
 

 

 

 

 

  

  

Technical Sentiment Analysis: Measuring Advantages and 

Drawbacks of New Products Using Social Media 

Chiarello, Filippo
a
 ; Bonaccorsi, Andrea

a 
; Fantoni, Gualtiero

a
;Ossola, Giacomo

a
; 

Cimino, Andrea
b
 and Dell’Orletta, Felice

b
 

aDepartment of Energy, Systems, Territory, and Construction Engineering, University of 

Pisa, Italy. bInstitute for Computational Linguistics of the Italian National Research Council 

(ILC- CNR) 

Abstract 

In recent years, social media have become ubiquitous and important for 

social networking and content sharing. Moreover, the content generated by 

these websites remains largely untapped. Some researchers proved that 

social media have been a valuable source to predict the future outcomes of 

some events such as box-office movie revenues or political elections. Social 

media are also used by companies to measure the sentiment of customers 

about their brand and products.  

This work proposes a new social media based model to measure how users 

perceive new products from a technical point of view. This model relies on 

the analysis of advantages and drawbacks of products, which are both 

important aspects evaluated by consumers during the buying decision 

process. This model is based on a lexicon developed in a related work 

(Chiarello et. al, 2017) to analyse patents and detect advantages and 

drawbacks connected to a certain technology. 

The results show that when a product has a certain technological complexity 

and fuels a more technical debate, advantages and drawbacks analysis is 

more efficient than sentiment analysis in producing technical-functional 

judgements. 
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1. Introduction 

Nowadays, social media have become an inseparable part of modern life, providing a vast 

record of mankind’s everyday thoughts, feelings and actions. For this reason, there has been 

an increasing interest in research of exploiting social media as information source of 

knowledge although extracting a valuable signal is not a trivial task since social media data 

is noisy and must be filtered before proceeding with the analysis. In this domain, sentiment 

analysis, which aims to determine the sentiment content of a text unit, is considered one of 

the best data mining method. It relies on different approaches (Collomb et al. 2013) and it 

has been used to answer research questions in a variety of fields comprised the measure of 

customers perception of new products (Mirtalaie et al. 2018). 

In this work, we try to understand if sentiment analysis is really the best available method 

to analyse consumer’s perception of products, expecialy when we want to measure the 

perception of the technical content of the product. Thus we compare State of the art 

sentiment analysis techniques with a lexicon of  advantages and drawbacks related to 

products. This tool relies on a lexicon developed by Chiarello (2017) to extract advantages 

and drawbacks of inventions from patents.  

Our work started with the selection of an event able to polarise Twitter users’ attention and 

products to analyse. In particular, we chose a premiere tradeshow for the video game 

industry, and two video game consoles disclosed during the event. We collected about 7 

milions tweets about products published before, during and after the tradeshow. Since 

social media data is noisy (for example it may contains spam and advertising), before 

proceeding with the analyses, we filtered our dataset. In particular, after removing too short 

and non-English tweets, we manually classified a randomly extracted subset of posts to 

train a classifier which provide us the cleansed dataset. Then we conducted a sentiment 

analysis of the tweets using state of the art machine learning techniques. We classified each 

tweet as positive, negative or neutral. At this point we applied our lexicon identifying 

advantages tweets and drawbacks tweets. Finally we compared the outputs of the two 

analyses for the two product-related clusters of tweets.  

We found consistent differences between the extractions. The results shows that when a 

product has a certain technological complexity and fuels a more technical debate, 

advantages and drawbacks analysis is more able than sentiment in producing technical-

functional judgements. For this reason we think that the proposed methodology peforms 

better then standard sentiment analysis techniques when a product has a certain 

technological complexity and fuels a more technical social media discourse. 
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2. State of the art 

We provide an overview of the studies about social media forecasting (Table 1, 2). 

Researchers especially focused on economics (stock market, marketing, sales) and politics 

(elections outcomes). In economics, predicting fluctuations in the stock market has been the 

most studied by far. Early work focused largely on predicting whether aggregate stock 

measures such as the Dow Jones Industrial Average (DJIA) would rise or fall on the next 

day, but forecasting can also involve making more detailed predictions, e.g., forecasting 

market returns or making predictions for individual stocks. The simplest task for stock 

market prediction is deciding whether the following day will see a rise or fall in stock 

prices. Comparison between studies is complicated by the fact that stock market volatility, 

and thereby the difficulty of prediction, may vary over time periods. High accuracy (87,6%) 

on this task was reported by Bollen (2012). However, slight deviations away from their 

methodology have seen much less success indicating that the method itself may be 

unreliable (Xu, 2014). A very good result is achieved by Cakra (2015) who use linear 

regression to build a prediction model based on the output of sentiment analysis and 

previous stock price dataset. 

Social media has also been used to study the ability of online projects to successfully 

crowdfund their projects through websites like Kickstarter. Li (2016) predicts whether a 

project will eventually succeed by making use of features relevant to the project itself (e.g., 

the fundraising goal), as well as social activity features (e.g., number of tweets related to 

the project), and social graph measures (e.g., average number of followers for project 

promoters). Using all of these features for only the first 5% of the project duration achieved 

an AUC of 0.90, reflecting very high classification performance.  

Many studies analysed the predictive power of social media to improve or replace 

traditional and expensive polling methods. The simplest technique is measuring tweet 

volume (tweet mentioning a political party = votes). Chung (2010) and Tumasjan (2010) 

employed this method obtaining mixed results. Razzaq (2014), Skoric (2012) and Prasetyo 

(2015) improved this method taking into account the mood of the posts, considering if a 

candidate or a party is mentioned in a positive or negative manner. 

  

147



Technical Sentiment Analysis: Predicting the Success of New Products Using Social Media 

  

  

Table 1: Summary of studies in economics. Data source: T = Twitter, F = Facebook, 

K = Kickstarter, O = blogs, other. Task: MDA = Mean Directional Accuracy, MAPE = Mean 

Absolute Percentage Error. 

Article Topic Data source Data size Observation time Success rate 

Xu (2014) Stock market T 100K tweets 42 days           

Crone (2014) Exchange rates T, F, O N/A N/A            

Kordonis (2016) Stock market T N/A N/A         

Cakra (2015) Stock market T N/A 2 weeks           

Bollen (2015) Stock market T 9.8M 10 months           

Brow (2012) Stock market T 13K 9 days        

Rao (2012) Stock market T 4M 14 months 
        (DJIA); 

        (NASDAQ). 

Kim (2014) Hit songs T 31.6M 68 days          

Korolov (2015) Donations T 15M 10 days           

Le (2015) Sports book T 1.2M 30 days 
        

          

Tuarob (2013) Smartphone sales T 800M 19 months          

Asur (2010) Movie revenues T 2.8M 3 months             

Ahn (2014) Car sales T, F, O 26K posts N/A 

           
(Sedan A); 

           
(Sedan B). 

Chen (2015) Advertising T 5.9K users N/A 
66% gain (click rate); 

87% gain (follow rate). 

Li (2016) 
Crowdfunding success 

rate 
T, F, K 106K tweets 6 months          

 

Researchers employ different tools and methods for social media mining, varying from easy 

to somewhat more complex. The most employed tool is sentiment analysis (with its various 

approaches: knowledge-based techniques, statistical methods, and hybrid approach) which 

usually achieves good results. Other researchers use more complex tools such as neural 

networks or a combination of techniques. At end of the analysis of the state of the art we 

are able to identify some best practices: (i) implementing suitable techniques to deal with 

noisy data, (ii) evaluating statistical biases in social media data, (iii) collecting data from 

heterogeneous sources, (iv) incorporating domain-specific knowledge to improve statistical 

model. 
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Table 2: Summary of studies in politics. Data source: T = Twitter. Task: Acc. = Accuracy, 

MDA = Mean Directional Accuracy, MAPE = Mean Absolute Percentage Error.  

Article Topic Data source Data size Observation time Success rate 

Chung (2010) Renewal of US senate T 235K tweets 7 days Acc. 41% - 47% 

Tumasjan (2010) German federal election T 104K tweets 36 days MAE 1.65% 

Razzaq (2014) Pakistani election T 613K tweets N/A Acc. 50% 

Skoric (2012) Political election T 7M tweets 36 days MAE 6.1% 

Prasetyo (2015) Indonesian political election T 7M tweets 83 days MAE 0.62% (State level) 

 

3.Methodology 

3.1 Selection of a triggering event and products 

We chose the Electronic Entertainment Expo as event able to polarise users’ attention. 

Commonly referred to as E3, it is a premier trade event for the video game industry, 

presented by the Entertainment Software Association (ESA). We chose two new video 

game consoles, disclosed at E3 2017, as products of which predicting the success or failure. 

The first is Xbox One X, a new high-end version of Xbox One with upgraded hardware and 

the other product is New Nintendo 2DS XL, a streamlined version of the handheld console 

New Nintendo 3DS XL. 

3.2 Data collection 

Twitter provides two possible ways to gather tweets: the Streaming Application 

Programming Interface (API) and the Search API. The first one allows user to obtain real-

time access to tweets from an input query. The user first requests a connection to a stream 

of tweets from the server. Then, the server opens a streaming connections and tweets are 

streamed in as they occur, to the user.  However, there are a few limitations of the 

Streaming API. First, language is not specifiable, resulting in a stream that contains tweets 

of all languages, including a few non-Latin-based alphabets, that complicates further 

analysis. Instead, Twitter Search API is a Representational State Transfer API which allows 

users to request specific queries of recent tweets. It allows filtering based on language, 

region, geolocation, and time. Unfortunately, using the Search API is expensive and there is 

a rate limit associated with the query. Because of these issues, we decided to go with the 

Twitter Streaming API instead. For each product, we detected related hashtags and 

keywords an constructed a query to download relevant tweets.  

We chose to collect tweets not only after the tradeshow, but also before. For these reason, 

we initially identified some products keywords with their provisional names and we 

updated them at a later stage. Tweets have been downloaded from CNR (Consiglio 
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Nazionale delle Ricerche, Istituto di Informatica e Telematica, Area di Pisa) since 11th June 

2017 h. 10:00 to 31th July 2017 h. 15:00. 

3.3 Data filtering 

The initial dataset resulted to be very noisy, containing tweets written in different 

languages, advertising and posts related to different products or subjects. We chose to keep 

into account only English tweets because sentiment and advantages/drawbacks lexicon is in 

this language. The data set is filtered removing tweets with less than five words and non-

English posts with a language classifier. We obtained 7.165.216 of filtered tweets.   

At this point we created a golden set of relevant tweet to train a Supported Vector Machine 

classifier able to recognize relevant and unrelevant tweets. We defined characteristics that 

make a tweet: (i) relevant (posted by users or containing words or opinions related to our 

products of interests and their functionalities), (ii) irrelevant (tweets containing 

advertisings, links to e-commerce websites or messages related to other products or 

subjects). A researcher manually classified a subset made up of randomly extracted tweets. 

In particular, we exctract a subset composed of 6.500 finding 105 positive results and 6.395 

negative. SVM model was then trained using this dataset, and computed a probability for 

each tweet to be relevant or irrelevant. A threshold of 0.7 has been chosen to label a tweet 

as relevant. The final dataset of filtered tweets, made up of 66.796 posts. We clustered 

tweets using product-related keywords. Clustering posts allowed us to further filter the final 

dataset which contained a small number of irrelevant tweets (Table 3). 

Table 3. Clusters of tweets 

 N° of tweets % of tweets 

Xbox One X 64.885 97,14 % 

New N2DS  1.706 2,55 % 

Irrelevant 
tweets 

198 0,30 % 

 

Table 4. Sentiment analysis classification 

 
Positive Negative Neutral 

Xbox One X 35,99% 4,65% 59,37% 

New N2DS  52,99% 1,58% 45,43% 

Overall 36,42% 4,57% 59,01% 

 

3.4 Sentiment analysis 

Table 4 presents the results of the sentiment analysis. We classified each tweet according to 

its sentiment into positive, negative, or neutral. We used an established methodology 
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developed by Cimino (2016). We pre-processed the tweets by removing mentions (@ 

character), URLs, product hashtags, emoticons and single characters. As a result, for each 

tweet we obtained a probability of belonging to a mood class. After a manual analysis, we 

used a class prediction probability threshold of 0.6 to filter out low confidence prediction, 

i.e. tweets that cannot be classified as positive or negative with a high confidence are 

classified as neutral instead. 

3.5 Advantages and drawbacks analysis  

To extract technical advantages and drawbacks from tweets we used the lexicon developed 

in Chiarello (2017) that contains 657 Advantages words and 297 Drawbacks clues. These 

words are searched on our dataset finding different percentages of tweets with words from 

the lexicon in the two product-related clusters of tweets. Table 5 reports the results. 

Table 5: Percentages of tweets containing or not words from our lexicon.  

 
Tweets with 

adv 

Tweets with 

drw 

Tweets with 

adv & drw 

Tweets with 

no adv or drw 

Tweets with 

adv or drw 

Xbox One X 8,84% 3,74% 0,37% 87,05% 12,95% 

New N2DS XL 6,62% 0,94% 0,00% 92,44% 7,56% 

 

4. Results: Comparison Between Sentiment Analysis and Technical 

Advantages and Disadvantage Extraction 

We adapted the advantages & drawbacks analysis to give as output a classification ef each 

tweet. We classified data coming from the latter analysis in this way: (i) positive (tweets 

containing only advantages words), (ii) negative (tweets containing only drawbacks), (iii) 

neutral (tweets with no words of our lexicon or controversial tweets). As we can see in 

figure 2, sentiment analysis is more able to polarise tweets. In fact, with this analysis we 

found lower levels of neutral tweets, respectively 59.37 % for Xbox One X and 45.43% for 

the New Nintendo 2DS XL.  
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Figure 1: Comparison between Sentiment analysis and Advantages/Drawbacks analysis 

 

This was an expected result since this kind of analysis is designed to deal with colloquial 

language while our lexicon is technical, being derived from patents analysis. What 

surprised us is the different polarisation of the products that we see comparing the two 

analyses. In fact, while with sentiment analysis Nintendo achieves lower percentages of 

neutral tweets, with advantages and drawbacks analysis is the opposite, since Xbox tweets 

are more polarised. We also noted that we found more tweets with words of our lexicon in 

the Xbox subset than in the Nintendo one (Table 5). We did the hypothesis that the 

differences between the percentages of tweets with words found for each product, and the 

differences of polarisation between the two analyses depend on the different marketing 

focus, target customer, and technological complexity of the two new video game consoles. 

Xbox One X targets hard-core gamers who really wants a premium experience1. With its 

marketing campaign, Microsoft pushed the technical supremacy of its new machine over 

the competitors’ products, fuelling a debate about its technical features amongst the 

potential users. 

As a result, the campaign produced a more technical social discourse that allowed us 

achieving better results. Instead, the new Nintendo handheld console has been developed 

                                                            
1 http://www.businessinsider.com/why-xbox-one-x-costs-500-2017-6?IR=T (last access: 17/11/2017) 
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targeting children and families providing a model that falls somewhere in the middle of the 

line of 3DS consoles2. 

We initially checked our hypothesis using Google Trend to compare users’ search interest 

about technical review of the two products during the data collection period (Figure 2). 

Then, we analysed the number of technical articles related to the new products published by 

the 25 most popular video games and technology websites in the U.S, according to the 

ranking of SimilarWeb, a digital marketing intelligence company which publishes insights 

about websites. We entered queries reported in Table 6 into Google search engine to 

retrieve technical article within the web domains previously identified: we obtained 1.117 

articles about Xbox and only 52 about Nintendo, proving that technical debate concerning 

Xbox is greater. This is and evidence of the fact that when a product has a certain 

technological complexity and fuels a more technical debate, advantages and drawbacks 

analysis is more able than sentiment in producing technical-functional judgements. The 

greater number of neutral tweets found with advantages and drawbacks analysis can also be 

explained with the Means-end chain model (Reynolds, 1995). Consumers express 

themselves basing on personal consequences linked with product use or basing on personal 

values satisfied by the product itself. For these reasons, tweets contain a more colloquial 

language which sentiment analysis is more able to interpret than the latter tool. 

 

Figure 2: Google Trends comparison of search-terms “Xbox One X review” and “New Nintendo 2DS XL review” 

during the data collection period, since 11th June 2017 to 31st July 2017. Values on the vertical axis depict search 

interest compared to the highest point in the graph during the observation time. A value of 100 is the peak 

popularity for the term. On average, users searched for Xbox reviews with an approximately five times higher 

frequency. 

                                                            
2 http://www.nintendolife.com/news/2017/05/reggie_explains_the_reasoning_behind_the_new_2ds_xl (last 

access: 17/11/2017) 
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Table 6: Queries entered into Google search engine to search for technical articles within 

selected web domains. We selected keywords related to technical features of the products. The 

example report queries used for one of the analysed website: ign.com 

Xbox One X 

allintitle: (4k OR hdr OR hardware OR graphics OR 

review OR resolution OR fps OR fast OR comparison 

OR frame OR enhanced OR performance OR cpu OR gpu 

OR ram) AND ("xbox one x") site: ign.com 

New Nintendo 2DS XL 

allintitle: (graphics OR review OR screen OR 

comparison OR enhanced OR performance OR cpu OR 

gpu OR ram OR battery OR weight) AND “new nintendo 

2ds xl” site: ign.com 

 

5. Conclusion 

Methods and techniques for social media mining with sentiment analysis is one of the most 

appreciated tool amongst researchers, having a very good reputation in the informatic 

fields. Also, big companies make use of it because it can be a rich source of information to 

adjust marketing strategies, improve campaign success, advertising message, and customer 

service. Nevetheless sentiment analysis is designed to extract feelings related sentiment 

polarity from tweets of user and not other kinds of polarity, like polarity related to technical 

advantages and drawbacks of products the users are experiencimg.  

In this paper we shown how using a technical lexicon to analyse technical polarity of tweets 

is a a more effective approach in giving technical-functional judgements about a product we 

respect to state of the art sentiment analysis techniques. It is particulartly true when a 

product has a certain technological complexity. 
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