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Abstract 

The present work describes a new method for the automatic detection of the glottal space from laryngeal images obtained either with high speed 
or with conventional video cameras attached to a laryngoscope. The detection is based on the combination of several relevant techniques in the 
field of digital image processing. The image is segmented with a watershed transform followed by a región merging, while the final decisión is 
taken using a simple linear predictor. This scheme has successfully segmented the glottal space in all the test images used. 

The method presented can be considered a generalist approach for the segmentation of the glottal space because, in contrast with other methods 
found in literature, this approach does not need either initialization or finding strict environmental conditions extracted from the images to be 
processed. Therefore, the main advantage is that the user does not have to outline the región of interest with a mouse click. In any case, some a 
priori knowledge about the glottal space is needed, but this a priorí knowledge can be considered weak compared to the environmental conditions 
fixed in former works. 
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1. Introduction 

Nowadays, our current life style has increased the number of 
individuáis affected by vocal fold pathologies, so it is becoming 
increasingly necessary to find accurate and quick methods for 
diagnosis in this field. The most widespread method used for 
the diagnosis and evaluation of these pathologies is the direct 
observation of the vocal folds with an endoscope either in rest or 
during vibration. These observation techniques have contributed 
to the development of new tools to characterize the movement 
and the vibration pattern of the vocal folds with the aim of 
helping the medical doctors in the diagnosis. 

There exist two main approaches to evalúate and register the 
movement of the vocal folds and the mucosal waveform 
high speed video recordings, and low speed recordings illumi-
nated with a stroboscopic light (in the following, stroboscopic 
recordings or videostroboscopy). 

The high speed video recording allows the acquisition of stills 
of the vocal folds during phonation with a frame rate over 2000 
pictures per second illuminating with a continuous light source. 
The high speed video recoding ensures an accurate registering 
of the whole vibratory cycle, because the frequency of vibra­
tion of the vocal folds is between 50-150 Hz (for males) and 
200-300 Hz (for females). The main drawback of this technique 
is the price of the equipment. 

The videostroboscopy uses low speed recordings with not 
more than 25 or 50 frames per second. According to the Nyquist 
theorem , this frame rate is clearly insufficient to register the 
vibratory cycle in detail. A low cost solution is to undersample 
the recording using a stroboscopic light that produces beams 
0.1 ms long with a frequency slightly lower than the fundamental 
frequency of the vocal folds movement. This technique simulates 
the vibratory cycle and allows the visualization of the vocal folds 
movement with a virtual frequency that is clearly lower than the 
true frequency of vibration. 

Despite its advantages, the videostroboscopy presents several 
problems inherent to the technique itself: some of the stills taken 
could be fuzzy and incorrectly illuminated and besides, the stills 
could not be taken at the right instant 



On the other hand, there exist some artefacts which influence 
the quality of the recordings in both of the techniques men-
tioned, such as the rotation of the camera, the side movements 
of the laryngoscope, and the movements of the patient during 
the recording. These factors delocalize the position of the vocal 
folds and glottal space within the frame, and their effect is more 
pronounced in the stroboscopic recordings because in order to 
register a complete cycle of vibration a longer recording interval 
is required (several seconds long instead of the typical máximum 
of 1 s at high speed). 

Another source of variability is given by the degree of illu-
mination that depends on the equipment used. In this sense, 
it is possible to differentiate an inter-video variability (i.e., 
the illumination depends on the light source and the recording 
equipment), and an intra-video variability (i.e., each photogram 
has a different degree of illumination due to the stroboscopic 
effects). 

In order to illustrate the difflculties addressed in this paper and 
the effect of the factors mentioned, Fig. 1 shows two characteris-
tic images of the larynx obtained with stroboscopic illumination. 
The position and orientation of the glottal space is different 
depending on the frame. Moreover, the images can be fuzzy 
(Fig. Ib) and show regions with a poor illumination, especially 
in the corners of the images, and black elongated áreas intro-
duced by the recording equipment, as well as variations in the 
luminance of the glottal space. 

Taking all of this into account, the detection of the glot­
tal space (or glottis [1]) in laryngeal images is not always 
an easy task. Moreover, it is a fundamental operation that 
has to be addressed in advance in order to calcúlate a large 
amount of parameters that quantify the phonation process: 
the glottal área waveform , the ratio vibratory ampli­
tudes, the ratio vibratory periods, the ratio opening and 
cióse phase , fundamental frequency, open quotient, closed 
quotient, speed quotient, time periodicity index, amplitude 
periodicity index, and phase symmetry index . It is fur-
thermore a prior step for the segmentation of the vocal folds 

There are many research works in existing literature that 
address the problem of the automatic detection of the glot­
tal space as an initial step to analyze the phonation process: 

Fig. 1. Two different images 

kimograms , vibration proflles , glottal space área 
time-evolution diagrams 

Research carried out in this fleld made it necessary to develop 
new digital image processing techniques orientated towards 
the automatic segmentation of the glottis. The techniques used 
before range from those based on the classical and simplest 
image processing operations (thresholding, flltering, morpho-
logical operations, etc) , to the active contours (snakes) 

, the balloon models , and the región growing tech­
niques . The main problem that these techniques have is that 
the segmentation process strongly depends on the starting point 
(initialization). Furthermore, they are very sensitive to noise. 

Palm developed variations of the snakes based 
method to improve behaviour against noise, as well as to obtain 
some degree of independence with the initialization procedure. 
However, this work needs a strict stop signal while looking for 
the glottis as a dark object centred on the image, something 
which does not always occur in most stroboscopic images due 
to the previously mentioned problems with illumination and 
movements. 

, the initialization point is searched for by means of 
an advanced thresholding technique based on the histogram of 
the images. This method provides very good results with high 
speed video recordings, but its performance is lower with stro­
boscopic images because using this kind of illumination makes 
it difflcult to sepárate the glottis from other dark áreas (with a 
similar grey level) by means of a thresholding. 

In ref. [14], the initialization is carried out analyzing the 
differences between two consecutive photograms to detect the 
movement áreas (called Motion Energy Images ). As in ref. 

, it is not easy to extrapólate the results to videostroboscopic 
images where the movement not only depends on the vibration 
of the vocal folds but also depends on the patient and camera 
movements mentioned earlier. 

Other recent segmentation approach, such as fuzzy connect-
edness needs to define seeds to split the regions of the 
image, introducing some kind of user dependence. 

The new method proposed in this paper does not need any 
kind of initialization. The method is based on the perceptual 
characteristics of the human eye to distinguish between dif­
ferent grey levéis. Thus, the only a priori knowledge that this 

the larynx during phonation. 



method integrates is easily applicable to any image of the lar-
ynx, because it is based on the characteristics that the glottis must 
always match in order to be recognized by a human observer. 
The technique used throughout this paper is called in existing 
literature Just Noticeable Difference (JND) . This technique 
integrates perceptual aspects, being a useful tool for the detec-
tion of the glottis in every image with independence of the means 
that were used to record them (videostroboscopy or high speed 
video). 

The paper is organized as follows: Section 2 establishes the 
basic concepts and tools used in the process by means of a short 
review; Section 3 describes in detail the proposed method for the 
segmentation; Section 4 analyzes the results with a set of video 
images; and Section 5 enumerates the conclusions reached in 
view of the results. 

2. Review of the digital image processing tools 

2.1. Watershed transform 

The watershed transform is one of the most valued tools in 
the fleld of digital image segmentation [19]. One of the main 
advantages of this technique lies in the fact that the result is a 
set of well delimited áreas, so if we consider that these áreas 
represent the searched objects, we will obtain an accurate edge 
detection deflned by a set of connected pixels. 

The concept of watersheds comes from the fleld of topogra-
phy, referring to the división of a landscape in several basins or 
water catchment áreas. From this point of view, we can consider 
the image as a topographic surface where each pixel is a point 
situated at some altitude as a function of its grey level 

The watershed transform simulates the rain over the surface 
associated with the image. The drops that fall over a point will 
flow along the path of steepest descent until reaching a min-
imum. Such a point is labelled as belonging to the reception 
basin associated with this minimum. This process is repeated 
for all the points on the surface, so in the end every point will be 
assigned to a minimum and the surface will be divided into its 
catchment basins. An efflcient implementation of this method is 
shown 

The goal is that each catchment basin matches an object in 
the image. Nevertheless, the result of the watershed transform 
is usually disappointing, due to the fact that thousands of catch­
ment basins arise where only a few were expected . This 
problem is called oversegmentation and is due mainly to noise 
in the image. 

A good solution to oversegmentation is to pre-process the 
initial image to reduce the noise. A widespread technique is the 
thresholding of the gradient image. Due to the fact that the gra-
dient image has its máximum just over the edges of the objects 
present in the image, it is more logical to apply the transforma-
tion to the image gradient: before the watershed transform the 
gradient image is thresholded to remove the insigniflcant edges 
that appear due to noise . However, this pre-processing 
does not solve the problem completely, so a post-processing 
would be required to reach a better solution. 

2.2. JND based región merging 

The best solution to solve oversegmentation is to post-process 
the resulting image after the watershed transform to merge the 
catchment basins, following various criteria as described in 
existing literature . In general terms, all these meth-
ods are based on a continuous iteration over the watershed 
transform. Each iteration calculates the neighbour catchment 
basins that might be joined with a lower cost and merges them. 
The proces s ends either when there are as many catchment basins 
as wished (ideally one per object), or when the merging func­
tion cost exceeds an established threshold. The differences of the 
methods that might be used lies on the deflnition of the merging 
cost function. In this paper, the región merging that has been 
used is theoretically deflned , where the merging cost 
function is calculated according the JND of the different grey 
levéis of the image. The JND represents the sensibility of the 
human visual system to the changes of luminance, because it is 
well known that it is not able to differentiate certain changes of 
luminance. 

, an expression (Eq. (1)) of the visibility threshold 
Tis given (Le., the threshold below which the eye is not able to 
detect the changes of luminance) as a function of the different 
grey levéis of the image / (deflning 0 like black and 255 like 
white). Fig. 2 shows graphically the relationship established in 
theEq. (1). In view of fheplot, a great insensibility of the human 
visión system can be observed against the changes of the grey 
level in the dark regions. 

17 • 1 
T(x, y) 

/(*, y) 
127 

+ 3 ifl(x,y)<127 
(1) 

128 
(I(x, y) - 127) + 3 Otherwise 

2.3. Object parameterization: región invariant moments 

The región moments are a set of parameters that enable the 
objects of an image to be described based on their characteristics 
(shape, texture, homogeneity, etc). There exist several methods 
to calcúlate the moments of an object. The ones used in this work 
have a statistical ground. 

The moments integrated in this work are the classical invari­
ant described by González and Woods in ref. [28]. The binary 
invariant moments, that have been adapted from them, follow the 

Visibility Threshold versus Grey level 
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Fig. 2. Visibility threshold of the human visual system as a function of the grey 
level in the image. 



same expressions, but consider that all pixels of the object have 
valué 1. For this reason they become descriptors exclusively of 
the form of the object. 

2.4. Linearprediction 

Linear prediction is a simple technique of classiflcation that 
recognizes and assigns new elements within previously deflned 
classes by means of a supervised training 

Each of the target elements to be classifled is character-
ized by an Mh order vector of parameters (e.g., the 7 invariant 
moments and the 7 binary invariant moments) that are selected 
with proven discriminative capabilities, so that they allow the 
different classes in study to be distinguished. A discriminant 
mathematical model is generated from a set of parameters 
belonging to known target elements. Thus, every unknown ele­
ment is contrasted with the model and assigned to the most likely 
class as a function of the score given by the model. 

An example of the linear prediction model is the Fisher dis­
criminant analysis that classifles elements into two classes by 
means of a linear function (Eq. (2)): 

D y~]ujXi (2) 
¡=o 

where X¿ represents the different parameters of the Mh dimen­
sional feature vector, whereas m are the coefflcients calculated 
by means of supervised training and defines the discriminant 
function that better separates the elements of the target class. The 
Fisher linear function is a projection of the feature space into a 
new subspace of dimensión one, searching for the best separa-
bility. Thus, the classiflcation is carried out by means of a linear 
combination of the feature space that provides a single score, and 
further establishing an optimum decisión threshold over such 
score , that will be called the classiflcation threshold. 

Fig. 3 shows an example of the histogram given by the Fisher 
discriminant function in a two-class problem. The abscissa 
axis represents the scores given by the Fisher discriminant 
for all the elements under study, and the ordinate axis repre­

sents the number of cases that fall into each small interval of 
scores. 

By referring to the histograms of Fig. 3 it can be estab-
lished which is the best classiflcation threshold that separates 
both classes, that do not necessarily have to be the average of 
the centroids of both classes. If the classiflcation threshold is 
right shifted to the average of the centroids, the decisión is more 
restrictive to classify elements belonging to class 1 (so, many 
class 1 elements will be labelled as class 0), with the advantage 
that only a few class 0 elements will be assigned to class 1 (target 
class). 

Fixing the position of the classiflcation threshold depends on 
the decisión cost that can be assumed. 

In any case, the error rate for each individual class (£b and 
Ei) and the total error (£T) can be calculated as shown in Eq. 
(3), where M represents the number of elements belonging to 
class /, and N^j is the number of elements that belongs to class 
/ but are assigned to class;. 

Eo 
JVO-M 

No 

Ni^p 
Ni 

Ef 
NQ-,I+NI-,Q 

NQ + NI 
(3) 

For the classiflcation task, there exist other techniques that are 
more powerful than linear prediction, such as Artificial Neural 
Networks (ANN), Support Vector Machines (SVM), Gaussian 
Mixture Models (GMM), etc . However, these techniques 
have not been considered in this work because the number of 
training patterns needed to get an accurate model exceeds the 
available images. 

3. Methodology 

The method that has been followed for the segmentation of 
the glottal space is graphically depicted in Fig. 4. 

3.1. Watershed transform ofthe gradient image 

The flrst step is to convert the original image (RGB) into a 
grey scale image by means of a transformation to the YIQ model 

Class 0 Class 1 
(a) 40 

Fig. 3. Example of the histograms of thescores given by the Fisher discriminant for a two-class problem. (a) Scores forthe element belonging to class 0 (non-target 
class); (b) scores belonging to class 1 (target class). Note that both histograms overlap. 
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Fig. 4. Scheme that represents the steps followed for the segmentation of the glottal space. 
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. The luminance component (Y) is chosen and its gradient 
is calculated. A thresholding with a valué of 2 is applied to the 
gradient image (Le., those pixels of the gradient image with a 
grey level below 2 are assigned to 0, so they are converted into 
minima that can only belong to the internal part of any catchment 
basin). After the thresholding, the watershed transform is 
applied to the resulting image. This simple thresholding reduces 
by 20% the initial number of catchment basins, removing those 
that appeared due to the noise present in the image. 

The threshold applied to the gradient image has been chosen 
to avoid removing signiflcant edges of the image (alfhough some 
catchment basins due to noise have been kept). 

3.2. JND based merging 

The second step is a región merging based on the JND. The 
merging cost function used to merge the basins is calculated 
according to the Eq. (4), 

Fc = [\mRi - mR2\ - MinJND(mtf,, mR2) • 

MinArea(#i, R2) 

LimitArea 

255] 

(4) 

where mR¿ represents the average valué of the grey level in each 
basin, Ri, and LimitArea represents a limit valué for the área 
(number of pixels that belong to a basin). 

The goal of the flrst factor of the merging cost function (Eq. 
(4)), is to allow the merging of the basins when its result is 
below 255. This is because under this merging threshold, the 
human visión system considers that the average grey level of 

the basins is the same, so it is not able to discrimínate between 
them. 

In the second factor of the merging cost function (Eq. 
(4)), the limit área is empirically established as 0.5% of the 
total área of the image. This allows the very small regions to 
decrease their merging cost function. Despite this, in princi­
pie they could be different to the human eye. This fact is not 
a problem because, due to the oversegmentation introduced 
by the watershed transform, at the beginning of the merg­
ing process the basins will have a very small área. So there 
could exist small regions that belong to big áreas with similar 
grey levéis whose difference is below the human eye sensibil-
ity threshold. This modiflcation of the merging cost function 
allows the regions to merge with their most similar neighbours. 
Thus, the segmentation process becomes isolated from the prob-
lems generated by the noise and the poor illumination of the 
stroboscopic images. The results are signiflcantly improved, 
but there is still certain dependence of the merging thresh­
old with the glottis área, that will be analyzed in the Section 
4. 

The JND function used in Eq. (4) follows basically the idea 
pointed out in Eq. (1), but some changes have been introduced 
in order to improve the results. The visibility threshold is 255 
to the grey levéis over 90% of the máximum valué in the image 
histogram. This is to say that all the bright regions of the image 
are not distinguishable among them. Under this condition, the 
number of objects segmented after the merging process is dras-
tically reduced. In any case the glottis is perfectly detected since 
it is a dark región (but not the darkest región as supposed in 
former works). 

Fig. 5. An example of segmentation of the glottis after the first merging process (second step). (a) Original grey scale image with the región boundaries superimposed; 
(b) región boundaries. 



(a) 

Glottis 

Artefacts -

Fig. 6. An example of segmentation after the second merging process (third step). (a) Original grey scale image with the región boundaries superimposed; (b) región 
boundaries. 

Fig. 5 shows the image segmented after the step 2 of the 
algorithm. The segmented image shows the glottis perfectly 
delimited as well as other regions with a homogeneous grey 
level to the human eye. In the example, the bright regions of the 
image have been merged together as if fhey were a single object. 

3.3. Surrounding regions merging 

The third step consists of another merging process, now 
attempting to merge all the neighbours that surround a región 
with a lower grey level than all of them. Now the goal is to 
reduce the number of segmented objects, by merging regions 
that cannot correspond to the glottis (note that from a human 
observer's point of view, the glottis should always be a dark 
object surrounded by a lighter área). 

Henee, the process in this step consists of checking all the 
basins of the image in order to merge all that fulfllls the afore-
mentioned condition. 

The segmentation obtained after the third step is similar to 
that represented in Fig. 6. The number of objects present in the 
image (between 5 and 12) has been substantially reduced. In 
this picture, it is distinguishable the back of the image, several 
shadows, and the glottis itself. 

3.4. Decisión making 

The last step is a elassifleation process to detect the glottis 
among the rest of the objects present in the image. The artefacts 
in both sides of the image and the back are easy to remove 
because their characteristics are quite different to those of the 
glottis: the back is easily removed keeping in mind its large área; 
and the dark regions at both sides are easily flltered according 
their low grey level (that is below 10) because the grey level of 
the glottis is typically between 30 and 70. 

In order to distinguish the shadows and the glottis, a linear 
predictor has been used as described previously. The 88% of the 
available images (98 photograms taken from 13 videos out of 
15) were used to train the predictor, totalling 263 shadow objects 
and 98 glottis objects. The rest of the images (13 photograms 
from the two remaining videos) were left aside for a subsequent 
validation. The decisión to preserve the photograms from two 
videos was taken in order to validate the performance of the 
process under inter and intra-video illumination variations. The 
videos chosen are also representative of two different glottis 
sizes. 

The parameters used for discrimination are the 7 invariant 
moments and the 7 binary invariant moments . The scores 

Shadow objects Glottis objects 

(a) eo 

Fig. 7. Histogram of the scores given by the Fisher discriminant. Both histograms are overlapped. (a) Shadow regions; (b) Glottis. 



(b) (c) 

Fig. 8. Some mistakes reported by the algorithm after the first merging step. The objects that would disappear after the second merging step have been removed, in 
order to distinguish the segmentation of the glottis more easily. 

given by the Fisher discriminant are represented in the his-
tograms of Fig. 7. As expected, the histogram that represents the 
scores of the glottis overlaps with the one of the ofher regions. 
The classiflcation fhreshold was flxed to 0 in order to ensure that 
all the objects corresponding to the glottis were rightly detected 
(the cost of rejecting the trae glottis has been considered higher 
fhan the cost of considering a shadow as a candidate to be the 
glottis). Using this fhreshold, some shadows (non-target class) 
were interpreted by the classifler as a glottis región (target class). 
The error at this stage using such non-optimum fhreshold is 
12.46%. 

After the prediction stage the glottis is well detected and in 
some cases one or two further shadows are also detected as 
candidates. Thus, a new rale is applied to remove fhese shad­
ows from the candidate list: if the remaining regions have a 
likelihood (score) to be glottis that is fhree times the likeli-
hood to be glottis of the ofher regions, it is considered glottis; 
if there exists any región wifhin this range, the selection of 
the glottis is based on the largest mean depfh of the región 
(the mean depfh being the difference of the mean gradient val­
úes of the edges and the minimum gradient inside the región). 
With this modiflcation, the whole decisión making system 
yields a correct classiflcation rate of 98.98% with the training 
data. 

The classifler has been developed using the software package 
SPPS 12.05 for Windows. 

4. Analysis of the results 

The methodology described in the previous sections has 
been tested with 111 images, taken from 15 videos recorded 
by the ENT service of the Gregorio Marañón Hospital in 
Madrid, with videostroboscopic equipment made by two differ-
ent manufacturers. All the images used present the vocal folds 
opened. 

The first región merging (second step of the whole process) 
accurately segments the glottis in all the images, but in some 
cases minor mistakes appear, such as those presented in Fig. 8. 
These mistakes appear in 5% of the images analyzed. The merg­
ing cost threshold was 255 in 75% of the images, and has been 
slightly changed to adjust the result in 12% of the images. The 
rest of the images (13% remaining) corresponded to two videos 
that had a much bigger glottis due the placement of the camera 
focus, so the merging cost fhreshold had to be increased to a 
level of 350 and 550. 

After the second merging process the glottis is well seg-
mented in all the images, and the number of regions detected 
was drastically decreased. In this stage, there is a great variabil-
ity, but at least 70% of the non-desired objects were removed (in 
some images 90 was reached). 

Lastly, after the decisión making step, the glottis is appropri-
ately detected in 98.98% of the training examples and for all the 
validation cases. 

Fig. 9. Two examples of segmentation of the glottis. (a) The glottis is cut due to a movement of the camera; (b) the glottis is divided into two regions due to the 
presence of bilateral nodules. 



The algorithm has gone well with different conditions of illu-
mination and it is able to detect the glottis even when it is partially 
cut due to camera or patient movements (Fig. 9a). Moreover, the 
results are good even when the shape of the glottis is distorted 
due to the presence of some pathology. This is shown in Fig. 9b, 
where the glottis was divided in two segments due to the pres­
ence of bilateral nodules. In this case, the merging threshold 
had to be adjusted due to the change of the área and the decisión 
stage must allow the preservation of two objects. 

Regarding the efflciency of the system, the segmentation 
process can be considered very fast, being on average around 
3.52 s per image (with a Pentium IV-3GHz with 1 GB of RAM). 
Although, a quick algorithm has been used for this purpose 
[22], the bottleneck is the calculation of the watershed trans-
form and the merging. All the algorithms were developed in 
C++ language. 

5. Conclusions 

In this paper a new method for the automatic segmentation of 
the glottal space has been presented providing very good results 
even with stroboscopic images with a poor illumination. The 
method has proved to be very robust under different inter and 
intra-video illumination conditions. 

The efflciency of the algorithm is based on perceptual criteria 
given by the JND. These criteria are based on the inability of the 
human eye to discrimínate grey levéis that are similar. Further-
more, the algorithm integrates the information that characterizes 
the glottis as a human observer sees it: the algorithm searches 
for an elongated shape, with a homogeneous grey level, and sur-
rounded by a brighter región, avoiding conditions such as: the 
glottis is the darkest object in the image, or the glottis is centred 
in the image. This fact makes this method more generic than pre-
vious works found in the literature, providing accurate results 
even with images extracted from stroboscopic videos with arte-
facts introduced during the recording process (darker regions, 
non-centred glottis or cut in the edge due to a camera or patient 
movement). 

The method has been trained with 98 images extracted from 
13 videos and has been validated with 13 images extracted 
from 2 different videos. The glottis was accurately segmented 
in 98.98% of the images used for training, and in all the images 
used for the validation. In 75% of the images that have been 
used, the merging cost threshold had not been modifled. 

This presented method does not require any kind of initial-
ization. This implies that the results of this method could also 
be used as seeds for other glottis segmentation approaches that 
need them. 

The solution presented is very promising; however this algo­
rithm has to be tested with a larger datábase in order to ensure 
its generalization capabilities. 
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