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Abstract
A method for removing arteries that appear bright with intensities similar to white matter in
Magnetized Prepared Rapid Gradient Echo images of the ventral medial prefrontal cortex is
described. The fast marching method is used to generate a curve within the artery. Then, the largest
connected component is selected to segment the artery which is used to mask the image. The surface
reconstructed from the masked image yielded cortical thickness maps similar to those generated by
manually pruning the arteries from surfaces reconstructed from the original image. The method may
be useful in masking vasculature in other cortical regions.
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1. Introduction
Accurate cortical analysis of gray matter (GM), white matter (WM) volumes and gray/white
surfaces can be impeded by the presence of blood vessels. These appear as high intensity
structures in gradient echo magnetic resonance (MR) images due to flow related enhancement.
As tissues in the desired volume are scanned, their magnetizations become partially saturated,
causing longitudinal magnetizations in this region to not recover fully between pulses. Blood
outside this region, and therefore not saturated in this manner, then flows into the region. It is
imaged and produces a very high signal intensity, causing blood vessels to appear bright in
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these images [e.g. 1]. A simple thresholding to isolate white matter would result in blood vessels
being reconstructed as well (and vice versa). While manual segmentation of the vessels is
possible, it is time-consuming and tedious.

Cortical characteristics including cortical thickness metrics, are derived with reference to gray
matter/white matter (GM/WM) surfaces, therefore if vessels are not removed from a region of
interest they can be misidentified as a GM/WM surface and may artificially influence derived
cortical metrics. There is variability in the extent of overlying vasculature in different cortical
regions. Certain cortical regions have a significant number of overlying large vessels, which
have the potential to induce errors or bias in the neighboring cortical metrics. In the ventral
medial prefrontal cortex (VMPFC) there are several major vessels that transverse the region
and can cause issues related to cortical characterization. The two main arteries in the region
are the callosomarginal and pericallosal arteries [2]. Figure 1 shows the location of the VMPFC
relative to the whole brain and these arteries in a sagittal slice of an MR subvolume of the
VMPFC. The VMPFC is the lower, central portion of the prefrontal cortex, which is anterior
to the precentral sulcus. Studies have found that in clinically depressed subjects there is a
significant reduction of gray matter volume in the subgenual prefrontal cortex, [3–8]. There is
also data suggesting disruption of the adjacent cortex, the VMPFC (Botteron et al., in
preparation and [9]).

We have previously developed a procedure for cortical thickness analysis of the VMPFC that
required manual removal of the arteries by pruning the blood vessels from the reconstructed
gray/white surfaces of the VMPFC [10] but this method is tedious and time-consuming
especially in current longitudinal and large-scale neuroimaging studies. Thus a simple,
automated method to remove these blood vessels would make cortical analyses of the VMPFC
more efficient.

The problem of vessel segmentation in general has been addressed before and multiple methods
for solving it exist [11]. Many of these solutions are single scale [12–18]. Several multiscale
methods exist as well [19–22]. Many vessel segmentation algorithms involve finding
centerlines, or skeletons, of the vessels [23–26]. These algorithms are faster than nonskeleton
algorithms, which work without finding a centerline [27–29]. None of these methods have been
applied and rigorously tested for specific cortical regions, such as the VMPFC. Thus we
develop a skeleton-type method based on a novel application of the fast marching method
which is commonly used in level set methods in image analysis [30,31] and apply it to remove
arteries from MR subvolumes of the VMPFC.

2. Methods
2.1 Algorithm

The proposed approach finds a path completely contained by the artery and segments it from
that path. The problem of finding the skeleton itself was modeled as a minimum path estimation
problem. The method to solve the minimal path problem was proposed for 2D problems by
Cohen and Kimmel [32] and later extended to 3D by Deschamps and Cohen [33]. A cost
function is defined inside the image such that the desired path is the minimum of the integral
of the cost between the two end points. This minimal path problem has been very well studied
and a number of solutions exist, such as the Dijkstra method or the Bellman-Ford method
[34]. Dijkstra [35] solved the problem using dynamic programming and graph theory. Cohen
and Kimmel [32] solved the problem by propagating a front between the two end points. This
method has the advantage of being geometric, unlike the Dijkstra method, which is purely
topologic. As a consequence, it is more precise. The disadvantage of this method is that the
cost function used must meet the requirements of the Eikonal equation.

Penumetcha et al. Page 2

Comput Med Imaging Graph. Author manuscript; available in PMC 2010 May 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The Eikonal equation can be solved using the level set method [36] which considers the problem
of an evolving interface by increasing the dimensionality of the problem. The initial front is
considered the zero level set, and the front at each subsequent time is a higher level set. Thus,
a point growing into a circle at uniform speed would be portrayed as a cone with the tip being
the zero level set. In the case of monotonically advancing fronts, the surface satisfies the
Eikonal equation.

In the blood vessel segmentation method, first a curve is traced inside the blood vessel and is
verified by the user. Then the vessel is segmented. Tracing the curve occurs in two steps:
calculating a distance map (the front propagation) using a distance function and extracting a
minimal path based on this map.

We define the distance in the image between two voxels u and v in two steps. First, for any
regular parameterized curve γ(s):[0,1] → ℝ3, such that γ(0) = u and γ(1) = v, define the
functional

where x(w) is the image value at location (voxel) w, γ ̇ is the gradient of the curve γ, α and ω
are positive constants. Then, the distance between u and v is defined as the minimum value of
the functional C over all regular curves γ(s):[0,1] → ℝ3, such that γ(0) = u and γ(1) = v. In the
above integrand, |x(γ(s)) − μ|α and ω, are described as data term and regularization term
respectively. If there were no data term, C(γ, u, v) would be ω times the length of the curve γ
which is minimal when γ is a straight line joining u and v. The data term is small when the
image intensity values along γ are close to a constant μ. Deviations from μ are penalized more
with large positive α. We experimented with several values of μ, α and ω. Since voxels u and
v are selected manually and both x(u) and x(v) are known, we use (x(u) + x(v))/2 for μ which
crudely estimates the average intensity along the blood vessel. ω = 1 is chosen and being
relatively small means that there is essentially no regularization used. Finally, α = 1 was found
to give better results than α = 2.

The user selects a start point and an end point, that is u and v. The Fast Marching algorithm is
then used to perform the front propagation. To reduce computation time, the distance is
calculated from the starting point, u, outward only until it reached the end point, v, as opposed
to over the entire volume. That is, only a partial front propagation was performed.

Once the distance map has been calculated, the actual path must be extracted. A gradient
descent on the distance map from the end point is used to trace a path to the start point, which
is a global minimum of the distance function. There are several gradient descent methods that
can be used. Following Deschamps and Cohen [33], a steepest gradient descent was chosen
because it is easily implemented, consistent and accurate.

After the path has been extracted, the user verifies that all points of the path lie within the blood
vessel. If the user is not satisfied, new of start and/or end points are chosen and a new path is
delineated. For illustration, Figure 2 shows the curve tracing procedure with initial and start
points on the same slice. In reality for the same data in 3D, the initial and start points were
located 4 slices apart giving a curve of length of 31.7 mm compared with the Euclidean length
of 20.5 mm.

Once a path has been selected, the first step in segmenting the blood vessel is generating a tube
around it. The largest possible diameter of the vessel is selected as the radius of this tube because
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it cannot be assumed that the path is centered in the blood vessel. This value can vary from
approximately 1 mm to 3 mm and is selected by the user. The tube at this stage includes the
entire blood vessel and some surrounding tissue.

After generating the tube, the next step is thresholding it to remove pixels of intensities below
a specified value. This removes surrounding gray matter and other objects that might have been
picked up as part of the tube in the area around the blood vessel. Once again the user specifies
this value. There is only a lower bound to the range of accepted intensity values because blood
vessels have very high intensity values in the T1-weighted MR images.

The final segmentation step consists of selecting the largest connected component.
Thresholding removes gray matter, cerebrospinal fluid (CSF) and other darker objects, but
neighboring blood vessels and surrounding white matter might still be included in the
delineated region. To remove any small pieces that might have been included, the largest
connected component is selected and all others discarded. Figure 3 shows the steps of
segmenting a blood vessel, following figure 2.

The algorithm was implemented in Matlab1. The front propagation was accomplished using
modified functions from the Fast Marching Toolbox2. A blood vessel can be removed in
approximately 10 – 15 seconds.

2.1 Subjects, data acquisition and data analysis
The method was first developed and tested on a large subvolume containing the VMPFC and
neighboring structures in one proband (diseased) subject in a neuroimaging study of
schizophrenia [37]. Validation was then done on a set of VMPFC subvolumes from ten subjects
(three control twin pair, two twin pair with one twin at high risk and other with disease) in a
separate and independent neuroimaging study of depression [3]. Both automated and manual
methods were applied without knowledge of diagnosis.

The test subvolume was taken using the Magnetized Prepared Rapid Gradient Echo
(MPRAGE) sequence from a Siemens 1.5T Vision scanner (with a transmit/receive circularly
polarized head coil) with repetition time = 9.7 ms, echo time = 4 ms, flip angle = 10°, section
thickness = 1.25 mm, field of view = 224 mm × 256 mm resulting in 1.25×1×1 mm3 voxels.
The signed 16 bit MR dataset was compressed to unsigned 8 bit MR dataset using Analyze
[38] by linearly rescaling the voxel intensities such that the voxels with intensity levels at two
standard deviations above the mean of white matter (corpus callosum) were mapped to 255
and the voxels with intensity levels at two standard deviations below the mean of CSF (lateral
ventricle) were mapped to 0. The means and standard deviations were obtained from sampling
of voxels from the respective regions. The MR scan was then interpolated into 0.5 mm × 0.5
mm × 0.5 mm isotropic resolution using trilinear interpolation which allows for more accurate
hand segmentation and smoother intensity histograms [3,10,37,39–41].

The ten subvolumes were obtained using T1-weighted MPRAGE sequences in the same
Siemens 1.5T Vision scanner and processed using the methods described in Ratnanather et al.
[10] and Botteron et al. [3] as follows. Each scan had an excitation time of 10–11 ms, a
relaxation time of 3–4 ms, with a 256×256 field of view using 160 sections resulting in 1×1×1
mm3 voxels. Three scans were acquired sagittally for each subject. As was done with the test
subvolume, Analyze was used to register, sum and interpolate the images, resulting in one
image per subject with 0.5×0.5×0.5 mm3 voxels. The scans were averaged to improve gray/
white contrast. From these scans, the subvolume containing the VMPFC was defined as tissue

1www.mathworks.com
2www.mathworks.com/matlabcentral
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in all the medial gyri that were inferior to the corpus callosum and posterior to the first coronal
plane that intersects the anterior most portion of the corpus callosum; (brain in standardized
AC-PC orientation) the posterior boundary was defined by the plane perpendicular to the AC-
PC line where the olfactory nerve nests inside the olfactory sulcus on coronal view.

For the ten VMPFC subvolumes, Bayesian segmentation with an expectation-maximization
algorithm was used to classify the CSF, GM and WM tissues [42]. Then a regionally specific
intensity correction was performed [10]. Based on the computed gray/white thresholds, gray/
white surfaces were reconstructed using isosurface generation algorithms [10,40]. Labeled
Cortical Depth Maps (LCDMs) were then generated from the surfaces [39,40]. These represent
the density of gray matter tissue as a function of gray matter distance from the cortical surface
and has been validated for the MPFC [10].

3. Results
To determine the accuracy of the method, the blood vessels were segmented manually. Then
the automated method was used to segment the blood vessels from the same volume. The
distance of each automatically segmented voxel from the closest hand-segmented one was
calculated to yield a histogram in figure 4. The Haussdorf (i.e. the maximum) distance was
2.4495 mm (4.8990 voxels). This voxel was an outlier in the lateral, ventral temporal lobe. The
blood vessel was immediately next to a bright object, and that object was segmented as part of
the vessel. The average distance was 0.1205 mm (0.2410 voxels). 94.0 % of the voxels were
within 0.5 mm (1 voxel) and 98.2 % were within 1 mm (2 voxels) of the manually segmented
ones. Thus, the method provides an accurate approximation of the ground truth.

Figure 5 shows the superposition of the blood vessels obtained from the original VMPFC gray/
white surface on the surface reconstructed with the automated method (cf. Figure 1). Also
shown are the axial, coronal and sagittal views of the blood vessel relative to the MRI image.
Notice how the blood vessel can compromise the calculation of cortical thickness from LCDMs
relative to the green gray/white surface. For validation, we compared the LCDMs generated
by the method with those generated by manually pruning of the blood vessel from the
triangulated gray/white surface via dynamic programming [43]. Figure 6 illustrates the LCDM
curves for both methods plotted by individual subjects demonstrating that both methods gave
similar LCDMs. This was statistically verified by the following analysis.

Lilliefors’ test [44] indicated normality in LCDM distances from manual (p=0.7177) and
automated (p=0.8132) methods. Likewise, homogeneity of variances (HOV) for both methods
yielded p=0.9091 (Brown-Forsythe test, [45]). Thus, parametric t-tests were used for pair-wise
comparison of the volumes. Volumes from the manual method were larger than those from the
automated method (p=0.0002, 2-sided, p=0.0001, manual > automated), but these do not
compare trend in shape or size (up to scale) of the LCDMs. Further, correlation analysis
indicated that profiles for both methods were similar (Pearson’s r coefficient was 0.9986 with
p≈0.0). Kolmogorov-Smirnov tests [46] for cdfs of volumes showed that the volumes from the
two methods were not significantly different (p=0.9945, 2-sided; p=0.6703, manual <
automated; manual > automated, p≈1.00) and hence a similar trend in profiles.

LCDM distances generated from manual method were larger than those from the automated
method due to gray matter voxels being assigned correct distances relative to the gray/white
surface. Pooled LCDM distances for the two methods were found to be significantly non-
normal (p≈0.0) and the Brown-Forsythe test for HOV did not hold either (p≈0.0). Kolmogorov-
Smirnov tests for cdfs indicated differences in density profiles for LCDMs (p≈0.0, 2-sided;
p≈0.0, manual < automated; p≈1.0, manual > automated).
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For each subject, LCDM distances for both methods were found to be significantly non-normal
using Lilliefors’ tests (p≈0.0). However, Brown-Forsythe tests for HOV were accepted for
some subjects and rejected for others. Thus, non-parametric tests such as Wilcoxon (2-sided,
> and <) tests [46] were used for LCDM comparison for each subject. The two methods differed
significantly because distances from the manual method were larger than those from the
automated method which is not an appropriate test for density profiles. Table 1 shows that
Kolmogorov-Smirnov tests comparing density profiles for each subject confirmed distances
from the two methods were not significantly different for any subject, indicating that the two
methods yielded the same density profile. Similar agreement was obtained for an additional
group of ten scans of subjects by an independent analyst.

4. Discussion
We have validated the application of a Fast Marching algorithm to segment and remove
callosomarginal and pericallosal arteries from MPRAGE subvolumes of the VMPFC, which
is the focus of on-going neuroimaging studies of major depressive-disorders. The method is
automated and less time consuming than manual pruning of arteries from gray/white surfaces
of the VMPFC reconstructed from the original image. Further it is reliable across control and
diseased subjects.

Since the blood vessels are relatively large (approximately 3 to 4 voxels in diameter) as well
as being bright, the method is not sensitive to the choice of the initial and start points. The cost
increased with path length, thus voxels at very large distances from the start point had extremely
high costs. Setting α to a higher value caused costs to increase faster as the propagation moved
outward. This is a problem for longer blood vessels as the cost function increased to arbitrarily
large values at the end point making the path difficult or even impossible to delineate using
gradient descent. However, in the case of the VMPFC, long paths were rare in which case the
paths were broken up into relatively short ones for bifurcating or multiple vessels.

Other methods such as dynamic programming tracking using a quadratic intensity-based cost
function [47] were initially considered. But dynamic programming was found to be
computationally expensive and failed with long paths since it did not attempt to follow the
geometric structure of the blood vessel. A region growing method based on the generated path
could have been used instead of thresholding and could have worked with high contrast images
but would be subject to constraints and would likely not work with multiple or bifurcating
blood vessels.

Finally, the method is likely to be useful for isolating vasculature in other cortical regions as
well such as the subgenual end of the anterior cingulate cortex [41] which is incidentally close
to the VMPFC and could be adapted and extended to delineating 2D geometric structures in
the brain.
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Figure 1.
Left: Location of the ventral medial prefrontal cortex with colored gyri. Right: Sagittal MR
slice of the VMPFC with callosomarginal and pericallosal arteries.
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Figure 2.
The steps of tracing a curve: a 2D slice with a vessel (left), the distance map calculated from
the slice with lower values represented by darker intensities (center), and the path traced within
the blood vessel (right); end points are marked in red. Lines thickened for emphasis.

Penumetcha et al. Page 11

Comput Med Imaging Graph. Author manuscript; available in PMC 2010 May 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
The steps of segmenting a vessel in a 2D slice: a tube is generated around the vessel (left), the
tube is thresholded (center), and finally the largest connected component is selected (right).
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Figure 4.
Histogram of the distance of each automatically segmented voxel from the closest manually
segmented one.

Penumetcha et al. Page 13

Comput Med Imaging Graph. Author manuscript; available in PMC 2010 May 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
Top shows a VMPFC gray/white surface reconstructed with the automated method (green)
with the blood vessels reconstructed from the original volume (blue). Bottom row shows the
axial, coronal and sagittal views of the original and reconstructed surfaces indicating the
presence of the blood vessels. The red ball on the surfaces (top row) corresponds to the cross-
hair in the images (bottom row).
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Figure 6.
LCDMs comparing manual (black) and automatic removal (red) of blood vessels for subjects
1 to 10 (top-to-bottom, left-to-right).
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