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Abstract

Advanced digitalization together with the rise of disruptive Internet technolo-
gies are key enablers of a fundamental paradigm shift observed in industrial
production. This is known as the fourth industrial revolution (Industry 4.0)
which proposes the integration of the new generation of ICT solutions for the
monitoring, adaptation, simulation, and optimisation of factories. With the
democratization of sensors and actuators, factories and machine tools can now
be sensorized and the data generated by these devices can be exploited, for
instance, to optimise the utilization of the machines as well as their operation
and maintenance. However, analyzing the vast amount of generated data is
resource demanding both in terms of computing power and network bandwidth,
thus requiring highly scalable solutions. This paper presents a novel big data
approach and analytics framework for the management and analysis of machine
generated data in the cloud. It brings together standard open source tech-
nologies and the exploitation of elastic computing, which, as a whole, can be
adapted to and deployed on different cloud computing platforms. This enables
reducing infrastructure costs, minimizing deployment difficulty and providing
on-demand access to a virtually infinite set of computing power, storage and
network resources.

Keywords: Industry 4.0, cyber physical systems, big data, cloud-based data
collection, cloud-based analytics, elastic computing

1. Introduction

Advanced digitalisation together with information and communication tech-
nologies (ICT) are widely recognised for their potential to drive digital trans-
formations in business and industries while enhancing mass production and
underpinning product innovation [1][2]. This refers to Industry 4.0, which com-
prises a range of novel concepts such as smart factory, cyber-physical systems,
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self-organisation, adaptation, sustainability and resource-efficiency [3, 4, 5]. Al-
though there is no official classification, the broad consensus indicates that the
key Industry 4.0 enabling technologies are industrial IoT, cloud computing, big
data and cyber security [6, 7]. The smooth interplay between these is important
as it allows the collection, transmission and storage of raw data through cloud-
based solutions to, in turn, generate actionable intelligence. In fact, sensors,
cyber-physical devices as well as big data technologies and distributed com-
puting infrastructures were brought together in different context [8, 9, 10, 11].
However, their seamless integration remains a challenge as it entails customi-
sation for the manufacturing domain, standardisation, communication architec-
tures as well as control algorithms besides the willingness from manufacturing
sites [12, 13]. In addition, existing solutions are mainly vendor locked as they
are sold with the machine or are meant to be used only with machines from the
same vendor, consequently proving challenging to extend functionality if third
party sensors are added to the machines.

Figure 1: Graphical representation of the MC-SUITE research project and the interaction of
its six modules. Image created by IDEKO (http://www.mc-suite.eu).

The MC-SUITE project proposes a new generation of ICT-enabled man-
ufacturing process simulation and optimisation that intertwines physical mea-
surements and monitoring, hence transforming the manufacturing industry to
dramatically improve product quality and increase yield (see Figure 1). In
particular, this paper focuses on open-source technologies integration for real-
ising two of the six MC-SUITE modules: the MC-Monitor and the MC-

Analytics. The first one is a data management environment dedicated to
collect, pre-process, transmit and store continuously generated machining data.
The second one is a cloud-based data analysis framework dedicated to extract
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actionable knowledge. Thus, covering the phases of data acquisition, extraction,
integration, analysis and interpretation [14]. These novel modules are vendor
independent solutions facilitating the connection to any machine or control box
with sensors. Although their design is driven by use case requirements and il-
lustrated in the machining context, the interplay between the modules remains
generic and can be applied to multiple machine tools. In the following, Section 2
presents current advances on manufacturing data-driven solutions and Section 3
sets the context for this contribution. Section 4 and Section 5 present the design
and development of the MC-Monitor and the MC-Analytics respectively.
Section 6 presents an enhancement to support distributed big data analytics in
the cloud. Finally, Section 7 discusses the presented models and further work
while Section 8 summarises the contributions.

2. Related Work

The innovation dynamics, technology evolution and potential impact of IoT
technologies have been defined and ranked across four different categories: com-
munication control, network systems, wireless transmission and data process-
ing [15]. Most of these digital innovations are owned by private ICT com-
panies, hence revealing geographically bounded developments, a lack of inter-
organisational collaborations and, therefore, making standardisation and inter-
operability difficult to achieve.

Notwithstanding, there is a plethora of successful research dedicated to im-
prove domain-specific manufacturing processes in terms of data acquisition and
analytics. For example, an RFID-enabled intelligent environment for track-
ing shop floor elements together with two bespoke protocols for management,
transmission and warehousing of 30 TB of data per day is presented in [16]. A
modularised big data solution built to create prediction models encompassing
data specification, storage, processing and analytics for metal cutting is reported
in [17]. Although this is a four modules cost-effective approach based on stan-
dardised data interfaces, interoperable data exchange formats and open source
solutions, it relies on a centralised topology that acts as a single point of failure
lacking scalability, loose coupling and independence.

Data acquisition and management architectures built in terms of open source
technologies (Apache Kafka1 and Storm2) to address process monitoring, data
analysis and fault detection in agricultural harvesters were defined in [18]. Re-
lated to this, a cloud-based approach for data collection and processing applied
to resource monitoring and adaptive process planning applied to CNC machine
tools, sensors and scheduling processes is reported in [19]. More recently, ap-
proaches for smart manufacturing using cloud and big data employing open
source standard technologies at physical, network and data application levels
while promoting the use of private cloud infrastructures were shown in [20][21].

1http://kafka.apache.org
2http://storm.apache.org
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Although smoothly integrated, the offered solutions are built to meet particular
needs without discussing implications in terms of flexibility to extend function-
ality, e.g. the use of elastic computing models. Moreover, technologies are
conveniently hardwired hence missing a higher level of abstraction to enable
the generalisation of the approach. More importantly, these solutions say little
about advantages for incorporating new sensors or other sources of data.

There is a large body of related research that could be extensively enumer-
ated and discussed [22, 23, 24, 25, 26, 27]. Most of these approaches show well
supported arrangements of bespoke applications integrated to off-the-shelf data
management frameworks, standardized file formats and product embedded in-
formation devices. However, the majority of them lack capabilities for seamless
integration between and within already existing tools. Although technological
elements to make portability and compatibility smooth do exist, this results
in clunky information transfer where potential miscommunication can result in
delays and errors. More importantly, cloud computing infrastructures are in-
sufficiently tackled in the literature. This is crucial as they enable ubiquitous
information provision, thus playing a key role in the realisation of “design any-

where, manufacture anywhere” [28]. Cloud computing together with big data
technologies play key roles in managing vast amounts of manufacturing resources
providing powerful capabilities for storing, processing and visualisation. Addi-
tionally, cloud computing infrastructures offer the capability to deliver both
software and hardware resources as services in a highly elastic and scalable way
[29]. As explained in [32], there is a plethora of Infrastructure as a Service
(IaaS) providers on the market and, unfortunately, the lack of interoperability
among these leads to vendor lock-in. This prevents cloud application develop-
ers to exploit the peculiarities of existing cloud infrastructure solutions in order
to, for example, optimise performance, availability and costs [30, 31]. Hence,
configuration and multi-cloud deployment tools, like CloudMF [32], have been
developed. The following section sets an industrial context employed for driv-
ing the development of the modules. Although this focuses on machining, the
resulting models are generic and remain unbound to any specific use case.

3. Industrial Use Case

Monitoring and gaining insight from the energy consumption of machine
tools is a major industrial challenge as it has an impact on the overall cost of
production. Energy consumption is one of the most important factors of sustain-
able machining and it enhances the competitiveness of corporations in terms of
lower production costs, higher revenue and greener footprint. Therefore, having
a better understanding for, ultimately, optimising the energy consumption of
machine tools is a challenging task that involves descriptive capabilities, prac-
ticability, scalability as well as other relevant efforts to deal with large numbers
of components, complexity and variety of machining systems [33].

The Energy Consumption use case was elicited with the industrial partner
Soraluce to report the kilowatts per hour consumed by a computer numerical
controlled (CNC) machining centre when running a part program during a given
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period of time. Although this is a specific problem, the large data sets considered
here as well as the overall goal drive the design, development and demonstration
of our solution. Due to the complex structure of a CNC machining centre and,
since the interest of the use case provider is to equip operators and line managers
with an analytics dashboard for diagnostic and maintenance, the utilised profile
considers controllable factors selected by Soraluce. Thus, the energy consump-
tion of a machining process is seen as an aggregation of several energy values
captured across machining phases like the actual cutting, material feed, spindle
exchange, tool exchange, etc. In particular, these analytics involve calculating
the energy and time consumption with respect to part programs, spindle heads,
machining tools and machine motors. From the operational point of view, only
one part program can be running in a CNC machine at a given period of time.
When the machining process is taking place, the spindle head can operate within
one of the following types: Direct, Automatic or Orthogonal. For each spindle
head, only one tool can be fixed – referred by unique tool number – where in
particular, tool number zero (Tool 0) denotes the case when the spindle head is
empty. In the case of Soraluce CNC machining centres, the energy consumption
involves measurements acquired from a set of specific sensors listed in Table 1.

Table 1: The set of specific sensors embedded to Soraluce CNC machining centres. Example
values at https://doi.org/10.6084/m9.figshare.5554843.v1

Sensor Name Description

Cnc Program Name RT Name of the part program
Cnc Program BlockNumber RT Line number of the part program in execution
Cnc Tool Number RT Socket number a tool has been picked up from
Cnc IsCycleOn RT If part program executing and tool cutting material
Cnc IsAutomaticModeActive If auto mode is selected and part program is running
Cnc IsManualModeActive If operator is at the machine
Spindle IsAutomatic If CNC operating in Automatic spindle mode
Spindle IsDirect If machine is operating in Direct spindle mode
Spindle IsOrthogonal If machine is operating in Orthogonal spindle mode
Spindle Power percent Spindle power as percentage of the max. value
Spindle speedActual rpm d1 Speed of the machine spindle
Axis FeedRate actual Speed between the part and the cutting tool
Axis X positionActualMCS mm d1000 Stage X-axis pos. in Machine Coordinate System (MCS)
Axis X positionActualWCS mm d1000 Stage X-axis pos. in Workpiece Coordinate System (WCS)
Axis Y positionActualMCS mm d1000 Stage Y-axis pos. of the stage in the MCS
Axis Y positionActualWCS mm d1000 Stage Y-axis pos. of the stage in the WCS
Axis Z positionActualMCS mm d1000 Stage Z-axis pos. of the stage in the MCS
Axis Z positionActualWCS mm d1000 Stage Z-axis pos. of the stage in the WCS
Axis X1 power percent Power as percentage of the maximum value
Axis X2 power percent Power as percentage of the maximum value
Axis Y power percent Power as percentage of the maximum value
Axis Z power percent Power as percentage of the maximum value
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4. Data Management Environment

4.1. Data Characterisation

Soraluce CNC machining centres are embedded with a large variety of sen-
sors, the values of which are read, approximately, every second. These sensors
capture machining conditions (measurements) such as spindle rates, feed rates,
part programs, power consumption, block numbers, alarms and operators an-
notations to name a few. Additionally, some machines are equipped with ac-
celerometres and acoustic emission sensors as well as video and audio devices
(i.e. sensors that are not directly related to a CNC machine) for capturing vi-
bration, plastic deformation, and streaming image and sound of the processes
being conducted. The type of generated data is called thin data because it is a
very little amount of information per device (blip of information) but potentially
thousands of devices being polled on a frequent rate. In a previous work, the
data generated by Soraluce CNC machines was characterised in terms of variety,
velocity, volume and veracity [34]. This characterisation revealed that, due to
high velocity, large volume, and heterogeneity data, traditional data manage-
ment and data processing applications result inadequate for revealing insight.
In order to address these, the MC-Monitor and the MC-Analytics modules
were designed and developed as independent cloud-based solutions distributed
across the physical, network and cyber level as shown in Figure 2. This set up
ensures optimal ingestion and transfer of data as well as the availability of and
the access to the right data. Moreover, it provides a solution that can extend
legacy and under-equipped (in term of sensors) CNC machines while enabling
systematic data access and, consequently, cost-effective knowledge extraction.

4.2. Shop Floor Data Management

Data management can be divided into (a) gathering the data from the shop
floor, and (b) pre-processing and accessing it. The data generated by Soraluce
machines is read by an advanced monitoring system called Savvy Smart Box3.
This system retrieves, packs and transmits the sensory data to a cloud-based
platform called Savvy Industrial Cloud4 via its machine-to-cloud protocol and
makes data available through a REpresentational State Transfer (REST) API.
At this point, MC-Monitor fetches, pre-processes and provides access to the
collected data by either storing or keeping it in motion. Thus, the main software
component of MC-Monitor is a stream processing engine embedded with ser-
vices to clean and pre-process data. The most prominent engines are Apache
Storm, Spark, Flink 5 and Heron 6 all of which rely on similar concepts: data
source, event, data stream, event processing and data flow.

3http://www.savvydatasystems.com/advanced-monitoring-2
4http://solucionestic.conetic.info/cont_ind_conectada/savvy-industrial-cloud-

m2c-m2m-solution/
5https://flink.apache.org
6https://apache.github.io/incubator-heron
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Figure 2: The Savvy gateway serves as a sensor manager from where shop floor data is
fetched and transmitted to the MC-Monitor. TheMC-Analytics utilises this data to provide
analytics and expert assistance to the end user. Image by MC-SUITE newsletter 2.

Figure 3: Overview of the MC-Monitor Apache Storm acyclic topology. The ReadData spout
collects data from the Savvy REST API which is then passed to the SplitData bolt. This splits
and transmits the data in tuples to the KafkaPublisher, DBPublisher and Average bolts. The
Alarm bolt works together with the Average bolt to alert when measurements fall outside
average. The implementation is available at https://github.com/nicolasferry/vsepml.

The Heron framework seems to be the most recent solution for processing
streams of data, however, the community around it is still modest compared to
the other frameworks. Hence, in order to facilitate a future migration to Heron,
the MC-Monitor relies on Apache Storm which delivers high performance and
backward compatibility to Heron ensuring seamless migration of data processing
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topologies. In particular, the logic of the MC-Monitor is specified in terms
of an acyclic graph topology where nodes represent sources of streams (spouts)
or data processing components (bolts), and the edges represent streams of data
(see Figure 3). This solution is scalable since the execution of spouts and bolts
can be parallelized and the framework guarantees that data is processed once.
Additionally, the computing infrastructure hosting the storm topology can be
extended with new virtual machines.

4.2.1. Offline Data Management

This feature prevents network congestion caused by the transmission of large
data sets. Thus, a cloud-based solution is employed to store use case specific
shop floor data published by the DBPublisher bolt as well as messages (video,
audio or text) from the operator. Document databases are used for the of-
fline data management since they are attractive for cloud-based applications
where speed of deployment is an important issue [35, 36]. Thus, CouchDB7

was chosen since it is schema-less, supports structured as well as unstructured
data, it is horizontally scalable and it exposes a native REST interface. Rele-
vant CNC machine attributes are captured by individual JSON documents (i.e.
name, identification and shop floor location) and stored in a database called
MachinesList. Data gathered at a given point in time is captured in a single
JSON document structured as a list of individual measurements and stored in
a single database named after the machine it belongs to. Each measurement
comprises a sensor identifier, value of the sensor reading, type of information,
unit of the value and a coefficient (see example in Listing 1). This document
may also contain an extra field called DocumentSkipped generated by a sparsity
mechanism [34].

Listing 1: A machine sensory data stored in a CouchDB database where id encodes in EPOCH
the time sensors were read.

{
"_id":"1451692802000",

"_rev":"1-ca46f3b012d07e31ed777bc97fa95863",

"DocumentSkipped":891,

"Measurements":

[

{ "Measurement ": "335",

"SensorID ": "Axis_FeedRate",

"Type": "actual ",

"Unit": "",

"Coeff ": "" },
{ "Measurement ": "PROGRAM_NAME.H",

"SensorID ": "Cnc_Program_Name",

"Type": "RT",

"Unit": "",

"Coeff ": "" },
{ "Measurement ": "50",

"SensorID ": "Spindle_Power",

7http://couchdb.apache.org
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"Type": "percent ",

"Unit": "",

"Coeff ": "" },
{ "Measurement ": "300",

"SensorID ": "Cnc_Tool_Number",

"Type": "RT",

"Unit": "",

"Coeff ": "" }
]

}

4.2.2. Online Data Management

This feature is built to provide instant and responsive data streams pro-
cessing while maximising benefit gain from big data. From a high level classi-
fication point of view, data streams can be categorised as either transactional
or measurement. Shop floor data fall within the last category and the chal-
lenges posed for implementing online streaming features like this impose certain
architectural and functional requirements. The open source message queue tech-
nology Apache Kafka was chosen as it offers performance in terms of message
publication and consumption, it is horizontally scalable and fault tolerant, it
provides space and time decoupling, and it exposes a simple REST interface
with the capability to navigate and re-read messages. Thus, the KafkaPublisher

bolt (see Figure 3) is capable to publish sensory data into one or more topic
(queues where one or multiple subscribers can register to listen and read data of
interest). Topics can be created dynamically facilitating scalability and flexibil-
ity between the MC-Monitor and the MC-Analytics modules. Currently,
the SensorsChunk, Sensor, Alarms and Average topics have been created.
More details of implementation such as the description of the topics and the
structure of the messages can be found in [34].

5. Cloud-based Data Analytics Framework

5.1. Architecture

The conceptual architecture for MC-Analytics is defined as a set of layers.
A layer, in this context, is a logical division that groups software components by
functionality without taking into account their physical location. Layers can be
seen as elements arranged on top of each other where the fundamental concept is
the isolation, i.e. software components within a layer share common functionally,
they are independent from those located in other layers and have no knowledge
of their internal structure. Also, each layer is restricted to communicate with the
layer above or the layer below, and is allowed to invoke functionality from the
lower adjacent layer only. Using a layered scheme brings the following benefits:

• Independence: it enables understanding a single layer as a coherent whole
without knowing much about the other layers.

• Loose-coupling and modularity: it facilitates the substitution of layers
with alternative implementations of the same basic services.
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• Reusability: the software components within a layer can be used as build-
ing blocks to build and deliver higher-level services.

Additionally, this logical separation brings distribution, flexibility and scalabil-
ity to the proposed framework. Although the number of layers depends on the
system complexity, it is well known that most approaches comprise four layers
[37] which is in line with the MC-Analytics architecture shown in Figure 4.

Figure 4: The MC-Analytics conceptual architecture comprising different levels of abstrac-
tion. The Knowledge layer captures relevant sources of manufacturing data accessed by knowl-
edge extraction tasks at the Analytics layer. The effective combination of these is done at the
Application layer which is also responsible for handling end users’ request and the return of
actionable information to the Presentation layer.

5.2. Data Analytics Framework Layers

5.2.1. Knowledge Layer

The Knowledge layer comprises online and offline data sources for storage
and retrieval of persistent manufacturing data. Therefore, its implementation
utilises the MC-Monitor module seen in Section 4.2.

5.2.2. Analytics Layer

This layer defines the environment where systematic knowledge extraction
takes place. Although there is no specific technology for this level, the main
requirement is to deploy software components that implement the Service Layer
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pattern [38]. To illustrate this, R language was chosen since it offers capabilities
to develop from very simple descriptive analytics to complex prescriptive ones,
it supports multicore task distribution and, more importantly, it is a popular
tool in numerical analysis and machine learning. Five independent bespoke
R scripts were developed to deliver the descriptive analytics required for the
Energy Consumption use case: AllToolsAnalytics.R and AllSpindlesAna-

lytics.R that return the energy consumption with respect to the tools or spin-
dle types; MotorsPerToolAnalytics.R and ToolsPerSpindleAnalytics.R

that return energy consumption of the motors with respect to a specific tool or
a specific spindle type respectively; and MotorsPerToolInSpindleAnalyt-

ics.R that returns the energy consumption with respect to the motors when
using a specific spindle type and tool. Since these scripts must be triggered
from the Application layer, the solution of choice is Rserve8 which facilitates
remote invocation over a network while offering a wide range of compatible
clients. This makes MC-Analytics flexible since it requires no initialisation of
R programming environment nor linking the invoker against a particular library.

5.2.3. Application Layer

This layer defines an environment where back end logic and analytics or-
chestration takes place. The main requirement is to deploy software compo-
nents that control transactions, search and execute analytics, and coordinate
responses while being suitable for remote invocation. These elements of soft-
ware implement the Command pattern (see Figure 5) as it allows the Presen-

tation layer, and in fact any other client, to perform requests. For implementa-
tion purposes, Java and Jersey9 were chosen to support reusability, scalability
and a neat linkage to remote access. In the context of the Energy Consump-
tion use case, the Invoker is a class called EnergyConsumptionREST that
groups all expected functionality. This collaborates with ActionsManager,
which is a helper class registering Command subclasses for discovery. The Com-
mand is implemented as an abstract class called Action with subclasses All-

ToolsEC, MotorsECPerTool, AllSpindlesEC, ToolsECPerSpindle and
MotorsECPerToolInSpindle representing functionalities within the use case.
Finally, the RConnection is the Receiver located in the Analytics layer (see
Figure 6).

5.2.4. Presentation Layer

This layer comprises components that manage end user external interactions
and display actionable information. Since different use cases could be associated
to different types of visualisation, a large range of eligible visualization solutions
can be explored. For the Energy Consumption use case, Vaadin10 was selected
for developing the data analytics dashboard. It is important to note that this

8https://www.rforge.net/Rserve/
9https://jersey.github.io

10https://vaadin.com/
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Figure 5: Interaction diagram across the Presentation, Application and Analytics layers. The
Invoker triggers analytics by encapsulating the request itself into an object that can be stored
and passed around like a standard application object.

Figure 6: Class diagram of the Energy Consumption use case. The Invoker collaborates with
ActionsManager in charge of registering Command subclasses for discovery. Subclasses of
Action reflect more particular use case functionalities.

selection does not exclude other solutions, i.e. should further use cases require
specific visualization needs, new solutions could be utilized. Figure 7 depicts two
energy consumption dashboard examples for a particular part program ran in a
specific CNC machine during a given period of time. Each of these is calculated
in terms of energy values captured across machining phases like cutting, material
feed, spindle exchange, tool exchange, etc. Thus, facilitating visually actionable
information that can be used for monitoring, decision making, diagnostic and
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maintenance.

(a) (b)

Figure 7: Energy consumption dashboards with respect to (a) the tools and (b) the spindle
types. In (a), a tree map classifies energy consumption per tool according to area size (time)
and colour shade (KWh). In (b), accumulative plots summarise the percentage of time and
energy consumption per type of spindle.

5.3. Cloud Deployment

The Amazon Elastic Compute Cloud (Amazon EC2) was chosen as deploy-
ment platform since it facilitates and speeds up implementation. The main fea-
ture of this IaaS provider is the variety of machine images, instances, instance
types and storage. Amazon Machine Images (AMIs) and instances are central
to the Amazon EC2 infrastructure. An AMI is a template that contains an
initial software configuration such as the operating system, application servers,
and other type of applications. An instance is a concrete occurrence of an AMI
and it is always associated to an instance type11 that, essentially, defines the
hardware configuration of the underlying computer where it runs. AWS enables
users to create tailored AMIs to quickly and easily start instances customised
with everything needed to run applications. The Analytics layer is realised with
an AMI configured with Ubuntu OS together with the analytic components and
Rserve. Therefore, once an instance of this image is launched, Rserve provides
remote access to perform analytics. Likewise, the Application layer is realised
with another AMI configured with Ubuntu OS and Apache Tomcat equipped
with all classes described in Section 5.2.3. Once an instance is launched, the
application server starts and the invokers ready to accept request via REST
API. The Presentation layer is developed and deployed in a third AMI whereas

11https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html
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the Knowledge layer database is available in a remote service part of the MC-

Monitor module. Figure 8 summarises the organisation and deployment of
the different software components.

Figure 8: Deployment of MC-Analytics in UML showing the hardware and virtual platforms.
The ≪deploy≫ dependency indicates which artifacts are deployed and the ≪execution≫
nodes represent the environments where these execute.

6. Elastic Data Analytics Model

Elastic computing is considered as one of the central elements of the cloud
computing paradigm and is defined as the ability to adapt to workload changes
by scaling up (provision) and scaling down (deprovision) computing resources
in an automatic manner, in such a way that at a given point in time the avail-
able computing resources match the current demands [39][40][41]. Employing
an elastic computing infrastructure is essential when developing analytics so-
lutions as these would potentially handle large data sets. In fact, one of the
well-known limitations of R is efficient memory management as its performance
degrades when dealing with large volumes of data. This drawback is experi-
enced when executing scripts developed for Energy Consumption use case over
two weeks of data which, in other words, represents more than a million JSON
documents of 22 sensors each. A solution to this is leveraging R scripts with
distributed computing power deployed over an elastic computing infrastructure.
For demonstration purposes, ProActive12 has been chosen. Thus, the scripts
reported in Section 5.2.2 together with arrays of values could be rapidly set as
input parameters to the PASolve13 function which allows parametric sweep, i.e.
multiple and asynchronous executions of a script with different input values over

12https://www.activeeon.com/big-data-automation/parallel-r
13https://try.activeeon.com/tutorials/r/r.html

14



a workflow of independent nodes. Since ProActive requires an arrangement of
computing resources distributed across and communicated within a network, the
Amazon EC2 can be effectively used. Figure 9 depicts the interplay across lay-
ers while delivering an evolution from a monolithic to a distributed architecture
and computing enhancement for MC-Analytics.

Figure 9: An Action (red) at the Application layer creates a number of computing resources
(1) which are used by ProActive when an R component (blue) invokes PASolve. This solution
performs efficient and fast distributed analytics in the cloud.

6.1. Implementation

Integrating and exploiting elasticity could result cumbersome if a system so-
lution has not been designed for it. Therefore, the independence, loose-coupling
and reusability benefits offered by the MC-Analytics architecture are cru-
cial for delivering an implementation. In particular, the Application layer was
enriched with a new Action subclass called AllToolsECElastic that works
together with an AmazonEC2Manager object in charge of programmatically
creating, managing and releasing instances of an AMI configured with ProActive
nodes. Such elastic computing resource cycle is achieved by providing infras-
tructure specific values to the Amazon EC2 service via the AWS SDK. The UML
diagram presented in Figure 10 depicts the relationship between the classes.
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Figure 10: Class diagram of the distributed Energy Consumption use case. AllToolsECElastic
interacts with AmazonEC2Manager for the allocation and disposal of AMI instances.

6.2. Cloud Deployment

A specific AMI equipped with R components, ProActive and PARConnector
libraries was created for deploying the enhanced solution in the cloud. Thus,
commanded by the AllToolsECElastic class, the AmazonEC2Manager will
draw a fixed number of AMI instances every time distributed analytics is re-
quired. Apart from the AMI identification and instance types, other properties
such as access keys, user data, security group and key name are expected to re-
alise the dynamic provision and deprovision of computing resources. In particu-
lar, the AMIs employed here were instantiated into t2.medium types configured
with two virtual CPUs and 4GB memory.

7. Discussion and Further Work

From the theoretical perspective, this work enlarged on a computing model
for a data management environment that comprises shopfloor data characterisa-
tion and a topology for the systematic ingestion, transfer and access of data. To
complete this, a model for a data analytics framework built on a conceptual lay-
ered architecture that separates components by functionality and exploits elas-
tic computing was presented. The design and specification offers inter-module
loose-coupling and intra-module scalability. The former is realised with the
exploitation of REST APIs that support wide range of data formats while fa-
cilitating integration of technologies. The latter is offered by defining logical
divisions that serve for the systematic grouping and deployment of use case
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functionality. To demonstrate this, the models were implemented using stan-
dard open source processing platforms and big data technologies like Apache
Storm, Kafka, CouchDB, JSON, R, Rserve and ProActive since they enable
interoperability and efficiently cooperate with current machinery to automate
production [42]. Although their end-to-end interplay was illustrated in the ma-
chining context, the computing elements are generic enough to handle other
case studies.

From the practical perspective, the MC-Monitor manages both streamed
and offline data, and its deployment is specified using CloudML which, in
turn, can be automatically deployed on and adapted to different IaaS cloud
providers, hence reducing costs and deployment difficulty while offering better
control over software platforms employed. Moreover, it is easy (some time even
semi-automatic) to add new sensors to the machine and to ingest their data
for analytics purposes. The MC-Analytics supports integration of knowledge
bases, analytic components and end-user visualisations. Consequently, offering
scalability, effectiveness, extensibility and reusability for maintaining a competi-
tive edge [43]. The MC-Monitor and the MC-Analytics were demonstrated
over a IaaS cloud infrastructure, as this provides better control over the software
platforms employed, thus allowing fine tuning for configuration, optimization
and rapid deployment. Not only the modules have delivered a flexible solution
baseline for realising key goals of the MC-Suite project but also, more impor-
tantly, the project itself has been instrumental in offering the right context to
validate these modules. This is reflected in terms of realistic scenarios, case
studies and feedback provided by industrial partners.

Initial trials of the approach were accepted by end users, however some lim-
itations have been identified. These include the prototyping and testing of pre-
processing mechanisms since they rely on a distributed and complex framework
that requires integration with on-site technology, data centres, edge computing
devices or legacy infrastructures. Also, cyber security penetration is left unad-
dressed. Therefore, the best standard approaches to address vulnerability and
add resilience to cope with disturbances and respond in acceptable time should
be explored. Additionally, the Energy Consumption use case verifies this end-
to-end solution, however the integration of more advanced analytics as well as
streamed data should be demonstrated to evaluate advantages. Although the
main goal of the industrial partner was to equip operators and line managers
with an analytics dashboard for decision making, the backward integration, i.e.
from the analytics in the cloud to the manufacturing process remains an inter-
esting area to seek further development.

8. Conclusions

This paper contributed with the design and application of two modules:
a data management environment and a data analytics framework. The first
module was designed to collect, process, transmit and store continuously gen-
erated manufacturing shopfloor data. In order to take advantage of this, the
second module was created for mining high volumes of manufacturing data in
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the cloud. In addition, due to the high complexity, multiple sources of infor-
mation and large data sets, an elastic computing model was introduced as an
extension to the data analytics framework. This combination results in a flex-
ible, distributable and scalable approach that offers a seamless integration of
technologies capable to adapt to different factory settings as well as to cloud
computing providers. Therefore, reducing infrastructure costs and minimising
deployment difficulty.
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