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Abstract
A new deformable model, the charged fluid model (CFM), that uses the simulation of charged
elements was used to segment medical images. Poisson's equation was used to guide the evolution
of the CFM in two steps. In the first step, the elements of the charged fluid were distributed along
the propagating interface until electrostatic equilibrium was achieved. In the second step, the
propagating front of the charged fluid was deformed in response to the image gradient. The CFM
provided sub-pixel precision, required only one parameter setting, and required no prior knowledge
of the anatomy of the segmented object. The characteristics of the CFM were compared to existing
deformable models using CT and MR images. The results indicate that the CFM is a promising
approach for the segmentation of anatomic structures in a wide variety of medical images across
different modalities.
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1 INTRODUCTION
Image segmentation is a fundamental problem in computer graphics and medical image
processing. It is one of the most important steps in imaging-based analyses requiring feature
extraction, image measurements, shape representation or other forms of image understanding
[1–3]. The principal goal of the segmentation process is to partition an image into several
regions of interest such that each region has similar characteristics of gray-level and texture.
Segmentation methods for monochrome images can be classified into several categories
including pixel-based [3], edge-based [4,5], region-based [2,6], knowledge-based [7,8]
approaches and deformable models [9,10]. Some of the most popular and successful methods
are deformable models due to their ability to accurately recover the shape of biological
structures in many medical image segmentation applications [11,12].
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Deformable models involve the formulation of a propagating interface, which is a closed curve
in 2-D or a closed surface in 3-D, that is moving under a speed function determined by local,
global and independent properties [13]. Given the initial position of a propagating interface
and the corresponding speed function, deformable models track the evolution of the interface
during the segmentation process. Existing deformable models can be broadly divided into two
categories: parametric and geometric.

Parametric deformable models, originating from the active contour model introduced by Kass
et al. [14], explicitly represent the interface as parameterized contours in a Lagrangian
framework. Active contour models use an energy-minimizing spline that is guided by internal
and external energies in such a way that the deformation of the spline is restricted by geometric
shape forces and influenced by image forces. By optimizing the weights used in the internal
energy and choosing the proper image forces (e.g., lines or edges), active contour models can
be used to evolve the curve toward the boundaries of objects being segmented. Cohen [15]
extended active contour methods such that the curve behaves like a balloon to obtain more
stable results.

One of the disadvantages of parametric deformable models is the difficulty of naturally
handling topological changes for the splitting and merging of contours. This problem is readily
solved by geometric deformable models when implemented using the level set numerical
algorithm developed by Osher and Sethian [16]. The principle underlying level set methods is
to adopt an Eulerian approach that implicitly models the propagating interface using a level
set function φ, whose zero-level set always corresponds to the position of the interface [13].
The evolution of this propagating interface is governed by a partial differential equation in one
higher dimension. The level set function can be constructed with high accuracy in space and
time. The position of the zero-level set is evolved using a speed function that consists of a
constant term and a curvature deformation in its normal direction [16].

Caselles et al. [17] and Malladi et al. [18] proposed a geometric deformable contour with an
image gradient stopping force based upon the Osher-Sethian level set framework,

(1)

where V0 and ε are constant weights, κ is the level set curvature, ∇ is the gradient operator,
and g(I) is the stopping force based upon the image gradient given as

where Gσ is a Gaussian filter with standard deviation σ, I(x, y) is a given 2-D image and p = 1
or 2. In the above equation, * represents convolution and | · | is the modulus of the smoothed
image gradients.

The Caselles-Malladi deformable contour notably improved the initialization of parametric
active contours provided that the initial contour was placed symmetrically with respect to the
boundaries of interest [12,13]. In practice, this is not easy to achieve since many medical image
segmentation problems are not dealing with regularly shaped objects. Fig. 1 demonstrates the
difficulty of using the Caselles-Malladi deformable contour to segment the brain with
convoluted shapes in T2-weighted MR images. Note that the initial contour was not
symmetrically placed with respect to the brain. It was not easy to choose an appropriate
stopping force required to achieve satisfactory results. The contour was confined inside by the
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high intensity structures when using a stronger stopping force and the contour leaked past the
brain boundaries when using a weaker stopping force [see (1)].

Kichenassamy et al. [19] and Yezzi et al. [20] added a doublet term, ∇g · ∇φ, to (1) to efficiently
attract the evolving contour to the desired feature. Siddiqi et al. [21] subsequently modified
the speed function by adding a term based upon the gradient flow derived from a weighted area
energy functional so that the contour could more flexibly evolve toward the desired edges.
Vasilevskiy and Siddiqi [22] proposed a flux maximizing flow method to the segmentation of
blood vessels. Goldenberg et al. [23] used a variational geometric framework with coupled
surfaces for cortex segmentation. Recently, Gout et al. [24] proposed a segmentation approach
that combines the idea of the geodesic active contour and interpolation of points in the Osher-
Sethian level set framework to find a boundary contour from a finite set of given points.

Alternatively, Chan and Vese [25] proposed a region-based approach, active contours without
edges, based upon level set methods and Mumford-Shah segmentation techniques [26],
satisfying the evolution equation

(2)

where δε is the Dirac delta function, which is numerically approximated by the Heaviside
function H; μ ≥ 0, λ1 > 0, λ2 > 0 are fixed parameters, and c1, c2 are the averages of I inside
and outside the contour respectively. This approach aims to automatically perform 2-phase
segmentation of the image I, given by I = c1H + c2(1 − H), with interior contours. It can detect
objects whose boundaries are not necessarily defined by the image gradient or with very smooth
boundaries.

It has been shown that the Chan-Vese active contour is robust to contour initialization in that
the initial contour can be anywhere in the image and does not necessarily have to surround the
objects being segmented [25]. However, it is difficult to use the Chan-Vese active contour to
segment anatomic structures that have an intensity distribution similar to the background as
illustrated in Fig. 2. This approach incorrectly captured the brain and divided the image into
two distinct regions based upon the intensity values [see (2)]. The authors subsequently
extended this model by proposing a multiphase level set framework to segment images with
more than two regions [27]. The initialization can be regularly arranged using multiple contours
for each level set function. Drapaca et al. [28] modified the Chan-Vese level set framework
and extended it to higher dimension segmentation problems. However, these algorithms [27,
28] may not converge to a global solution for a given initial condition. Later, Holtzman-Gazit
et al. [29] proposed a thin structure segmentation method that combined the Chan-Vese model
with the boundary alignment.

In this paper, we propose a new deformable model, the charged fluid model (CFM), that extends
and modifies the charged fluid framework [30] for medical image segmentation. In our earlier
study, we used the simulation of a charged fluid governed by Poisson's equation as a deformable
model to perform general image segmentation. The evolution consisted of two alternate
procedures that were designed to deform the contour in response to the image data. It
automatically handled topological changes at the interface and provided sub-pixel precision
for the area and length of the segmented region. However, it was not easy to segment complex
and difficult anatomic structures in medical images. This paper reports on the extension of the
mathematical formulas and modification of the numerical techniques to achieve a more robust
segmentation algorithm to extract anatomic structures in medical images. It requires a contour
initialization step to start the algorithm, but we will demonstrate that it is less critical than the
Caselles-Malladi method. In addition, we compare the results obtained using the CFM to those
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obtained using the Caselles-Malladi and Chan-Vese methods in segmenting a variety of
anatomic structures in medical images. Lastly, the CFM has been extended to 3-D for
volumetric segmentation applications.

This paper is organized as follows. In Section 2, we introduce the concept of the charged fluid
and present the necessary background on the mathematical model of the charged fluid
framework. In Section 3, we describe new mathematical equations and numerical techniques
that improve the charged fluid framework. We also present a new segmentation algorithm
based upon the CFM. In Section 4, we discuss the unique properties of the CFM in the
segmentation of medical images with various modalities, and compare the CFM to the Caselles-
Malladi and Chan-Vese methods. We also illustrate the applications of the 3-D CFM to 3-D
vascular tree segmentation in 3-D X-ray rotational angiography (3DRA) images. In Section 5,
we summarize the results and contributions of the current work.

2 Mathematical Model
We shall start by describing the use of physics-based particle systems for the simulation of
deformable models. The concept of using a particle simulation was introduced by Reeves
[31] to model objects such as fire, clouds, and water. In his model, particles move under the
influence of external forces and constraints without interacting with each other. More recent
particle systems use a simulation of molecular dynamics governed by the Lennard-Jones
function to add links between the particles to guide the evolution of a deformable model [32,
33]. In these elastic particle systems, intensive numerical computation is required to obtain
particle attributes such as position, velocity, force, torque, and orientation. We developed the
charged fluid method [30] that changed the property and structure of charged particles without
the computation of velocity, acceleration and torque. This resulted in a particular characteristic
that the charged fluid behaves like a liquid flowing through and around objects. We now briefly
review the mathematics underlying the charged fluid method [30].

2.1 Concept
The basic concept is to use a system of charged elements as a deformable model to perform
image segmentation. A number of charged elements with the same sign of charge are placed
on a propagating interface that is modeled as the surface of an isolated conductor. The fluid
elements repel each other due to the electric forces and advance toward an equilibrium state
to minimize the electrostatic energy. When electrostatic equilibrium is achieved, each fluid
element (the large circles in Fig. 3) has a net charge as if it was calculated by interpolating the
charges of the covered particles (the solid dots in Fig. 3). The electric forces (Fele in Fig. 3)
are perpendicular to the contour and their magnitudes are proportional to the charge of the
corresponding element. Moreover, the fluid element deforms in response to external forces
Fext (e.g., the image gradient) as illustrated in Fig. 3. This electrostatic system is governed by
Poisson's equation

(3)

where Φ is the electric potential and ρ(r) is the known charge density. To make use of the
simulation of a charged fluid for image segmentation, we evolved the curve using two
sequential procedures described below. Herein, we have adopted the notation (x,y) to represent
Cartesian coordinates in the spatial domain, (m,n) to represent discrete coordinates in the spatial
domain, and (u,v) to represent the corresponding discrete coordinates in the Fourier domain.
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2.2 Curve Evolution
The curve evolution of the charged fluid consisted of two procedures that were repeated until
the contour resided on the boundaries of objects being segmented. The first procedure, charge
distribution, allowed the charged fluid to flow within the propagating interface until a specified
electrostatic equilibrium was achieved. The second procedure, front deformation, deformed
the propagating front into a new shape in response to the image potential, which was related
to the image gradient. During curve evolution, fluid elements were restricted to move on the
lattice.

2.2.1 Charge Distribution—In order to handle topological changes when using multiple
charged fluids, Poisson's equation in (3) was modified as

(4)

where  is the normalized electric potential and  is the normalized charge density of the

overall system at each time step. In the above equation,  is the normalized electric potential
for the charged fluid j

where Φ0 is an arbitrary positive constant and  is the mean electric potential in the charged
fluid j. The corresponding normalized charge density, , for the charged fluid j was defined
as

(5)

During this procedure, the electric field Eele in the discrete domain was numerically computed
using the central difference approximation of the normalized electric potential in the following
equation,

(6)

The advancement distances  and  for each fluid element i was then numerically computed
as

(7)

where  and  are the electric field components of element i in the m and n axes, respectively.
In the above equation, h is the grid spacing and Emax is the magnitude of the maximum electric
field on the propagating interface of the system for each iteration. Once the distances were
obtained, the fluid element with charge Q was interpolated into adjacent discrete points using
the subtracted dipole scheme (SUDS) technique [34]. All fluid elements were continuously
advanced until a specified electrostatic equilibrium condition was satisfied using
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(8)

where Qtotal is the total charge of the overall system for each iteration, ΔQtotal is the net flowing
charge in total and γ > 0 determines the degree of electrostatic equilibrium.

2.2.2 Front Deformation—The front deformation procedure allowed the charged fluid to
interact with the image data by defining an effective field Ee f f as

(9)

where Eequ is the electric field in equilibrium corresponding to the normalized electric potential
in equilibrium, , that was obtained when equilibrium was achieved in the charge
distribution procedure and Eimg is the image field corresponding to the image gradient
potential, Φimg,

(10)

where β is a weighting factor (β ≥ 0) to adjust the image gradient potential, | · | is the modulus
of the smoothed image gradients, and | · |max is the maximum modulus in the computation
domain. The smoothing of the image was performed by convolution with a 3 × 3 or 5 × 5
Gaussian filter kernel.

2.3 Electric Potential Computation
The widely-adopted FSP method [35] was used to solve the electric potential in (4). Given
fluid elements having charge Q(m,n) on grid (m,n), we first computed the discrete Fourier
transform (DFT) of the charge Q(m,n) using

(11)

where Lm and Ln are the lengths along the m and n axes, respectively. The electric potential
was then computed through Poisson's equation as

(12)

where the prime represents that u = v = 0 is excluded from the sum. The DFT pair in (11) and
(12) was rapidly computed using the FFT algorithm provided that Lm = 2s and Ln = 2t, where
s and t are positive integers.

3 CHARGED FLUID MODEL
In this section, we describe how the mathematical model described in Section 2 was applied
to medical image segmentation.

3.1 Mean Electric Field
One problem of using a pure electrostatic model in the charged fluid was that the magnitude
of the electric field on each fluid element varies greatly when the geometry of the contour is
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irregularly shaped. This is due to the fact that the magnitude of the electric field is proportional
to the corresponding local charge density [30]. When segmenting noisy images using the
charged fluid, those fluid elements that exert a relatively small magnitude electric field will be
confined by strong image gradients inside the region during the evolution determined by (9).
As a consequence, the contour of the charged fluid may become jagged and the small magnitude
inner fluid elements can dramatically retard the convergence speed of the overall system. To
address this problem, Eequ in (9) was modified to incorporate the mean magnitude of the electric
fields in the charged fluid and rewritten as Ẽequ. The magnitude of Ẽequ was modified using

(13)

where | · | is the magnitude of Ẽequ, 〈·〉 is the mean magnitude of Ẽequ on all fluid elements for
each charged fluid, and max(·, ·) is the greater of the two values. The result is that the electric
strength of weak fluid elements is increased such that the magnitude of the overall electric field
in the charged fluid system is uniform, which makes the CFM more robust in segmenting noisy
structures in medical images.

3.2 Image Gradient Field
The image gradient potential and the corresponding image field described in Section 2.2 were
developed for a general segmentation algorithm regardless of the gray-level of objects and
background [30]. In other words, the charged fluid segmented bright objects of interest on dark
background, and vice versa, without changing the image potential term in the algorithm. One
characteristic of this strategy is that one can obtain particular segmentation results slightly
larger or smaller by choosing a proper Gaussian filter and the sign of β in (10). This is due to
the use of the second derivative of image intensities, which can be observed by substituting
(10) into (9). Nevertheless, taking the gradient of the smoothed image twice can generate a
large variation of magnitude along the boundaries of interest. This can sometimes ruin the
segmentation results by creating unwanted noise that confines fluid elements inside the region
of interest (ROI), when using a large weight of β to prevent leakage. In medical image
segmentation applications, it is often desired to directly use the image gradient field to interact
with fluid elements such that Eimg in (9) is modified as Ẽimg,

(14)

The effective field Ee f f in (9) is correspondingly modified as Ẽe f f,

(15)

Therefore, the CFM is better able to segment anatomic structures with blurred boundaries in
medical images.

3.3 Curve Evolution
In this section, we describe new numerical techniques to implement curve evolution in the
CFM. For the charge distribution procedure described in Section 2.2.1, we used a uniform
charge distribution over the fluid elements that were initially placed on a 2 pixel wide
propagating interface obtained in the first procedure as illustrated in Fig. 4(a). The fluid
elements were repeatedly advanced inside the charged fluid using the SUDS method until the
system converged to an equilibrium state that satisfied (8) as illustrated in Fig. 4(b). Note that
the electric fields at the fluid elements are approximately in the normal direction to the contour.
We then refined the 2 pixel wide interface to a 1 pixel wide front by boundary element detection.
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This was achieved by using a boolean array corresponding to the image dimension. An initial
boolean value was assigned to each corresponding pixel based upon the following rules: true
if it was inside the initial contour and false if it was outside. True pixels were reset to the
position of the new fluid element during curve evolution. An examination was performed at
each time step by checking the boolean values of the 3 × 3 neighboring positions of each
element on the 2 pixel wide interface. If the boolean value of any of the 8 neighbors was
false, the fluid element was treated as a boundary element, which constituted the 1 pixel wide
front. If the boolean values of all neighbors were true, the fluid element was treated as an inner
element and discarded. Using this simple technique, the 1 pixel wide front was quickly
constructed and the fluid elements were connected by 4-connectivity as illustrated in Fig. 5(a).
The front deformation was executed on each fluid element by locating binary positions
corresponding to the four adjacent grid points based upon the effective field direction as
illustrated in Fig. 6. The 2 pixel wide binary interface was then generated as illustrated in Fig.
5(b) and the CFM evolved into a different shape in response to the effective field in (15).

3.4 Segmentation Algorithm
There are two effective parameters in the CFM algorithm: γ in (8) and β in (14). For medical
image segmentation, the value of the parameter γ was suggested to be within the range of 1%
to 10%. We therefore set the value of γ to 3% for all of the medical image segmentation
experiments. The appropriate value of β is discussed in Section 4. The value of  in (5) was
initially set to Φ0 at the beginning of the evolution. Some trivial constants in the CFM were
set as follows: Φ0 = 10, 000 in (14) and h = 1 in (7). Note that multi-resolution scheme can be
obtained by setting different values for the grid spacing h. Coarse grid scales can be used at
beginning to accelerate the evolving speed for advancing the contour toward the ROI, where
tiny grid sizes can then be used for refinement.

The algorithm was terminated when the number of the fluid elements on the 1 pixel wide front
[see Fig. 5(a)] remained equivalent for two consecutive steps, i.e., there was no deformation
in the charged fluid shape after one more iteration. After the evolution was terminated, a ROI
extraction procedure was performed on the entire image using a standard contour tracing
algorithm [36]. The software was developed in Java using the UCLA jViewBox [37] for image
I/O, display and manipulation. The pseudocode for the CFM algorithm is summarized in
Algorithm 1, which consists of two core algorithms corresponding to the charge distribution
procedure and the front deformation procedure, respectively.

Algorithm 1: Charged fluid

1. parameter setting of β in (14)

2. image field computation using (14)

3. repeat(i)

a. uniform charge distribution over fluid elements

b. repeat(j)

Algorithm 2

c. until(j) electrostatic equilibrium is achieved by setting γ = 3% in (8)

d. 1 pixel wide front construction using the boundary element detection method

e. Algorithm 3

f. mean potential computation and charge normalization using (5)

4. until(i) no deformation in the charged fluid shape
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5. ROI extraction

6. sub-pixel precision calculation, if desired

Algorithm 2: Charge distribution procedure

1. forward FFT computation of the charge array based upon (11)

2. inverse FFT computation of the potential array based upon (12)

3. electric field computation using (6)

4. advance distance computation using (7)

5. charge interpolation using the SUDS

Algorithm 3: Front deformation procedure

1. mean electric field compensation using (13)

2. effective field computation using (15)

3. 2 pixel wide interface localization based upon Fig. 6

3.5 Computational Complexity
The charge distribution procedure (Algorithm 2) dominated the overall computational cost of
the charged fluid algorithm. Using an FFT-based FSP algorithm changed the computational
complexity from approximately O(N2), with N equal to the number of particles, to O
(M2logM), where M is the length of the square that is used for the electric potential computation
provided that Lm = Ln = M [see (11) and (12)]. Most parametric deformable models have
complexity O(m), with m equal to the number of nodes. Since the level set framework added
one extra dimension to the problem [16], early deformable models have complexity O(n3) in
3-D with n equal to the number of grid points in the spatial direction [13]. The more efficient
narrow-band implementation technique has computational complexity O(kn2), with k equal to
the number of cells in the narrow band.

4 RESULTS AND DISCUSSION
The results of using the CFM algorithm to segment magnetic resonance (MR) and computed
tomography (CT) images were compared to the results obtained using the Caselles-Malladi
and Chan-Vese methods. We used a variety of medical images that have dimension 256 × 256
for MR and 512 × 512 for CT. Since there were no clear stopping criteria for the Caselles-
Malladi and Chan-Vese algorithms, the results were obtained after a steady state was observed
by inspection, unless stated otherwise. In order to quantitatively evaluate our approach, we
defined an overall pixel-based measure, conformity κc,

where FP represents false positives, FN represents false negatives, and TP represents true
positives of the segmentation results. All measures were based upon manual segmentation
results by experts for each experiment.

4.1 Topological Changes
We first demonstrate the behavior of the CFM in handling topological changes in a free 2-D
space using multiple charged fluid contours, i.e., β = 0 in (14). Fig. 7(a) shows three square
contours initialized in a free plane, two of which were crossed by each other. In Fig. 7(b), the
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two contours automatically merged to one at the next iteration based upon the numerical
implementation of curve evolution described in Section 3.3. The charged fluids are treated as
independent systems when they are not touching each other, and the contours retain the same
geometry and topology while they are evolving in a free space as shown in Fig. 7(c). However,
the fluid elements from one charged fluid not only interact with themselves but also with those
from the other charged fluid when they are close and merging as demonstrated in Fig. 7(d).
Finally, Figs. 7(e) and 7(f) show the merged propagating front of the CFM preserving the same
topology after further evolution.

Fig. 8 illustrate the curve evolution of the CFM with β = 8.0 in a phantom image having 6
asymmetrical lobes with simulated cortex from the Internet Brain Segmentation Repository
(IBSR) [38]. Two 4 × 4 square contours were separately initialized in the simulated cortex as
shown in Fig. 8(a). The contours then deformed in response to the shape of the cortex while
approaching each other as depicted in Fig. 8(b) to 8(d). In Fig. 8(e) the two contours were
merged into one that was further split into two contours with one inside the other as shown in
Fig. 8(f).

4.2 Sensitivity Analysis of Initialization and Parameter β
We investigated the ability of the CFM algorithm to segment the brain in Fig. 1 with the initial
contour placed accordingly as illustrated in Fig. 9(a). The CFM contour then evolved toward
the boundaries of the brain and flowed around inner high intensity structures as shown in Figs.
9(b) and 9(c). Using β = 0.8, the CFM successfully captured the brain with conformity κc =
98.36% as illustrated in Fig. 9(d).

We also studied the sensitivity and robustness of the CFM to the parameter β, which is related
to the position of the maximum gradient magnitude of an image [see (14)]. Fig. 10 shows the
performance of the CFM in segmenting brain tumors in T2-weighted MR images using
different values of β. The selection of β is usually set close to unity, however, if the position
of the maximum gradient is outside the ROI, then a larger value of β is required. A normalized
image gradient map can be used to facilitate the procedure of finding an appropriate value of
β for the ROI. As illustrated in Figs. 10(b) and 10(c), the contours leaked from where there are
relatively weaker boundary gradients when using relatively lower values of β. The
segmentation results were approximately the same using β = 2.0 to 18.0 as shown in Fig. 10
(d) to 10(f). The results were deteriorated when using higher values of β as illustrated in Figs.
10(g) and 10(h). The performance measures are summarized in Table 1.

4.3 Segmentation of Medical Images
4.3.1 2-D Anatomic Structure Segmentation—In this section, we illustrate the
segmentation results of the Chan-Vese, Caselles-Malladi and CFM methods using a variety of
MR and CT images. The results of using these techniques to segment brain tumors in T2-
weighted MR images are illustrated in Figs. 11 and 12. Note that the tumor in Fig. 11 is
connected to the ventricle that has a similar intensity distribution, and the tumor in Fig. 12 is
surrounded by brain tissue that has close intensity values. The Chan-Vese method almost
captured the tumor in Fig. 11 during curve evolution when other anatomic structures were also
segmented [indicated by the arrow in Fig. 11(c)]. It was difficult to stop the algorithm at this
stage since a steady state was not observed. In the experiments illustrated in Fig. 12, the Chan-
Vese contour leaked through the boundaries of the tumor while some of interest regions were
not segmented as shown in Fig. 12(b). Finally, the Chan-Vese algorithm respectively separated
the images into two regions based upon the intensity distribution as illustrated in Figs. 11(e)
and 12(e).
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Figs. 11(g) and 12(g) illustrate that the contours of the Caselles-Malladi method were confined
inside the tumors when a strong stopping force was used. When using a slightly weaker
stopping force, the contours leaked past the boundaries of the ROI as depicted in Figs. 11(h)
and 12(h), respectively. The results obtained using the CFM algorithm were better than those
obtained using the Caselles-Malladi and Chan-Vese methods in that the contour faithfully
deformed in response to the shape of the tumors as illustrated in Figs. 11(i) and 12(i).

Fig. 13 illustrates the segmentation results using the Caselles-Malladi, Chan-Vese, and CFM
methods in the segmentation of the brain in T2-weighted MR images. It was difficult to use
the Caselles-Malladi algorithm to successfully extract the brain due to the convoluted shape
of the structures; some parts of the contour leaked past weak boundary gradients while other
parts were confined inside as depicted in Fig. 13(a). The Chan-Vese method failed to correctly
segment the ROI in that the darker structures of the brain were excluded as shown in Fig. 13
(b). The CFM algorithm successfully captured the boundary of the brain (κc = 98.72%) as
illustrated in Fig. 13(c).

We conclude this section by illustrating the ability of the CFM algorithm to successfully
segment difficult objects in pulmonary CT images. Figs. 14 and 15 show the results obtained
using the Caselles-Malladi, Chan-Vese, and CFM methods for lung segmentation, which is
required to identify the lung boundaries within the images. The lung in Fig. 14 has inner high
intensity structures (some of which are connected to the lung boundaries) and the lung in Fig.
15 has blurred and ragged boundaries. The Caselles-Malladi contours were confined inside by
the lung boundaries using a strong stopping force as depicted in Figs. 14(b) and 15(b). Using
a slightly weaker stopping force resulted in leakage as respectively illustrated in Figs. 14(c)
and 15(c).

The Chan-Vese method failed to separate the lungs from the inner structures and the
backgrounds as illustrated in Figs. 14(d) and 15(d). The images were incorrectly divided into
two regions based upon the intensity values. The Chan-Vese algorithm also failed to exclude
the blurred structure illustrated in Fig. 15(d) so that the lung boundaries were not correctly
captured. The CFM algorithm successfully extracted the boundaries of the lungs while
excluding inner structures and artifacts using a single initial contour with β = 1.8 as shown in
Figs. 14(f) and 15(f). Finally, Table 2 summarizes the performance measures of the Caselles-
Malladi and CFM methods, and Table 3 shows the approximate computation time using the
CFM.

4.3.2 3-D Vascular Tree Segmentation—In this section, we demonstrate the extension
of the 2-D CFM algorithm to higher dimensions in the applications of 3-D vascular tree
segmentation. The 3-D CFM algorithm can be constructed based upon the mathematical
models and numerical techniques described in Sections 2 and 3. We first demonstrate the
evolution of the 3-D CFM algorithm in a vascular-shaped structure as shown in Fig. 16. A 3-
D charged fluid started from a small cube in the simulated vessel was used to extract the object
as shown in Fig. 16(a). The 3-D charged fluid then evolved toward the boundaries of interest
and its shape was changed in response to the geometry of the structure as illustrated in Figs.
16(b) and 16(c), respectively. Finally, in Fig. 16(d), the 3-D charged fluid flowed into the
bifurcation structure and segmented the entire vessel.

Using the segmentation strategy illustrated in Fig. 16, we applied the 3-D CFM to segment a
number of vascular trees in 3DRA (256 × 256 × 256) images. An initial seed region was
manually decided to start the algorithm that automatically segmented the entire vascular trees.
Fig. 17 illustrates the 3-D segmentation results of the basilar artery and internal carotid artery
structures in different 3DRA image data sets. The 3-D visualization was implemented in the
MATLAB ® environment. We show, in Fig. 18, the qualitative comparison of internal carotid
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artery segmentation results between the 3-D CFM and manual extraction, which has better
resolution with local magnification.

4.4 Discussion
We described a new deformable model, the CFM algorithm, that extends the charged fluid
framework presented in our earlier study [30] to segment a variety of medical images. We
illustrated the unique properties and essential characteristics of the CFM in handling
topological changes and validated its ability in segmenting anatomic structures in medical
images without requiring prior knowledge of the underlying anatomy. The CFM is
conceptually straightforward, using a two stage curve evolution procedure to achieve contour
deformation. The topological changes of the contours are handled by the boundary element
detection technique described in Section 3.3 and demonstrated in Figs. 7 and 8. The spirit of
the CFM is to rapidly advance the contour toward the boundary of the ROI (pixel by pixel)
during the evolution, and then refine the results to the desired precision.

The CFM is capable of capturing objects that have a similar intensity distribution to the
background as illustrated in Fig. 9 (see also Figs. 1 and 2). The initial contour of the CFM does
not need to be placed at the center with respective to the ROI. We investigated the sensitivity
of the CFM to the parameter β in the segmentation of brain tumors as illustrated in Fig. 10.
Close segmentation results were obtained using a wide range of β values as summarized in
Table 1. We investigated a variety of medical image segmentation applications using brain MR
and chest CT images, and compared the results obtained using the CFM to those using the
Caselles-Malladi and Chan-Vese methods.

The Caselles-Malladi algorithm has several advantages over the classical parametric
deformable models [17,18,20]. This approach used an edge-based stopping force to slow the
propagating curve as it approached an image gradient [see (1)]. In practice, the evolving contour
will not completely stop at the given edge because the image gradient stopping force is small
but never zero in real images. Therefore, it is not easy to choose the appropriate stopping factor
required to achieve accurate segmentation. This is illustrated in Fig. 13(a), where the
boundaries of the brain were poorly segmented. The Caselles-Malladi algorithm was also
sensitive to the initial contour positions as depicted in Fig. 1. Moreover, a strong stopping force
limited curve evolution as shown in Figs. 11(g), 12(g), 14(b) and 15(b), while a slightly weaker
one resulted in leakage as illustrated in Figs. 11(h), 12(h), 14(c) and 15(c).

On the other hand, the Chan-Vese method was designed to automatically separate an image
into two regions, each with different intensity distributions [see (2)]. In medical image
segmentation applications, it is often desired to extract a specific anatomic structure (e.g., the
lungs or a tumor) for further analysis. Moreover, medical images generally consist of multiple
anatomic structures that have highly convoluted shapes, blurred boundaries, and low intensity
contrast to adjacent tissues. It is thus difficult to use the Chan-Vese algorithm to segment an
object that has a similar intensity distribution with the background. This is illustrated in the
brain tumor extraction (see Figs. 11 and 12) and lung segmentation (see Figs. 14 and 15)
problems. It is also difficult to segment a ROI consisting of distinct intensity values as
illustrated in Figs. 2 and 13.

The CFM algorithm also used the image gradient force to confine the contour inside the ROI
[see (14)]. However, the effective field that is used to guide curve evolution is the vector sum
of the electric field and image field [see (15)]. It is the direction rather than the magnitude of
the effective field that determines the motion of the contour. The fluid element changes the
advancement direction when it encounters an image gradient that is regarded as the object
boundary. Thus, the initial contour does not have to be placed close to or symmetrically with
respect to the boundary of interest. Compared to the Caselles-Malladi and Chan-Vese methods,
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the CFM performed better in the practical segmentation of medical images presented in this
paper (see Table 2). It is interesting to note that the contours of the Caselles-Malladi and Chan-
Vese methods tended to be smooth much like an elastic balloon expanding in a container. The
CFM tended to better match the shape of the ROI in a way that was analogous to a liquid filling
a container. Finally, in Section 4.3.2, we illustrated the evolution of the 3-D CFM algorithm
in Fig. 16 and the applications to 3-D vascular segmentation in 3DRA images as shown in Figs.
17 and 18.

5 CONCLUSION
In summary, we described the use of an electrostatic deformable model based upon the theory
of electrostatics for medical image segmentation. The unique characteristics of the CFM
algorithm were illustrated by segmenting a variety of anatomic structures in medical images.
We compared these results to those obtained using the Caselles-Malladi and Chan-Vese
methods. This new algorithm was successfully used to segment irregularly shaped anatomic
structures with blurred boundaries and low contrast in MR, CT, and 3DRA images without
requiring prior knowledge of the anatomy. Some advantages of the CFM for medical image
segmentation are: 1) no computation of curvature, velocity or acceleration terms is required to
advance the fluid elements; 2) there is no time interval setting; 3) only one effective parameter
is required; 4) topological changes of the propagating interface are handled automatically; 5)
the CFM can provide sub-pixel precision; and 6) it is straightforward to extend the algorithm
to 3-D segmentation.

The CFM is limited to the segmentation of an object with a closed boundary, and the initial
contour must be placed somewhere inside this boundary. It is not necessary to place the initial
contour at the center of the object being segmented. The CFM is useful to segment regions
with blurred boundaries and large variations in intensity in medical image segmentation
problems such as the brain tumor extraction as well as lung and vascular segmentation. The
advantages and properties of the CFM indicate that it is a promising segmentation technique
in a wide variety of medical image processing applications. We are investigating the automation
of the CFM algorithm to tackle specific segmentation problems and the implementation of the
CFM as a friendly interactive segmentation tool.

Acknowledgements

This work was supported by the NIH/NIMH research grant R01 MH071940 and the NIH/NCRR resource grant P41
RR013642. Additional support was provided by the National Institutes of Health through the NIH Roadmap for
Medical Research, Grant U54 RR021813 entitled Center for Computational Biology (CCB). Information on the
National Centers for Biomedical Computing can be obtained from <http://nihroadmap.nih.gov/bioinformatics>.

References
1. Bartlett TQ, Vannier MW, McKeel Daniel W Jr, Gado M, Hildebolt CF, Walkup R. Interactive

segmentation of cerebral gray matter, white matter, and CSF: Photographic and MR images. Comput
Med Imag Grap 1994;18(6):449–460.

2. Sonka, M.; Hlavac, V.; Boyle, R. Image Processing, Analysis, and Machine Vision. PWS Publishing;
1999.

3. Bankman, IN. Handbook of Medical Imaging. Academic Press; San Diego: 2000.
4. Pratt, WK. Digital Image Processing. 2nd. John Wiley & Sons; 1991.
5. Pal NR, Pal SK. A review on image segmentation techniques. Pattern Recognition 1993;26(09):1277–

1294.
6. Grau V, Mewes AUJ, Alcañiz M, Kikinis R, Warfield SK. Improved watershed transform for medical

image segmentation using prior information. IEEE Trans Med Imag 2004;23(4):447–458.
7. Frangi AF, Niessen WJ, Hoogeveen RM, van Walsum T, Viergever MA. Model-based quantitation of

3-D magnetic resonance angiographic images. IEEE Trans Med Imag 1999;18(10):946–956.

Chang and Valentino Page 13

Comput Med Imaging Graph. Author manuscript; available in PMC 2009 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://nihroadmap.nih.gov/bioinformatics


8. Kaus MR, Warfield SK, Nabavi A, Black PM, Jolesz FA, Kikinis R. Automated segmentation of MR
images of brain tumors. Radiology 2001;218(2):586–591. [PubMed: 11161183]

9. Bertalmio M, Sapiro G, Randall G. Region tracking on level sets methods. IEEE Trans Med Imag
1999;18(5):448–451.

10. van Ginneken B, Frangi AF, Staal JJ, ter Haar Romeny BM, Viergever MA. Active shape model
segmentation with optimal features. IEEE Trans Med Imag 2002;21(8):924–933.

11. McInerney T, Terzopoulos D. Deformable models in medical image analysis: A survey. Med Image
Anal 1996;1(2):91–108. [PubMed: 9873923]

12. Osher, S.; Paragios, N. Geometric Level Set Methods in Imaging, Vision, and Graphics. Springer-
Verlag; New York: 2003.

13. Osher, S.; Fedkiw, R. Level Set Methods and Dynamic Implicit Surfaces. Springer-Verlag; New
York: 2003.

14. Kass M, Witkin A, Terzopoulos D. Snakes: Active contour models. Int J Comput Vis 1988;01(04):
321–331.

15. Cohen LD. On active contour models and balloons. CVGIP: Image Understanding 1991;53(2):211–
218.

16. Osher S, Sethian JA. Fronts propagating with curvature dependent speed: algorithms based on
hamiltons-jacobi formulations. J Comput Phys 1988;79:12–49.

17. Caselles V, Catte F, Coll T, Dibos F. A geometric model for active contours in image processing.
Numer Math 1993;66:1–31.

18. Malladi R, Sethian JA, Vemuri BC. Shape modeling with front propagation: A level set approach.
IEEE Trans Pattern Anal Machine Intell 1995;17(02):158–175.

19. Kichenassamy S, Kumar A, Olver P, Tannenbaum A, Yezzi A. Gradient flows and geometric active
contour models. IEEE Proc Int Conf Comput Vis 1995:810–815.

20. Yezzi A, Kichenassamy S, Kumar A, Olver P, Tannenbaum A. A geometric snake model for
segmentation of medical imagery. IEEE Trans Med Imag 1997;16(2):199–209.

21. Siddiqi K, Lauziere YB, Tannenbaum A, Zucker SW. Area and length minimizing flows for shape
segmentation. IEEE Trans Image Processing 1998;7(3):433–443.

22. Vasilevskiy A, Siddiqi K. Flux maximizing geometric flows. ICCV 2001:149–154.
23. Goldenberg R, Kimmel R, Rivlin E, Rudzsky M. Cortex segmentation: A fast variational geometric

approach. IEEE Trans Med Imag 2002;21(12):1544–1551.
24. Gout C, Guyader CL, Vese L. Segmentation under geometrical conditions using geodesic active

contours and interpolation using level set methods. Numer Algorithms 2005;39(13):155–173.
25. Chan TF, Vese LA. Active contours without edges. IEEE Trans Image Processing 2001;10(2):266–

277.
26. Mumford D, Shah J. Optimal approximations by piecewise smooth functions and associated

variational problems. Commun Pure Appl Math 1989;42:577–685.
27. Vese LA, Chan TF. A multiphase level set framework for image segmentation using the mumford

and shah model. Int J Comput Vis 2002;50(3):271–293.
28. Drapaca CS, Cardenas V, Studholme C. Segmentation of tissue boundary evolution from brain MR

image sequences using multi-phase level sets. Comput Vis Image Und 2005;100:312–329.
29. Holtzman-Gazit M, Kimmel R, Peled N, Goldsher D. Segmentation of thin structures in volumetric

medical images. IEEE Trans Image Processing 2006;15(2):354–363.
30. Chang HH, Valentino DJ. Image segmentation using a charged fluid method. J Electron Imaging

2006;15(2):023011.
31. Reeves WT. Particle systems – a technique for modeling a class of fuzzy objects. ACM Trans Graphics

April;1983 02(02):91–108.
32. Szeliski R, Tonnesen D, Terzopoulos D. Modeling surfaces of arbitrary topology with dynamic

particles. IEEE Proc CVPR June;1993 :82–87.
33. Stahl D, Ezquerra N, Turk G. Bag-of-particles as a deformable model. IEEE Proc TCVG May;2002 :

141–150.
34. Kruer WL, Dawson JM, Rosen B. The dipole expansion method for plasma simulation. J Comput

Phys 1973;13:114–129.

Chang and Valentino Page 14

Comput Med Imaging Graph. Author manuscript; available in PMC 2009 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



35. Langdon AB, Birdsall CK. Theory of plasma simulation using finite-size particles. Phys Fluids
1970;13(8):2115–2122.

36. Pavlidis T. Algorithms for Graphics and Image Processing. Comput Sci Press. 1982
37. Valentino DJ, Ma K, Wei CC, Neu SC. A portable framework for medical imaging display: the

jViewbox. Annual Meeting Radiological Sci North Am 2002:891.
38. Internet Brain Segmentation Repository (IBSR). http://www.cma.mgh.harvard.edu/ibsr/

Biography
Herng-Hua Chang received his B.S. degree in Mechanical Engineering in 1996 from National
Taiwan University, M.S. degree in Biomedical Engineering in 1998 from National Yang-Ming
University, Taiwan, and Ph.D. degree in Biomedical Engineering in 2006 from University of
California, Los Angeles (UCLA). He was a research assistant (1998 - 1999) in the Department
of Radiology, Veterans General Hospital, Taipei, Taiwan. From 1999 to 2000, he was a
teaching assistant in Mechanical Engineering at National Taiwan University in Taiwan. He is
currently a postdoctoral scholar with the Laboratory of Neuro Imaging (LONI) at UCLA, where
he is researching and developing image processing algorithms for Neurology and Radiology
applications. His research interests include bioinformatics, pattern recognition, medical image
analysis, stereotactic radiosurgery, bio-MEMS, and biomedical device design.

Daniel J. Valentino received a B.S. degree in Chemistry from the University of California,
Irvine, and a Ph.D. in Biomedical Physics from the University of California at Los Angeles.
His Ph.D. dissertation focused on computational techniques for mapping relationships between
brain structure and function. He was formerly the Chief of Imaging Informatics for UCLA
Healthcare, and on the founding faculty of the Laboratory of Neuro Imaging (LONI) and the
Center for Computational Biology (CCB) at UCLA. He is currently an Adjunct Associate
Professor of Biomedical Physics in the Division of Interventional Neuro Radiology (DINR) at
UCLA, and the Chief Scientist at Radlink, Inc in Redondo Beach, CA. His research interests
include x-ray computed radiography, variational methods for image restoration and
segmentation, and cerebrovascular hemodynamics simulation.

Chang and Valentino Page 15

Comput Med Imaging Graph. Author manuscript; available in PMC 2009 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.cma.mgh.harvard.edu/ibsr/


Fig. 1.
Difficulty of using the Caselles-Malladi deformable contour in segmenting the brain in T2-
weighted MR images. (a) The initial contour that was not symmetrically placed. (b) The contour
was confined inside the brain by the inner high intensity structures using a strong stopping
force. (c) Some of the contour were crossed over the brain boundaries while some contours
were restricted inside, using a slightly weaker stopping force. (d) The contour leaked past the
brain boundaries using a weaker stopping force.
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Fig. 2.
Difficulty of using the Chan-Vese active contour in segmenting the brain in Fig. 1. (a) The
initial contour. (b) to (c) The evolution of the contour. (d) The Chan-Vese method failed to
correctly extract the brain in that the darker part of the brain was excluded and the brighter part
of the background was included as the segmentation results.
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Fig. 3.
Schematic illustrating the concept of a charged fluid. A charged fluid conceptually consists of
charged elements (the large circles), each of which exerts a repelling electric force upon the
others. The fluid elements behave as if they consisted of different numbers of charged particles
(the solid dots). The charged fluid can be influenced by internal repulsive electric forces
(Fele) and external restrictive forces (Fext) from the image data.
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Fig. 4.
The charge distribution procedure. (a) A uniform charge distribution is used for the fluid
elements (the red solid dots) at the beginning of this procedure. They are only allowed to share
charge on the 2 pixel wide propagating interface that is obtained from the front deformation
procedure (see Fig. 5). The empty charge positions on the interface are represented by the blue
hollow circles. (b) The system reaches the equilibrium charge distribution and the electric fields
(the arrows) on the elements are approximately perpendicular to the contour. The 1 pixel wide
front (not shown) is then obtained by using the boundary element detection technique as
described in Section 3.3. Note that the shape of the contour remains the same in this procedure.
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Fig. 5.
The front deformation procedure. (a) After the charge distribution procedure, the fluid elements
are on a 1 pixel wide front with 4-connectivity. Note that the tiny inner charges in Fig. 4(b) are
discarded after boundary element detection. The effective fields (the arrows) are computed
using the electric field in equilibrium and the image field. (b) A new 2 pixel wide propagating
interface is obtained by locating the four adjacent grid points according to the effective field
direction shown in (a) for each element based upon Fig. 6. Note that, compared to Fig. 4(a),
the propagating interface evolves into a different shape in response to the effective fields.

Chang and Valentino Page 20

Comput Med Imaging Graph. Author manuscript; available in PMC 2009 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 6.
Schematic illustrating the localization of a 2 pixel wide binary interface on an individual fluid
element. (a) The effective field Ee f f on a fluid element (the red solid dot). (b) The four adjacent
grid points (the blue hollow circles) of the element are generated according to the effective
field direction in (a) and denoted as a part of the 2 pixel wide propagating interface.
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Fig. 7.
Evolution of the CFM contours in a free 2-D space. (a) Initialization of three charged fluids
using square contours, two of which were crossed by each other. (b) The two contours merged
to one after one iteration. (c) The contours kept the same geometry while evolving. They were
treated as independent systems when they were away without touching each other. (d) The
fluid elements from one charged fluid not only interacted with themselves but also with those
from the other when merging. (e) The remaining contour after merging. (f) The contour
preserved the same topology after further evolution.
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Fig. 8.
Curve evolution of the CFM contours in a phantom image of 6 asymmetrical lobes with
simulated cortex from the IBSR. (a) Initialization of the CFM using two 4 × 4 square contours.
(b) and (c) The contours were constrained evolving in the simulated cortex structure. (d) The
evolving contours before merging. (e) The two contours merged together while evolving. (f)
The merged contour split into two separated contours with one inside the other.
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Fig. 9.
Experimental results on the effect of CFM initialization in segmenting the brain in Fig. 1. (a)
The initial contour was placed corresponding to that in Figs. 1 and 2. (b) and (c) The evolution
of the contour. (d) The segmentation results with conformity κc = 98.36% using β = 0.8.
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Fig. 10.
Sensitivity analysis of the parameter β in segmenting brain tumors in T2-weighted MR images.
(a) The initial contour used in all experiments. (b) and (c) The contours leaked through weak
boundaries using lower values of β = 1.2 and β = 1.6. (d) The result with κc = 86.32% using
β = 2.0. (e) The result with κc = 90.12% using β = 10.0. (f) The result with κc = 90.48% using
β = 18.0. (g) and (h) The results were the same (κc = 66.67%) using β = 19.0 and β = 30.0.
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Fig. 11.
Comparison of different segmentation techniques in segmenting the brain tumor in T2-
weighted MR images. (a) The initial contour. (b) to (d) The evolution of the contour using the
Chan-Vese algorithm. Note that the tumor was almost captured during curve evolution when
other anatomic structures were also included as the ROI [indicated by the arrow in (c)]. It was
difficult to stop the algorithm during the evolution since a steady state was not observed. (e)
The Chan-Vese segmentation result. (f) The result using a simple intensity thresholding. (g)
The Caselles-Malladi result (κc = 64.21%) using a strong stopping force. (h) The Caselles-
Malladi contour was leaking using a slightly weaker stopping force. (i) The result (κc = 85.99%)
using the CFM with β = 6.0.
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Fig. 12.
Using different segmentation techniques to segment the brain tumor in T2-weighted MR
images. (a) The initial contour. (b) to (d) The evolution of the Chan-Vese contour. The
surrounding tissue has similar intensity to the tumor so that it was difficult to capture the ROI
without including other anatomic structures. (e) The Chan-Vese segmentation result. (f) The
result using a simple intensity thresholding. (g) The result of the Caselles-Malladi algorithm
using a strong stopping force with κc = 40.34%. (h) The Caselles-Malladi contour leaked past
the boundaries using a slightly weaker stopping force. (i) The result (κc = 80.35%) using the
CFM with β = 8.0.
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Fig. 13.
Comparison of the segmentation results using different algorithms in extracting the brain in
T2-weighted MR images. (a) The result using the Caselles-Malladi method with κc = 28.05%.
Note that few part of the contour leaked past the boundaries while most stayed inside the ROI.
(b) The result using the Chan-Vese method. (c) The result (κc = 98.72%) of the CFM using β
= 0.5.
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Fig. 14.
Comparison of different segmentation techniques in extracting the lung in pulmonary CT
images. (a) The initial contour. (b) The result (κc = −27.04%) of the Caselles-Malladi method
using a strong stopping force. (c) The Caselles-Malladi contour leaked through the boundaries
using a slightly weaker stopping force. (d) The result using the Chan-Vese method. Note that
the background, whose intensity is similar to the lung, was also included as the ROI. (e) The
result using a simple intensity thresholding. (f) The result using the CFM (β = 1.8) with κc =
98.99%.
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Fig. 15.
Using different segmentation algorithms to segment the lung in pulmonary CT images. (a) The
initial contour. (b) The result (κc = −50.61%) of the Caselles-Malladi method using a strong
stopping force. (c) The Caselles-Malladi contour leaked past the boundaries using a slightly
weaker stopping force. (d) The Chan-Vese method was unable to correctly capture the lung
boundary. (e) The result using a simple intensity thresholding. (f) The result (κc = 98.02%) of
the CFM using β = 1.8.
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Fig. 16.
Illustration of segmenting a vascular-shaped structure using the 3-D CFM. (a) The 3-D CFM
started from a small cube. (b) and (c) The evolution of the 3-D CFM during the process. (d)
The segmentation results.
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Fig. 17.
Experimental results of the 3-D vascular tree segmentation using the 3-D CFM in 3DRA image
volumes. (a) and (b) Internal carotid artery structures. (c) Basilar artery structures.
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Fig. 18.
Qualitative comparison of internal carotid artery segmentation results using the 3-D CFM and
manual extraction in 3DRA images. (a) The result of using the 3-D CFM in a 256 × 256 × 256
image volume. (b) The result of manual segmentation in a 256 × 231 × 256 image volume of
the data in (a) locally magnified.
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Table 1
Performance measures of the results in Fig. 10 for the sensitivity analysis of the parameter β in segmenting brain
tumors.

Image Parameter β Conformity κc
Fig. 10(d) 2.0 86.32%
Fig. 10(e) 10.0 90.12%
Fig. 10(f) 18.0 90.48%
Fig. 10(g) 19.0 66.67%
Fig. 10(h) 30.0 66.67%
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Table 2
Quantitative analysis of the results obtained using the Caselles-Malladi and CFM methods in segmenting medical
images.

Image κc: Caselles-Malladi κc: CFM
Fig. 11 64.21% 85.99%
Fig. 12 40.34% 80.35%
Fig. 13 28.05% 98.72%
Fig. 14 −27.04% 98.99%
Fig. 15 −50.61% 98.02%
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