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bstract

Automation of liver positron emission tomography (PET) image segmentation is proposed in this paper. A new active contour model
ACM), called Poisson Gradient Vector Flow (PGVF), with genetic algorithm (GA) constructs a scheme to automatically find the contour
f liver in the PET images. PET is widely used for the clinical purpose, but image quality of PET makes the image segmentation be a
ough work.
Three image data sets are tested for evaluating the new segmentation approach of liver PET images. One image data set is adapted from the study
f one person with a normal liver. The other two image data sets are adapted from the studies of two patients with abnormal livers. The results
how that the regions of interest (ROI) of liver are automatically segmented from the images of three data sets.

2008 Elsevier Ltd. All rights reserved.
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. Introduction

The imaging formation of positron emission tomography
PET) images [1] can be used to evaluate the organs’ metabolic
unction because the positron decay [2] takes place due to the
etabolic reaction after injection of the radiopharmaceutical

ubstance into human body. The releasing electron and a positron
ncounter each other and they annihilate to produce two high-
nergy photons, � rays [3]. The � rays collected by detectors
o generate signals that are used for reconstruction of func-
ional PET images. To evaluate the organs’ metabolic function,
ET images need to be processed by workstations equipped
ith the PET imaging machines. However, most software pack-

ges installed in these workstations use the seed region growing
ethods [4] for image segmentation purposes. The segmentation

esults of PET images are not good enough because of the high
oise, low resolution, and blurriness. The cluster analysis [5]

ethod and traditional watershed method [6] were used for PET

mage segmentations, but the over segmentation problem caused
nqualified results. A new automatic segmentation method for
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ET images by using active contour model (ACM) [7–10] is pro-
osed in this paper. Active contour models can capture the object
oundaries in images and they are widely used in the image seg-
entation problem for their robustness to the noisiness. The

pplication of traditional active contour for PET images focuses
n brain tissues [11], but not on liver tissue. Automation of liver
egmentation is more difficult than automation of brain tissue
egmentation because of organs more asymmetrically located
n abdomen slice images. Traditional active contour models
ith the manual selection of initial contours are not suitable

or the automation of liver PET image segmentations. Our pre-
ious work [12], Poisson Gradient Vector Flow (PGVF) ACM,
s applied on the automatic segmentations of PET image because
he initial contour can be automatic selected by the Canny edge
etection method from the candidate curves of liver. The num-
er of the candidate curves is influenced by the values of the
wo parameters, threshold and sigma. However, manually find-
ng the optimal values of the two parameters is time consuming.
he genetic algorithm (GA) is used to automatically obtain opti-
al values by designing the fitness function to obtain the longest

nd the least number of the candidate curves. Appling genetic

lgorithm once to obtain an initial curve on the first slice of
equential images is enough for one subject study. It saves CPU
ime using the liver contour of the segmentation result of the last
lice as the initial contour for the next slice.

mailto:tccnchsu@gmail.com
mailto:r95921045@ntu.edu.tw
mailto:chung@ntu.edu.tw
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Fig. 1. The flow chart of the automatic

. Automation of image segmentation

The flow chart of the image segmentation method is shown
n Fig. 1.

The first step is to input the original PET image and the second
tep is to find the edge map by the Canny edge detection and
enetic algorithm. The third step is to capture the contour of the
iver in the PET image by the PGVF ACM. Because the PGVF
CM method plays an important role, Section 2 will explain this
ethod in detail. Section 2.1 is an introduction of the theory and

evelopment of ACM which is the basic knowledge of PGVF
CM. The image force of PGVF ACM is introduced in Section
.2 and the theory of Canny edge detection method is presented
n Section 2.3. Section 2.4 introduces the implementation of
he genetic algorithm for finding the parameters of Canny edge
etection method.

.1. The theory of ACM

There are two kinds of the image segmentation methods:
ne is to take out regions of interest (ROI) pixels from origi-
al image and the other is finding out the ROI contour. Active
ontour model is a method to find out the ROI contour. Active
ontour model is presented by Kass et al. [7–10,13,14]. Active
ontour model was classified into one kind of physics-based
echnique [15,16] is able to segment the edge of object. Since
he active contour is deformable like a snake, then “Snake”
s used as the same as the traditional ACM. One drawback
f traditional ACM is that the initial circle must be closed
o an object and the other drawback is that concave object
annot be segmented accurately. In other words, the accuracy
f the traditional ACM needs to be improved. For improv-
ng of the drawbacks, Xu and Prince announced Gradient
ector Flow (GVF) ACM [17] in 1999. The GVF ACM devel-
ped a new external image force and overcome the defects of

raditional ACM. In 2003, Hsu et al. proposed Poisson Gra-
ient Vector Flow ACM [12]. The external image force is
btained from the gradient of the function solved by the Poisson
quation.

i

E

entation method of liver PET images.

Active contour model describes parametric curves with point
osition vector �X = [x(s), y(s)] which is function of the param-
ter s in the range [0, 1]. The energy E of an active contour can
e expressed as a functional of �X(s):

=
∫ 1

0

{
1

2

[
α| �X′(s)|2 + β| �X′′(s)|2

]
+ Eext

}
ds (1)

here Eext is the external energy, �X′ = d �X/ds and �X′′ =
2 �X/d2s are the first derivative and second derivative of curve
oint position vector �X with respect to the s parameter. The coor-
inates of vector �X(s) are a pair of numbers [x(s), y(s)]. Using the
ariation calculus and Eq. (1), we obtained the Euler equations:

xss + βxssss + ∂Eext

∂s
= 0 (2)

nd

yss + βyssss + ∂Eext

∂s
= 0 (3)

here ∂Eext/∂s is the external image force field, xss and yss are
he second derivatives, xsss and ysss are the forth derivatives of

and y coordinates respect to the independent variable s. In
he traditional ACM, external energy Eext equals to square of
ntensity gradient:

ext = |∇I(x, y)|2 (4)

r equals to square of convolution between Gaussian function Gσ

ith variance σ and intensity operated by the gradient operator
:

ext = |Gσ∇I(x, y)|2 (5)

he GVF [17] ACM method is modified from the traditional
CM method with an edge map f(x,y) = −Eext and the external
mage functional Eext is defined as follows:

ext =
∫ ∫

μ|∇2ν| + |∇f |2|�v − ∇f |2 dx dy (6)
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to their fitness, new solutions are selected as (offspring) and their
fitness is increased. This procedure is repeated until the number
of generation is limited. The design of fitness function F depends
on the problem. In the problem of the parameter selection, the
C.-Y. Hsu et al. / Computerized Medica

here �2 is the Laplacian operator and μ is a selected constant
nd it is large for getting a smooth filed. According to variation
alculation, the Euler equation is obtained as

∇2�ν − (�ν − ∇f )|∇f |2 = 0 (7)

he numerical solution of �v in Eq. (7) can be obtained by numer-
cal method. We will show the difference between GVF and
GVF methods in the next section.

.2. Image force of PGVF ACM

The image force of PGVF ACM is different from GVF ACM.
GVF ACM by solving the Poisson eqaution (8) to get the
xternal image force:

2φ(x, y) = fedge(x, y) (8)

edge is a binary edge map detected by Canny edge method. After
(x, y) is computed, the external image force field is computed
y the vector flow �v = −∇φ(x, y). The finite difference method
an be used to obtain the numerical solution.

.3. The Canny edge detection

Canny edge method [18] is an edge detection method to gen-
rate edge image by looking for local maxima of the gradient of
rayscale image. The gradient is calculated by using the deriva-
ive of a Gaussian filtered grayscale image. The method uses
wo thresholds, to detect strong and weak edges, and includes
he weak edges in the output only if they are connected to strong
dges. If you use the edge function of Matlab and specify a
calar for thresh, this value is used for the high threshold and
.4 × thresh is used for the low threshold. This method is there-
ore not to be fooled by noise, and more likely to detect true weak
dges. One parameter σ of Canny edge method to be selected
s the standard deviation of the Gaussian function. Once the
dge image obtained, non-maximum suppression algorithm is
sed to mark the edge element and trace along the gradient in
he edge direction. After non-maximum suppression, a thresh-
ld is used to produce a binary edge image. The black areas
re the pixels with the edge strength below the threshold and
he white areas are the pixels with the edge strength above the
hreshold.

.4. Implementation of genetic algorithm

GAs were invented by Holland [19] and developed by
im and his students and colleagues [20]. The GA is an
volutionary computing (EC) inspired by Darwin’s theory of
volution and uses an evolutionary process to solve problems
21,22]. As shown in the previous section, how to choose
he values of the threshold and σ parameters is a problem
o be solved. The values of threshold and σ parameter form
set of solutions and are separately represented by chro-
osomes. The concept of genetic algorithm applied on the

hreshold and parameter selection is described in the next para-
raph.

F
v

ging and Graphics 32 (2008) 601–610 603

Algorithm begins with a set of solutions called population. A
ew population is generated from an old population with a hope
hat the new population will be better than the old one. According
ig. 2. Edge map obtained by Canny edge detection with threshold 0.1 and σ

alues: (a) 1, (b) 2, and (c) 3.
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Fig. 3. Edge map obtained by Canny edge detection wit

tness function is defined as in the following equation:

= α
max(L)

min(N)
(9)

here L and N are length and total pixel number of white contour
ine, and α is a weighting number 2/3.

. Results and discussion

There are 3 image data sets with 16 abdomen PET slice
mages used for testing the new segmentation method. One
mage data set D1 is adapted from the study of one person
ith a normal liver that is obtained from the website of the
ook [23]. The other two image data sets, D2 and D3, are
dapted from the studies of two patients with abnormal livers
hat are supplied by the Chung Shan Medical University Hospi-
al. The size of each image is 128 × 128 pixels. It is the first
tep to find the edge map for the segmentation of the liver.
n the next section, there are two examples used to show that
t is very difficult to find the optimal edge map by manual
election.

.1. Manual selection of edge map
The threshold and σ need to be decided for obtaining suitable
dge map for PGVF ACM by the Canny edge detection method.
he values of σ influence the edge maps as shown in Fig. 2(a)–(c)

d
i
a
p

1.9 and threshold (a) 0.1, (b) 0.11, (c) 0.23, and (d) 0.4.

y setting the threshold values 0.1 and σ values 1, 2, and 3. The
iver contour in Fig. 2(b) is more complete than Fig. 2(a) and
c).

Fig. 3 is an example to demonstrate that the values of thresh-
ld influence the results of the edge map. The σ values are
xed at 1.9 and threshold values are 0.1, 0.11, 0.23, and 0.4 in
ig. 3(a)–(d). Although a little variance of the σ values, Fig. 3(a)
as more edge lines than Fig. 3(b). The total number of the
dge line in Fig. 3(a) and (b) is larger than Fig. 3(c) and (d).
ccording to these observations, slight change of σ or threshold
alue induces significant influence on the contours in edge map.
ecause the liver contour line is complete and least number of
dge line, Fig. 3(c) is the best binary image used for the edge
ap. Manual selection of the two suitable parameters is not effi-

ient because hundred values of parameters should be tested. To
evelop automatic method to select suitable parameters is nec-
ssary and GA is introduced to solve the problem in the next
ection.

.2. Automatic selection of edge map

In this section, three test images were selected from the
th slice of D1, D2, and D3 image data sets, and they were

enoted as D1(9), D2(9), and D3(9) as shown in Fig. 4. These
mages were used to demonstrate to the effectiveness of GA
pplied on the automatic selection of the threshold and σ

arameters.
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Fig. 4. The original images of (a) D1(9), (b) D2(9), and (c) D3(9).

The fitness function of the GA is defined as in Eq. (9) and
he ranges of threshold and σ are (0, 0.9) and (0.1, 2). The other
arameters of GA are given in Table 1.

It is important to choose the generation number because it
nfluences the values of threshold and σ parameters. The gen-
ration number as shown in Table 1 that is decided by the
onvergence test of the fitness function values. The fitness func-
ion values vary with the number of generation as shown in
ig. 5(a)–(c).

As shown in Fig. 5, the change rate is larger when gen-
ration number is less than 100 and is going to be stable as
he generation number is increasing. The generation number
00 is chosen as the stopping condition in the following exam-
les.

Fig. 6(a)–(c) was binary images obtained by Canny
dge detection with the values of threshold and σ in
able 2 and they can be used as the edge maps for PGVF
CM.

.3. Segmentation by the PGVF ACM
The edge maps as shown in Fig. 6 are used by the PGVF ACM
o process the image segmentation. Selection of the initial curve
s important for PGVF ACM. The location of liver is always at

able 1
he values of parameters are used in genetic algorithm

arameter name Value

eneration number 100
it number 100
rossover rate 0.7
utation rate 0.02

F
D

t
w
c
w
A
c
a

ig. 5. The fitness function values vary with the number of generation for (a)
1(9), (b) D2(9), and (c) D3(9) images.

he left side of each image as shown in Fig. 7. We chose a circle
ith radius (15 pixels) as an initial curve. The center of each

ircle is located at the intersect point of the vertical tangent line
ith the liver contour. Fig. 7 shows the initial circles of PGVF

CM for images (a) D1(9), (b) D2(9), and (c) D3(9), and the
enter coordinates for each initial circle are (26, 73), (40, 70),
nd (50, 70).



606 C.-Y. Hsu et al. / Computerized Medical Imaging and Graphics 32 (2008) 601–610

Fig. 6. The edge maps obtained by Canny edge detection with the parameters
shown in Table 2.

Table 2
The values of threshold and σ of image data D1(9), D2(9), and D3(9)

Images Threshold σ

D1(9) 0.2283 1.6353
D2(9) 0.84023 1.1166
D3(9) 0.32536 0.3614

F

a

c
t
i

F
a

ig. 7. Initial circles are chosen for images (a) D1(9), (b) D2(9), and (c) D3(9).

In the first 40 iterations, the evolution curves are progressing
s shown in Fig. 8.
By testing the images D1(9), D2(9), and D3(9), the evolution
urves were stopped at the 100th iteration and the shapes and
he locations of contours are shown in Fig. 9(a), (c), and (e). The
nner regions of these contours are shown as the binary images

ig. 8. Progressing evolution curves of PGVF ACM on (a) D1(9), (b) D2(9),
nd (c) D3(9).



C.-Y. Hsu et al. / Computerized Medical Imaging and Graphics 32 (2008) 601–610 607

binar

i
i
C
o
a

3

t
A
c
A

i
1
a
l
c

F
m
4

Fig. 9. The shape and location of contours (a), (c), and (e) and

n Fig. 9(b), (d), and (f). The subject of the image data D1(9)
s normal and the subjects of D2(9) and D3(9) are abnormal.
omparing with Figs. 9 and 10, radiologists indicated the result
f Fig. 9(a) is better than Fig. 9(b) and (c) and these contours
lmost match the edges of livers.

.4. Segmentation of sequence images

PGVF ACM has to select the initial curve for continuing

he curve evolution. However, for the sequence images PGVF
CM only has to choose an initial curve once because the initial
urve of the next image can use the final curve of the last image.
s shown in Fig. 11(a), the segmentation result of the 9th slice

C
o
i
t

y regions (b), (d), and (f) of images D1(9), D2(9), and D3(9).

mage is used to be the initial curve for the segmentation of the
0th slice image. Fig. 11(b) shows that curves are progressing
t the 40th iteration and the contour is close to the edge of the
iver. Fig. 11(c) shows the contour at the 100th iteration and the
ontour is similar as Fig. 11(b).

Comparing to Fig. 11(a), an initial circle as shown in
ig. 12(a) is used as an initial curve for the 10th slice image seg-
entation. Fig. 12(b) shows that curves are progressing at the

0th iteration and the contour is far from the edge of the liver.

omparing with Figs. 11(b) and 12(b), we can conclude that it
nly needs 40 iterations for curve evolution if using the 9th slice
mage segmentation result as the initial curve. Fig. 12(c) shows
he contour at the 100th iteration and it is similar as Fig. 11(c).
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Fig. 10. The manual segmentation results for images (a) D1(9), (b) D2(9), and
(c) D3(9).

Fig. 11. The shape and location of the initial curve (a) obtained from result of
the 9th slice and progressing results at (b) 40th and (c) 100th iterations.

Fig. 12. The shape and location of the initial curve (a) with a circle and pro-
gressing results at (b) 40th and (c) 100th iterations.

Fig. 13. The segmentation results of (a) 8th, (b) 10th, and (c) 11th slice of D1.
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Fig. 14. The segmentation results of (a) 8th, (b) 10th, and (c) 11th slice of D2.
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[15] Fischler MA, Elschlager RA. The representation and matching of pictorial
ig. 15. The segmentation results of (a) 8th, (b) 10th, and (c) 11th slice of D3.

By using the 9th slice image segmentation results as the initial
urve, the segmentation results of the (a) 8th, (b) 10th, and (c)
1th slice image for each image data set D1, D2, and D3 are
hown in Figs. 13–15.

. Conclusion

There are 3 image data sets with 16 abdomen PET images
sed in the experiments. The segmentation results show that the
GVF ACM is suitable for automatic segmentation of the liver

ET images. When lots of image data need to be processed, the
utomatic segmentation by using PGVF ACM with GA can save
uch time and overcome the defects caused by manual selection

f ROI.

[
[

ging and Graphics 32 (2008) 601–610 609

In the future works, the proposed method can be applied auto-
atically on the liver image segmentation of the functional PET

mages and anatomical CT for the fusion purpose. Another appli-
ation of the proposed method is applied to correct the effects of
he breathing motion of patients. The motions cause the relative

otion of the different transversal image slices. The realignment
f liver contours of PET images is necessary for the accuracy of
he calculation of the 3D volume of the volume of interest (VOI)
hat can be used for the computation of 3D dose distribution
urve.
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