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Abstract
Computer-aided diagnostic (CAD) schemes have been developed for assisting radiologists in the
detection of various lesions in medical images. The reliable evaluation of CAD schemes is as
important as the development of such schemes in the field of CAD research. In the past, many
evaluation approaches, such as the resubstitution, leave-one-out, cross-valiation, and hold-out
methods, have been proposed for evaluating the performance of various CAD schemes. However,
some important issues in the evaluation of CAD schemes have not been analyzed systematically,
either theoretically or experimentally. Such important issues include (1) the analysis and comparison
of various evaluation methods in terms of some characteristics, in particular, the bias and the
generalization performance of trained CAD schemes; (2) the analysis of pitfalls in the incorrect use
of various evaluation methods and the effective approaches to reduction of the bias and variance
caused by these pitfalls; (3) the improvement of generalizability for CAD schemes trained with
limited datasets. This article consists of a series of three closely related studies that address the above
three issues. We believe that this article will be useful to researchers in the field of CAD research
who can improve the bias and generalizability of their CAD schemes.
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I. Introduction
Computer-aided diagnostic (CAD) schemes have been developed for detecting various lesions
in many medical imaging modalities, including conventional radiography, computed
tomography, magnetic resonance imaging, and ultrasound imaging. An important issue for
CAD schemes is the reliable evaluation of their performance levels. In early publications on
CAD research, a resubstitution (RS) method was commonly used for the evaluation of CAD
schemes [1,2]. Because the performance level estimated by use of the RS method is
optimistically biased, in recent years investigators have begun to employ more reliable
evaluation methods such as the leave-one-out (LOO), cross-validation (CV), and hold-out (HO)
methods. However, to our knowledge, no investigator has systematically analyzed and
compared these common evaluation methods in terms of some important characteristics, in
particular, the bias and generalization performance. As a result, the selection of an evaluation
method is generally empirical, and sometimes even arbitrary, in many studies on CAD
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development. Our first aim was thus to provide such a comprehensive analysis and comparison
in order to help researchers select appropriate evaluation methods for improving the quality
and reliability of the performance evaluation of their CAD schemes.

An important characteristic of various evaluation methods is the bias in the estimated
performance level of a CAD scheme. Some evaluation methods such as LOO, CV, and HO are
almost unbiased only if they are used appropriately. Incorrect use of these methods can lead
to significant bias in the estimated performance levels. To understand whether CAD schemes
were appropriately evaluated in recent publications, we reviewed all research articles on the
development and evaluation of CAD schemes that were published in prestigious journals such
as Medical Physics and IEEE Transactions on Medical Imaging in 2004. Among the 10 papers
we reviewed, nine employed flawed evaluation methods leading to increased bias and variance
in the estimated performance levels. Therefore, we identified a number of typical pitfalls in
the incorrect evaluation methods for CAD schemes, and we conducted experiments to
demonstrate quantitatively the extent of bias and/or variance caused by each of the pitfalls. In
addition, for promoting and utilizing a high standard for reliable evaluation of CAD schemes,
we attempted to make recommendations, whenever possible, for overcoming these pitfalls.
This was our second aim for this article.

Another important characteristic of various evaluation methods is the generalization
performance level, which measures how well a trained CAD scheme will perform when it is
applied to a large number of future new cases. Apparently, it is very important to improve the
generalization performance of a CAD scheme in order to provide an increased performance
level for new cases. Because, to our knowledge, the improvement of the generalization
performance of a CAD scheme has not been studied to date, we attempted to address this issue
in this article. It is well known that one of the most effective ways to improve the generalization
performance of CAD schemes is to increase the sample size of the training dataset. Although
we cannot increase the actual size of a given training dataset, we do have means to expand the
“effective” size of that dataset. To do so, we first estimate the probability density function
(PDF) from the real cases in the training dataset, and then generate some “virtual” cases from
the estimated PDF whose characteristics are similar to those of the given “real” cases, and
finally add the virtual cases to the given real cases to form an expanded dataset. With the
expanded dataset, we are able to improve the generalization performance of a trained CAD
scheme. This was our third aim for this article. In accordance with the three aims, we conducted
three studies, i.e., the comparison of various evaluation methods in terms of important
characteristics including primarily the bias and generalization performance; the reduction of
the bias in the estimated performance; and the improvement of the generalization performance
for CAD schemes trained with small datasets.

II. Study 1: Analysis and comparison of various evaluation methods
II-1. Generalization performance, estimated performance, and bias

For a CAD scheme trained with a finite sample, there are two performance levels. The first is
the generalization performance, which measures how well the CAD scheme would perform
for a population of patients (all future new cases). The generalization performance is what
investigators want to know when developing a CAD scheme. Once a CAD scheme is trained,
its generalization performance is a fixed value. Unfortunately, the generalization performance
is usually unachievable in practice because investigators are unable to obtain the population
of patients when the CAD scheme is designed. Therefore, one often has to estimate the
performance by applying the trained CAD scheme to a small test sample, generally with tens
or hundreds of patients. The estimated performance is a random value that depends on the small
test sample used, and therefore can be higher or lower than the generalization performance. If,
on average, the generalization and estimated performance levels are the same, the estimated
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performance is unbiased; otherwise, it is biased, either optimistically (when the mean estimated
performance is greater than the generalization performance) or pessimistically (when the mean
estimated performance is less than the generalization performance). Different evaluation
methods (RS, LOO, CV, and HO) have different ways to select the test sample and,
consequently, can be either biased or unbiased. The bias and generalization performance are
two important concepts for evaluation of CAD schemes.

II-2. Methods
The first study, i.e., the analysis and comparison of various evaluation methods in terms of the
bias and generalization performance, was conducted based on datasets obtained from 4 Monte
Carlo simulation experiments with 4 different sample sizes N (N=50, 100, 150, 200). Each
Monte Carlo experiment consisted of 100 trials. In each trial, we randomly generated N normal
and N abnormal synthetic objects. Each object had 6 features. For normal objects, each feature
obeyed a Gaussian distribution with a variance of 1 and a mean of 0. For abnormal objects,
each of the six features obeyed a Gaussian distribution with a variance of 1 and respective
means of {0.9, 0.9, 0.9, 0.75, 0.75, 0.75}. We trained a CAD algorithm and calculated its
estimated performance levels by use of the RS, LOO, and HO methods. We also created a
massive test dataset with 10,000 normal and 10,000 abnormal objects and applied the trained
CAD algorithm to the massive test dataset for determination of the generalization performance
levels of the CAD scheme. The mean difference between the generalization performance and
the estimated performance was determined as the bias in the estimated performance.

The CAD algorithm employed consisted of three steps. The first step was the selection of
features based on Wilks’ lambda and the corresponding F-value [3,4]. The second step was the
application of a classifier based on a Bayesian artificial neural network (ANN) [5,6]. The third
step was the selection of a cutoff threshold for the output values of the ANN [7]. In this
experiment, we always selected the cutoff threshold in such a way that a sensitivity of 0.80
could be achieved. The average of the sensitivity and specificity was calculated as the accuracy
and was employed as a performance level for this study. We primarily analyzed and compared
3 different evaluation methods, i.e., RS, LOO, and HO. We did not include the CV method
because its characteristics are similar to those of either LOO or HO. However, we listed the
characteristics of the CV evaluation method in a table.

In a practical situation, one is provided with a finite sample for developing a CAD scheme.
The sample is often partitioned into at least two subsets, i.e., a training set and a test set. The
former is used for training a CAD scheme, and the latter for obtaining the estimated
performance. In the RS method, the entire sample is used for both training and testing of a
CAD scheme. In a k-fold CV method, the entire sample is first randomly partitioned into k
disjoint subsets of nearly equal size, and then each of the k subsets is used as a test set for
evaluation of a CAD scheme trained on the other (k-1) subsets. When the size of the subset is
equal to 1, the CV is equivalent to the LOO method. In the HO method, the entire sample is
partitioned into two subsets (not necessarily, but often, of equal size), one of which is used
only for training of the CAD scheme, and the other only for testing of the trained classifier,
which yields the estimated performance.

II-3. Results
Figure 1 shows the generalization accuracies of the CAD schemes trained with the RS, LOO,
and HO methods for the 100 trials of the Monte Carlo experiment. It is apparent from Fig. 1
that the curves of the generalization accuracies for the RS and LOO methods almost overlap,
which indicates that the CAD algorithms trained with the RS and LOO methods had almost
the same generalization accuracies. This was because the RS and LOO methods employed
almost the same number of cases for the training of their respective CAD algorithms (more
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precisely, the RS method used all cases, and the LOO method used all but one case in the
available sample). Another important observation is that the CAD algorithms trained with the
RS and LOO methods achieved a higher generalization accuracy than did the CAD algorithms
trained with the HO method, because the HO method utilized only half of the available sample
for training of the CAD algorithm. Therefore, with a given sample of cases, CAD schemes
trained with the RS and LOO will provide better results for a large number of future cases than
that trained with the HO method.

Figure 2(a) shows the generalization accuracies and the mean estimated accuracies for the 100
trials by use of the RS method. Because the mean estimated accuracies were much higher than
the generalization accuracies, in particular when the available samples were small, the
estimated accuracies were optimistically biased. Figures 2(b) and 2(c) show the generalization
accuracies and the mean estimated accuracies for the 100 trials by use of, respectively, the
LOO and HO methods. Because the mean estimated accuracies by use of the LOO and HO
methods were almost equal to the corresponding generalization accuracies, the LOO and HO
methods were almost unbiased.

II-4. Application of various evaluation methods
Table 1 summarizes the goodness of the generalization accuracy, the bias of the estimated
accuracy, and an additional important characteristic, i.e., the uniqueness of the CAD algorithm,
for the RS, LOO, and HO evaluation methods, as well as 2-fold and 10-fold cross-validation
methods. The uniqueness of the CAD scheme implies that a single CAD scheme is obtained
with a specific evaluation method. It is apparent from the table that each evaluation method
has its critical shortcoming. For example, the RS method estimates an optimistically biased
accuracy; the HO method provides a degraded generalization accuracy for future new cases;
and the LOO method does not provide a unique CAD algorithm for a given sample because
each case in the sample corresponds to a different CAD scheme. In our opinion, no single
evaluation method is universally superior to the others.

In the early stage of CAD development conducted in many research institutions, investigators
often want to estimate the accuracy of their CAD algorithm reliably based on a given finite
sample, whereas it is often not important whether a unique CAD algorithm exists. In such
situations, the LOO method appears superior to the others because it can provide an almost
unbiased accuracy estimate for a CAD algorithm with “good” generalization performance.
Neither the RS method nor the HO method is appropriate for these situations, because the
former provides a biased performance estimate, and the latter does not provide a performance
level as good as what the LOO method provides.

In some other situations, investigators not only are interested in the accuracy of their CAD
algorithm, but also want to conduct an observer performance study with a unique trained CAD
algorithm, in order to examine whether their CAD algorithm helps radiologists improve their
diagnostic performance. The essential requirements in such situations are the uniqueness of a
CAD algorithm and the unbiased performance estimate for the cases to be used in the observer
study. It is apparent that, in these situations, the HO method is more appropriate than the other
methods. To employ the HO method, one first reserves a test subset from the available sample
for the observer performance study, then trains the CAD algorithm with the remaining cases,
and finally applies the trained CAD algorithm to the reserved test set to obtain an unbiased
accuracy estimate. The output of the CAD algorithm for the reserved test set will also be shown
to the radiologists in the observer performance study.

Further, in more realistic situations, investigators want to design practical CAD systems for
future use, such as all commercial CAD systems and some prototype CAD systems designed
for clinical evaluation in some research institutions. Such a CAD system should be a unique
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one with a good generalization performance for new cases; and, if possible, the generalization
performance of the CAD system should be reliably estimated at the time when the system is
designed. Although none of the evaluation methods satisfies all of the above requirements, the
combination of the RS and LOO methods should be adequate for such situations. The CAD
designers can first employ the RS method to design a unique CAD system with a good
generalization performance. They can then employ the LOO method to estimate the
generalization performance reliably. Such an estimate of generalization performance is an
unbiased one for the LOO method, and is also an unbiased one for the RS method employed
in the design of the CAD system, because, as shown in Fig. 1, the generalization performance
for the RS and that for the LOO method are almost the same.

III. Study 2: Reduction of bias and variance in the estimated performance
As shown in Table 1, the LOO, CV, and HO methods are almost unbiased only if they are used
appropriately. Their improper use can lead to significant bias in the estimated performance
levels. In addition to the bias, another important factor for reliable evaluation of CAD schemes
is the variance of the estimated performance levels. In this second study, we analyze some
typical pitfalls that may introduce bias and increase the variance, and we attempt to minimize
the bias and variance by correcting these pitfalls [8].

III-1. Pitfall 1: Training and testing only part of a CAD scheme with an appropriate evaluation
method

A CAD scheme generally consists of three major steps, i.e., feature selection, classifier, and
cutoff threshold selection [8]. In the ten CAD-related papers we reviewed that were published
in Medical Physics and IEEE Transactions on Medical Imaging in 2004, most investigators
included only the classifier step in their evaluation methods such as the LOO and CV methods,
and they left out other steps such as feature selection and cutoff threshold selection. This implies
that the steps of feature selection and cutoff threshold selection are trained and tested with an
RS evaluation method based on not only a training dataset, but also a test dataset.

We conducted a Monte Carlo simulation experiment with 50 abnormal and 200 normal
synthetic objects to verify that the bias caused by such a pitfall can be large. Our CAD scheme
consisted of three steps, including feature selection, classifier [linear discriminant analysis
(LDA)], and cutoff threshold selection. We employed 4 LOO-based evaluation methods in this
experiment, i.e., a full LOO method including all three steps of the CAD scheme, and three
partial LOO methods, each with an additinoal step left out. Figure 3 shows the average
specificities estimated by the full LOO and three partial LOO evaluation methods when the
sensitivity of the CAD was set to 0.84. As shown in Table 1, the full LOO method was unbiased;
therefore, the performance level estimated by use of the full LOO was considered to be a
reference standard. It is apparent that the performance levels estimated by the three partial LOO
methods were optimistically biased. Figure 3 also shows the amount of bias caused by each of
the three steps, i.e., cutoff threshold selection, feature selection, and classifier training. In this
experiment, the step of feature selection was the main source of bias. Therefore, it is important
to include not only the classifier, but also all other steps in an appropriate evaluation
procedure.

III-2. Pitfall 2: Adjustment of parameters with “test” dataset
Even if all three steps are included in an appropriate evaluation method, a bias may still occur.
For example, if we use a complex classifier such as a Bayesian ANN, we have to determine
some important parameters of the ANN, such as the number of units in each hidden layer, the
number of epochs for training the ANN, etc. Unfortunately, investigators often select a “good”
combination of parameters by looking at the results for the “test” dataset, which leads to a bias
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because the “test” dataset becomes part of a training dataset. Please note that this pitfall does
not happen to “simple” classifiers such as LDA because parameter tuning is not needed in these
simple classifiers.

We conducted a Monte Carlo simulation experiment with 50 abnormal and 200 normal
synthetic objects to verify this type of bias. Our CAD scheme consisted of feature selection,
classifier (Bayesian ANN), and cutoff threshold selection. The number of hidden units for the
Bayesian ANN was the only parameter we planned to tune, whereas all other parameters were
fixed. We employed a three- and a two-subset CV evaluation method in this experiment [8].
In the two-subset method, we utilized the “test” dataset for selecting an ANN with an “optimal”
number of hidden units, whereas in the three-subset CV method, we further partitioned the
training dataset equally into a new training subset and a tuning subset, and employed the tuning
subset to determine the “optimal” number of hidden units. Figure 4 shows the average
specificities estimated by the three- and two-subset CV evaluation methods when the sensitivity
of the CAD was set to 0.84. In the three-subset CV evaluation method, because the test dataset
was independent of the CAD training process, the estimated performance level was unbiased.
The two-subset CV evaluation method thus had a large bias, as shown in Fig. 4. Therefore,
whenever possible, it is preferable to estimate the performance level of a CAD scheme
based on a complex classifier by use of a three-subset evaluation method instead of a
conventional two-subset method. If the three-subset evaluation method is not practical, the
investigators should be aware of the bias in the estimated performance level obtained by use
of the two-subset method.

III-3. Pitfall 3: Estimating performance level with only part of available dataset
In addition to the bias, another factor of reliability is the variance of the estimated performance
levels. A key point to reduce the variance of the estimated performance of a CAD scheme
trained with a given dataset is to ensure that each object in the entire dataset is used at least
once as a training object and once as a test object (although not at the same time). For example,
CV is an evaluation method that satisfies the above condition, whereas HO evaluation does
not because some objects in the HO method are employed only as training objects and the
others only as test objects, but not both. In other words, the CV evaluation method has wider
coverage of cases and thus a wider spectrum for the training and test datasets than does the HO
evaluation method, which makes the CV method more precise.

We conducted a Monte Carlo simulation experiment with 100 abnormal and 400 normal
synthetic objects to compare the variance of the performance levels estimated by a CV and an
HO evaluation method. Our CAD scheme consisted of feature selection, LDA classifier, and
cutoff threshold selection. Figure 5 shows the average specificities (disks) and the standard
deviation (bars) estimated by the CV and HO evaluation methods when the sensitivity of the
CAD was set to 0.84. It is apparent that the average specificities obtained by the CV and HO
methods were almost the same. Under such a circumstance, the one with a smaller variance is
considered more reliable. It is apparent that the CV is a more precise method than the HO
because the standard deviation of the performance level estimated by the CV was significantly
smaller than that estimated by the HO. Therefore, the CV should be employed to replace the
HO except in some specific situations such as in an observer performance study as described
in Section II-4.

IV. Study 3: Improvement of Generalization Performance
The above studies focus on the analysis and reduction of the bias and the variance in the
estimated performance levels. To our knowledge, another important issue, i.e., improvement
of the generalization performance, has not been studied yet. Therefore, our goal for this study
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was to investigate how to improve the generalization performance of a CAD scheme by adding
“virtual” cases to the real cases in a given small training dataset.

IV-1. Data
We employed two datasets for improving the generalization performance levels of CAD
schemes in this study. We first generated simulated data by conducting 4 Monte Carlo
experiments with 4 different training sample size N (N=25, 50, 75, 100). Each Monte Carlo
experiment consisted of 100 trials. In each trial, we randomly generated N normal and N
abnormal synthetic objects as a training dataset. We also generated a massive sample of 10,000
normal and 10,000 abnormal synthetic objects as a test dataset for determining the
generalization performance level.

In addition to the simulation datasets, we employed a real dataset consisting of 117 thoracic
CT scans with 153 nodules, which were obtained from the University of Chicago (32 CT scans
with 62 lung nodules) and Shinshu University (85 CT scans with 91 nodules), Nagano, Japan
[9]. We applied an initial detection technique to the CT scans for identifying initial nodule
candidates based on a selective nodule enhancement filter [10]. We thus identified 151 (98.7%)
nodules with 6593 false positives. Finally, we determined 18 features for each identified nodule
candidate from the original and nodule-enhanced images. These features for all nodules and
false positives were employed below for removal of many false positives.

IV-2. Methods
To improve the generalization performance of a CAD scheme, we first generated many
“virtual” data by resampling a PDF that was estimated from a given training dataset by use of
a kernel estimation method [11,12]. We then combined the resampled virtual data with the
original training data to form a new, expanded training dataset. Next, we trained our CAD
scheme with the expanded training dataset in order to improve the generalization performance
for future cases. Finally, the trained CAD scheme was evaluated with a massive test dataset
for determining the generalization performance.

Figure 6 shows in one dimension an example for estimating a kernel PDF from a sample of 25
data points. The sample of 25 data points (X’s on the horizontal axis) was drawn from an
underlying PDF (dashed curve), which we wanted to estimate from the sample. To do so, we
placed a Gaussian kernel function (thin solid curves) at each data point, and added these to
obtain a kernel PDF (thick solid curve) as an estimate of the underlying PDF. From the
estimated PDF, we can generate as many “virtual” data as we want to expand the original small
database. The combination of the original and the virtual datasets was called an expanded
dataset, which was utilized for training of our CAD scheme. The ratio of the size of the
expanded dataset to the size of the original dataset was called an expansion factor. For example,
when the expansion factor was 1, only original data (with no virtual data) were included in the
expanded dataset.

Our CAD scheme consisted of feature selection, LDA classifier, and cutoff threshold selection.
In this experiment, we always selected the cutoff threshold in such a way that a sensitivity of
80% was achieved. The specificity (for the simulation dataset) or the number of false positives
per case (for the real CT dataset) was reported and analyzed for the comparison of the CAD
schemes trained without and with the use of virtual data.

IV-3. Results
Figure 7 shows the mean specificities at a fixed sensitivity of 80% for the Monte Carlo
simulation experiment at 6 different expansion factors. The first important finding in Fig. 7
was that using the resampled virtual data did improve the mean specificities. For example,

Li Page 7

Comput Med Imaging Graph. Author manuscript; available in PMC 2007 August 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



when the original training dataset included 25 normal and 25 abnormal objects (N=25), the
mean specificity was improved considerably from 67.1% (expansion factor = 1) to 81.4%
(expansion factor = 16) by use of the resampled virtual data (P<0.001, two-tailed paired t-test).
The second finding was that the standard deviations in the specificities, which are shown as
error bars only for N=25 for clarity, decreased considerably from 8.0% (expansion factor = 1)
to 3.5% (expansion factor = 16). The third finding was that the extent of improvement in the
mean specificities gradually diminished as the size of the original training dataset increased.
For example, when N=100, the mean specificity was improved only slightly from 82.6%
(expansion factor = 1) to 84.2% (expansion factor = 16) by use of the resampled virtual data
(P<0.001). In summary, the use of virtual data improved both the generalization
performance level and its variance, in particular, when the original training dataset was
small.

Figure 8 shows the mean number of false positives per case at a fixed sensitivity of 80% for
the real CT datasets at 6 different expansion factors. Apparently, all findings indicated in Fig.
7 were correct in Fig. 8. When the original training dataset included 25 cases (including, on
average, 32 nodules and 1409 false positives), the mean number of false positives per case
(±standard deviation) was reduced considerably from 9.4 (±2.3) to 5.0 (±1.3) (P<0.001) by use
of the resampled virtual data (expansion factor = 16).

V. Conclusion
With the definition of a generalization performance and a bias, we compared the characteristics
of various evaluation methods, reduced the bias and variance in the estimated performance
levels by identifying and solving typical pitfalls in various evaluation methods, and improved
the generalization performance levels of CAD schemes by use of expanded training datasets.
This article is important for researchers in the field of CAD research who wish to train their
CAD schemes with improved generalization performance levels for future cases and to reliably
evaluate the performance levels of the CAD schemes trained with finite datasets.
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Figure 1.
Generalization performance levels obtained with the resubstitution, leave-one-out, and hold-
out methods for 100 trials of Monte Carlo experiments
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Figure 2.
Figure 2(a) Generalization accuracy and mean estimated accuracy for the resubstitution method
Figure 2(b) Generalization accuracy and mean estimated accuracy for the leave-one-out
method
Figure 2(c) Generalization accuracy and mean estimated accuracy for the hold-out method
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Figure 3.
Average specificities estimated by a full (F) and three partial (P) leave-one-out evaluation
methods at a fixed sensitivity of 0.84
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Figure 4.
Average specificities estimated by the three- and two-subset evaluation methods at a fixed
sensitivity of 0.84
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Figure 5.
Average specificities (disks) and standard deviations (bars) estimated by the cross-validation
and hold-out evaluation methods at a fixed sensitivity of 0.84
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Figure 6.
The underlying probability density function, a random sample of 25 data, 25 kernel functions,
and the estimated probability density function
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Figure 7.
Mean specificities at a fixed sensitivity of 80% for the Monte Carlo simulation experiment
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Figure 8.
Mean numbers of false positives per case at a fixed sensitivity of 80% for the real CT cases
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Table 1
Important characteristics of the resubstitution, leave-one-out, hold-out, and cross-validation evaluation methods

Evaluation method Unique CAD algorithm? Good generalization accuracy? Almost unbiased estimated accuracy?
Resubstitution Yes Yes No

Hold-out Yes No Yes
Leave-one-out No Yes Yes

2-fold cross-validation No No Yes
10-fold cross-validation No Yes Yes

Comput Med Imaging Graph. Author manuscript; available in PMC 2007 August 15.


