400

without PHT 3 1000 600 0.35s
1800 800
400 143

with PHT 4 1100 141 0.17s
1400 209
2000 339

Table 1 shows the number of relearning cycles, tulagaset size for each relearning cycle, and tinatidon of
the overall procedure. This table shows that ef/enly three relearning cycles are required wheil Fd-hot
used (compared with four using PHT), the duratibthe total procedure is 100% greater than with PHTis is
because the relearning procedures are performed loasrelatively large datasets when PHT is nod.use

4.3 Impact of concept drift
A new dataset comprising 2000 pieces of supplemggdtta is constructed for the same simulation gam
except the drift occurs at time 300. At this tirttee mean of the positive population becomes (0102*300),
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0)" and the means of the two normal distributionstiernegative population become (2 + 0.62*(300), 2)
and (-2 + 0.02% — 300), —2), wherek denotes the index of the data. The covarianceixnmaimains unchanged.

Misclassificatio 1 1
rate Without relearnin
-4 - Relearning with PHT

05" Relearning without PHT

0.4~

0.3

0 LClgg gy

Figure 9 — Monitoring the forecasting model: cortaift.

17 19 sample

As mentioned in the previous section, a controltcisaconstructed to monitor the forecasting modiae
sample size for the control chart is fixed to 100e same two relearning procedures are tested.

Figure 9 shows the control chart used to moniterftiiecasting model. The evolution of the conttart when
no relearning is performed is shown by the dotteel ¢yan, relearning using PHT to determine theamate
size of the dataset is represented by the dashedliue, and relearning using all of the availatsta based on
the last relearning process is represented in ntag€he concept drift occurs at time 300, and th&rol chart
detects this concept drift in the eighth sampla€tB00). When relearning is not performed, thedaséng
model cannot maintain good accuracy. The two ralagrstrategies allow the model to be adaptedemtw
behavior of the system and new relearning procemgelunched periodically in order to maintain élceuracy
of the forecasting model. The results obtainedtertwo relearning strategies are equivalent. Utiegwo

strategies, no sample is outside the forbidden daun

Table 2 — Number, dataset size, time, and duratioelearning: concept drift.

number of relearnirlg time to relearning size of tatadel duration

800 800
900 100
1000 100

without PHT| 7 1500 500 0.35s
1700 200
1800 100
2000 200
800 233
1200 361

with PHT 6 1500 286 0.19s
1600 91
1700 98
1800 95
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Table 2 shows the number of relearning cycles, tulagaset size for each relearning cycle, and tinatidon of
the overall procedure. This table shows that uBiHJ avoids one relearning process. Moreover, #sen
previous example, using PHT decreases the timéresjfor the overall procedure by 50%. This is ddscause
the relearning procedures are performed basedlativedy large datasets when PHT is not used.

5 Application to an industrial quality monitoring problem

In order to illustrate the applicability of thismeach a real industrial case is presented. Actailiéo is a
company that produces high-quality lacquered pamelde of medium-density fiberboard (MDF) for kitoke
bathrooms, offices, stands, shops, and hotel fummitAccording to its certifications (ISO 9001, 13@001, and
OHSAS 18001), the product quality is a constanteom for this company. The manufacturing proceases
implemented on several shop floors. In these wanisheach workstation is likely to generate defantsthe
company has to include a quality control step ichezase. In this study, we focus on a robotic lacigg
workstation because it has the highest defect hatéerature, many industrial optimization protvis have been
considered and we can cite without to be exhaudtiggstics infrastructure problems (Kazakov andnpert,
2015, Lempert et al. 2015), or continuous regutagimblems (El Sehiemy et al. 2013, David et al40The
main objective of this application is to determthe optimal tuning of the robotic lacquering wogkgin in
order to reduce the defects rate.

The production quality of this workstation is ungitable (the risk of defect occurrence is unknoamj)
fluctuating (the percentage of defects may varmfib% one day to 10% the next day without any chamg
the settings). It is very time consuming and diffido obtain and plan a Taguchi experimental desigorder to
improve this setting. Thus, a robotic lacqueringhkstation is considered as a bottleneck workstatiom it is
very difficult to reduce the time required for theperiments or to plan throughout the productids &xcording
to the experimental conditions. In addition, thetaaf these experiments is very high because thagume
semi-finished products (which already have a hidgiea value).

Therefore, a forecasting system is implementededipt the occurrence of defects and to deternfineoptimal
setting of the controllable factors considering ¢tharacteristics of the products and the enviroriaien
conditions. This forecasting system should higtilidje relationships between process parameterthand
quality of the finished products, which may be agted from the dataset by using a NN (Yu et al8200
Xiaogiao et al. 2015).

5.1 Forecasting system
The forecasting system can be represented as shdvigure 10.

Environmental factors recognized
as influent by experts

Lot characteristics recognized
as influent by experts

List of production range available with
their characteristics recognized
as influent by experts

To give to the operator the bes

X Best production range to use
production range to use

List of predictable defects

Figure 10 - Forecasting system.

The aim is to give the operator the best produatimge or the best parameters to set up the madhectly.
So, we need a forecasting system able to prediatishk of defect occurrence considering the charestics of
the considered products, the state of the enviromehéactors and the different available settingsese defect
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risk predictions allow to propose to the operater best setting to use in the present conditionsTthe system
needs three different types of inputs, each of whégjuires many settings, as follows.

1.

Environmental factors and lot characteristics, witere are two prerequisites. The first is the
computerized production monitoring system, for hieal-time production information must be
collected in a semi-automated or automated maimierdo not consider that the operator has to enter
data (e.g., temperature) at each production lot. Sétond is the virtualization of expert knowledge.
database must be implemented to consider theHatbnly experts can know whether a factor is
important for quality or not.

The list of available production range or parame#dtings. In most cases, the workstation has one
production range/setup according to the type oflpch To obtain this high quality level, the
production system needs to be flexible and adaptéibithe case where we consider different
production ranges, alternative routings shouldny@émented. Similarly, in the case where we comside
the parameter settings, adjustments to the linfitee@parameters must be implemented.

The list of predictable defects and their critibalialue. Experts can list the possible defects ity
occur, but they cannot know whether a defect igalst predictable. This is one of the tasks that we
discuss later in the learning step. However, expeah determine whether a defect is actually
important. They need to attribute a criticalitywalo each possible defect according to different
factors, such as the possibility of repair or theair cost. Thus, if the system cannot find a smut

with a zero defect probability, it will try to find solution that minimizes the penalizing defects.

The forecasting system can be decomposed intoutysystems, as illustrated in Figure 11.

Production range confidence leve

List of production range available with To determine best production

Environmental factors recognize

o

as influent by experts

their characteristics recognized range on each production |Bgst production range to use

as influent by experts range’s confidence level

Lot characteristics recognized
as influent by experts

Environmental factors and
Lot characteristics

Production range

characteristics To test production range =

List of predictable defect with
Their MLP parameters

Figure 11 — Decomposition of the forecasting system

The system needs to compare each production raogee calculate a confidence level for each pradnct
range. This confidence level is obtained as shawfFigure 12 (decomposition of the “To test produttiange”
in figure 11).
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Production range
characteristics
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List of predictable defect with
Their MLP parameters

Environmental factors and
Lot characteristics

Production range

. To run model
characteristics

Selected defect
model parameters

Figure 12 - Details of the production range’s cdefice level module.

To calculate the production range’s confidencellewve first need to calculate the probability otaaence for
each defect. Thus, we use all of the factors viitldy experts (such as environmental factors, lot
characteristics, and production range characigs)sind a prediction model can be estimate foptbability
of occurrence for each defect in this conditione Thnfidence level of production ranBeis calculated as
follows:

CL(R) = Xid pi X aj, 11

wherep; denotes the probability of occurrence for defewith 1 < i < Ny, N, indicates the number of different
defects identified by experts, ang represents the criticality level of defédct

The only missing component is the probability ofacencep;. This probability is given by a forecasting model
built using the approach proposed in Section 2.

5.2 Implementation of the forecasting system

In this application, 25 different quality defect®sild be considered, thereby leading to the desi@b quality
prediction neural models. The resulting quality itanng system (set of 25 neural classifiers) idedded in
the supervision tool of the lacquering workstationuse by the operators. The memory of these NNs i
physically remote in an SQL database; thereforeh) @adependent program may access this memoredes:
This tool is a decision support system and it neggua human/machine interface, which is as intiigis
possible. The tool is implemented directly in tie¢up interface of the robotic lacquering workstat{gigure
13). Using this additional function, after enterihg production information (such as the selectedyction
range and the number of units produced), the openady assess the risk of occurrence for a defégti(e 14).
If the risk appears to be too large, the produgtiarameters can be changed (e.g., choosing armmitduction
range) and the program can be run in parallel topaoe the evaluation results until a satisfactesglt is
obtained.

The current version of the quality monitoring systequires an average of 12 seconds to displasethét.
Thus, within 12 seconds, it can recover the merfromy the SQL database, traverse the 25 NNs, ancNys
synthesize the results to facilitate interpretatigrthe operator, so less than half a second isinedfor the
calculation by the NN.
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However, as expected, the answers provided byystes drift away from reality shortly after its
implementation.

5.3 Design of theinitial forecasting neural model

As explain in section 5.2, 25 different quality eets must be monitored leading to the design dafiférent
neural forecasting models. In the sequel, we fatugpresentation on one particular defect: “stairback”. The
different factors which may have an impact on tlegect occurrence are collected. These factorteahmical
factors (load factor, number of passes, time pgaetdacquering batches), liter per table, basigte number
of layers, number of products and drying time),immmental ones (as temperature, atmospheric peasul
humidity). Some of the technical factors are impbisg the products (number of passes, time per tétdeper
table, number of layers, and number of productlg fhree last factors (load factor, basis weighting time)
are the tunable parameters whose optimal settisgeking. Some of these factors are discrete andiaarized.
So the initial structure of the neural model in@ad.5 inputs (9 continuous and 6 binary) and 28éricheurons.

The dataset is constituted of 2270 data and isigpdi 2 data sets for identification (1202 datajl aalidation
(1068 data). After initialization and learning, piig phase is able to eliminate spurious inputstadden
neurons. 6 hidden neurons and 1 input (passes myaeeeliminated.

During the validation phase, we therefore complaeerésults of the NN with the real defects detectiche
defect "Stains on back" occurs 127 times on the81#ia validation set. The NN can detect 112 defebich
lead to a non-detection rate of 11.8%. The proportif false positive is 19.2%, which may be paetiplained
by the fact that some defects haven't been idextifiut of the machine (Noyel et al. 2013a).
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54 Drift

Two apparent reasons lead our monitoring systednitbaway from reality. The first concerns the kiton of
the input parameters. Using a learning model,éaening outcome is valid only in the learned domainthe
model can only provide a valid solution in this dom

First database
(learning and validation)

P

New database

(running)
=

30

Temperature ("Ch

I : ““ N LI ‘L il ‘ ll.i /
| e

-10

Figure 15 - Difference between the learning andhingn domains.

For our implementation, the learning and validatietabases were collected during spring and sunffoethe
new database (UCI 2016), 446 items of data weleaed during autumn and winter, and the explatatf the
quality monitoring process led to 73% non-detectiand 32% false positives for one of the 25 defects
monitored. These poor results can be explainedhéylifferent process conditions in the two peridgsshown

in Figure 15, in the first database, the tempeeatange varies betwediC and 32°C , whereas in the new
database, the temperature range varies betwBe&iC and 24°C . These negative temperatures represent 25%
of the new database and they correspond to thatipgrange of the process, which is not learnethduhe
quality monitoring process.
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Figure 16 - Historic data on the defect percentaggrains on edges.

The second reason concerns the uncontrolled matidit of the machine behavior. Indeed, it is gtilksible to
affect the behavior of the machine by changingrameter (voluntarily or not) that is not an inpéitiee neural
classifier. For example, this parameter may chahugeto the clogging of a filter or the replacemefra dirty
filter. These changes may or may not be known. Timuthe application considered, we know that the
lacquering nozzles are changed during the expioitgthase, but the time of this change is not kndwithis
case, we can conclude that this parameter shoypa@tbef the model inputs, but because it is carsid
constant for the duration of the learning stefs itot actually retained. The model will producsulés that do
not agree with reality because of this change, vhiay be unknown to the operators and managers.

For example, as shown in Figure 16, it is cleat the studied defect rate (grains on edges) inesesisarply
after June 22, which is due to an unknown changleaneal system, so the forecasting system i@ mgelr
pertinent.
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It is not always possible to control changes ingreduction parameters (such as uncontrollablenpaters,
weather, and unanticipated changes made by thatopgrso it is necessary to be capable of degttiam. By
providing the quality monitoring system with thepeaity to verify its hypotheses about reality,ahcave the
ability to recognize its failure and react accogiyn

Therefore, a control chart is designed to monherforecasting system, where the sample size éocliart is
fixed to 100 values, which corresponds to slighals than one week of production.

Only the UCLs are considered because the modeitisrbwhen the misclassification rate is lower. rEfiere,
only the UCLs are calculated to represent 95% &n8@% of the data.

Figure 17 shows the control charts obtained wiéhrtew dataset during the exploitation phase. Theedldine
corresponds to a control chart without relearnifg. can see that the quality process is under ddoireample
1 but the second sample shows that the processlimger under control (the results are between d¢and
UCLgosw). This is due to the new operating range deteicidide data, as explained in the previous section.
Therefore, the quality monitoring process mustrbproved by relearning the NN using the data froenfifst
two samples.

The initial structure and weights of the network #rose given by the original quality monitorin@pess, so a
pruning phase is note needed. The initial weighgscibse to the optimal values; therefore, thearglieg phase
is fast and it requires only a few iterations.

Misclassification T T T T T
rate Without relearning
—4 - Relearning with PHT

0.35F Relearning without PHT

UCLgg g
0.3f—--=22%

0.25]

0.2

<

0.15

0.1 f~Closy -

LC L99.8%

1 2 3 sample

Figure 17 - Industrial application of forecast impement by relearning.

The evolution of the control chart when no releagnis performed is shown by the dotted cyan liesarning
using PHT to determine the appropriate datasetisiEpresented by the dashed blue line, and reteausing
all of the available data based on the last relegmrocess is represented by the continuous madjest This
chart shows that relearning allows the quality raimg process to be adapted to the new operaginge. Thus,
the results for sample 3 are greatly improved &medorocess remains under control until the end.rélearning
processes with and without PHT obtain very simiésults.

Table 3 — Number, dataset size, time, and duratiorlearning: industrial example.

number of relearning time to relearning size of theadef duration
without PHT| 1 200 200 0.22s
with PHT 1 200 101 0.14s
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Table 3 shows the number of relearning cycles, tulagaset size for each relearning cycle, and tinatidon of
the overall procedure. This table shows that uBIHJ reduces the time required by the overall pracethy
36%. This approach allows us to determine whetheiquiality monitoring process needs to be adapttmbut
systematic relearning.

All this procedure is applied in order to maintttie accuracy of the defect prediction models onrdhetic
lacquering workstation. These prediction modelsusein a second step in order to find the optimmaihg of
parameters which limits the defect risk considethmgproduct characteristics and the environmettadlition
(Noyel et al. 2013a).

6 Conclusion

Predicting the behavior of a real system requinesuse of a forecasting model that behaves imaigasimanner
as possible to the real system. However, driftssriftis can rapidly create a difference betweemibédel’s
behavior and reality.

Therefore, in the present study, we proposed aaddtir adapting a classification neuronal modehis
particular changing context by using control chartd PHT. The main goal is to keep under contml th
misclassification rate in order to maintain the elatlose to the reality. This novel hybrid systdiows us to
reduce the time required because of the following teasons: the relearning process is not systeraati it is
triggered only when a drift is finally detecteddathe relearning process is not performed basedl @f the
available data, but instead it only uses the dattreflect the drift. Thus, we proposed a modehibaoing
approach, which aims to detect drifts and shiftsvben reality and the forecasting model. We tetiiesdmethod
based on a benchmark case and the results werésprgnT he results obtained for the industrial éyal
monitoring problem demonstrate that the processedorought under control after adapting the moble¢se
results based on the management of quality indyrédtuence the management of flows in the system.

This approach tends to adapt the model when eatftliscitetected. However, in some cases, a driff bma
symptom of a process failure, so the process (ahthe model) must be repaired. In our future redgave will
try to determine whether the process or the mdutmlisl be corrected when a drift occurs.
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