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Abstract

Parametric imaging of the cerebral metabolic rate for glucose (CMRGIc) using [*8F]-
fluorodeoxyglucose positron emission tomography is considered. Traditional imaging is hindered
due to low signal to noise ratios at individual voxels. We propose to minimize the total variation of
the tracer uptake rates while requiring good fit of traditional Patlak equations. This minimization
guarantees spatial homogeneity within brain regions and good distinction between brain regions.
Brain phantom simulations demonstrate significant improvement in quality of images by the
proposed method as compared to Patlak images with post-filtering using Gaussian or median filters.
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1. Introduction

We focus on positron emission tomography (PET) parametric imaging for estimating the
cerebral metabolic rate of glucose (CMRGIc) using the [18F]-fluorodeoxyglucose (FDG)
tracer. The ability to derive accurate parameters depends upon the quality of data, the
quantification method and the numerical algorithm. In this study, we refer to the time activity
curve (TAC) from a given tissue location as the output, tissue TAC or TTAC, and the TAC
from the blood pool (image-derived or arterial blood-sampled) as the input, plasma TAC or
PTAC. Most existing quantification methods perform well for regions of interest (ROIs), but
are not good for voxel level quantification due to the high level of noise. These include graphical
methods, [20,18], linear least squares, the weighted integration method, [3], generalized linear
least squares, [6,5], nonlinear least squares (NLS) and weighted NLS.

All the algorithms listed above perform the quantification at each voxel location separately;
they do not consider the kinetic similarities among neighboring voxels within functionally-
defined regions. Thus, voxel-by-voxel variation in a functionally-homogeneous region may be
large because of noise in the data. But, by incorporating the spatial constraint that parameters
in a functionally-homogeneous region should be similar, in any of the above methods, the
quality of the resulting parametric image for the CMRGIc may be improved. Zhou et al, [25],
for example, improved the parametric image quality by ridge regression with constraints on
the rate constants. There, the estimation of parameters uses a linear components decomposition
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of the Kinetics in which each component represents a functional kinetic curve generated by
clustering the TTACSs, and the problem is solved voxel by voxel. Here we propose the use of
a total variation (TV) penalty term which imposes spatial consistency between neighboring
voxels.

The total variation penalty was first introduced in the context of image deblurring by Rudin
et al, [22]. TV can significantly suppress noise while recovering sharp edges because it does
not penalize discontinuities. It has received much theoretical research attention and been
utilized in many signal and image processing applications. While it was introduced for PET
image reconstruction by Jonsson et al, [13], and Kisilev et al, [15], it has apparently not been
applied for parametric PET imaging. Instead of calculating the uptake rate for each voxel by
Patlak’s method, we propose to minimize the TV of the uptake rate over the entire image while
also maintaining a good least squares fit for the Patlak equations at all voxels. Thus the
parameters of the whole image are spatially related by the TV and solved simultaneously. The
resultant parametric image is expected to have spatial homogeneity over brain regions with
similar kinetics and distinct edges between brain regions that have different kinetics. This is
validated by phantom simulations.

In addition to proposing the new model with the TV penalty, we also pay careful attention to
the computational complexity of the algorithm by taking advantage of implementations for
large scale sparse matrix computations. In contrast to approximating the Hessian matrix, as is
typical for quasi-Newton methods, our algorithm explicitly and accurately calculates both
gradient and Hessian terms. The Hessian is efficiently recalculated at each iteration because
of its sparsity. The Quasi-Minimal Residual (QMR) method, [7], is used to solve the resulting
large-scale linear systems. With this efficient implementation, the procedure described here is
computationally feasible.

The rest of the paper is organized as follows: The new algorithm with TV penalty is introduced
in section 2, with relevant computational issues detailed in the appendix. The experimental
data sets are described in section 3 and results reported in section 4. Issues relevant to the
proposed TV-Patlak method and computational aspects are discussed in section 5. Conclusions
are presented in section 6.

2. Methods

The Patlak plot has been developed for systems with irreversible trapping [20]. Most often it
is applied for the analysis of FDG. The measured TTAC undergoes a transformation and is
plotted against a normalized time. It is given by the expression

Cn - [Ce(s)ds y
Gn T Gon (1)

where C(t) is the measured TTAC, (in counts/min/g) and Cp is the PTAC (in counts/min/ml),
i.e. the FDG concentration in plasma. For systems with irreversible compartments this plot
yields a straight line after sufficient equilibration time. For the FDG tracer, the slope K
represents the uptake rate which, together with lumped constant (LC) and glucose
concentration in plasma (Cpg) allows easy calculation of the CMRGIc=KCp¢/LC, (in mg/min/
100g). The intercept V is given by V + vB where V is the distribution volume of the reversible
compartment and vB is the fractional blood volume.

The linear relationship (1) can be rewritten as
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([4Co()ds) K+Co(V ~ C, (1), @

and, assuming m dynamic frames over the period of equilibration, its discretized version is
1 .
([aCu()ds) K+Cy(t)V ~ Cy(ty), j=1,--- ,m.

In matrix format,

A(5)on
(4)

where A is a m-by-2 matrix,

[tCy(s)ds,  Cp(h)
A [oCo(s)ds,  Cy(t2)

’

tm

0 C},(S)ds, Cp(’lll)

and vector b = (C(ty), C1(ty), -, C(tm))T. If we were to solve (4) for each voxel independently
we would obtain a parametric image lacking spatial homogeneity and with low signal-to-noise
ratio (SNR). Image denoising techniques could then be applied as a separate task to improve

the image quality. Instead, obtaining all voxel parameters as a result of a global optimization
algorithm with a TV penalty for the entire image, the necessity for postprocessing should be

eliminated.

Limiting the discussion here to 2D images (although our application of TV is 3D), we select
the active voxels to be quantified by the application of a brain mask, yielding a total of N voxels.
Equation (4) holds with common matrix A dependent on Cp(t) for each voxel i, but with K, V
and b replaced by K0, V), and b;, respectively, where b; is obtained from the TTAC for voxel
i. Collecting the unknowns of these N voxels in vectors of uptake rates and intercepts

x=(KD, K@, ... K™ and y=(v®O,vO® ... v

and requiring (4) in the least squares sense over all voxels, while maintaining minimal TV of
the uptake rate for the selected image voxels, yields the global minimization problem

(TV — Patlak): min O(x;y), (5)
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N
diy)= ]l +a ) JIWicac. )" - bl
2. (6)

N
Here the total variation norm is given by||x||Tvﬁ:Z,~:1‘p"(X) with

@i(x)= \/ (i=x;, ) +(x; — x;,)*+f2, and xi, and x;, are the values associated with voxels to the
right and below voxel i. Theoretically the TV norm is [|X||y o, which is a seminorm on a space
of bounded variation, [24]. The small constant # is used to avoid the numerical difficulty due
to the lack of differentiability at the origin of ¢; for = 0. The diagonal weight matrix for voxel
i is given by

Wi=di A =1
=diag| \[=—- |, =L m,
ij€ (7)

where At; is the scan duration of the frame at time t;, 4 is the tracer’s decay constant and bjj is
the value of the it TTAC at frame j. This weighting is consistent with using a simulation with
variance

At j
C(tj)e

Var(C, (1)))=S
wEUD= T, ®)

[17]. Sc is a common scale factor that need not be made explicit here because it is absorbed
into the parameter « in (6).

The objective function in (5) is convex, and can be solved using a standard Newton-type
algorithm, [24] Chapter 8. To simplify the expressions we introduce the vector z = [x; y].

Further details on the calculation of gradient vector Vd(z) and Hessian matrix V2d(z) are
provided in the appendix. Some other aspects of the algorithm, including discussion about
constants « and $8, here chosen to be 0.2 and 1078, respectively, as well as other approaches for
the solution of the TV problem are discussed in section 5.

3. Experimental Data

To validate the proposed parametric imaging method we performed experiments with
simulated data. The MRI-based high-resolution Zubal head phantom is used to define the brain
structures, [26]. Each voxel in the slice of 256 x256 voxels is of size 1.5 x1.5mm?. There are
128 slices for the entire head and 62 defined anatomical, neurological, and taxonomical
structures. The 11 regions for slice 64, representing a total 13708 voxels, are given in table 1.
For the purposes of the simulations, well-accepted values of the Kinetic rate parameters of these
structures for the two-tissue compartmental model of the FDG tracer [12], are assigned. Notice
that in order to better model the true biochemical process we assume k4 > 0. Because Ky is,
however, relatively small, Patlak’s method, for which it is assumed k4 = 0, is still a suitable
graphical method for quantifying the uptake rate.
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The noise-free input function, with values given in kBg/ml, is given by the formulation
introduced in [9],

0 1 € [0,0.25]
339.03(1 — 0.25) t € [0.25,0.4433]

U= _214.6561+160.691 e [0.4433,0.65]
21.165¢~075016-065" 450 65, (10)

Although any reasonable input function, including clinical plasma samples, could be used for
the simulation this formulation was validated as providing a good approximation to the plasma
samples of a healthy subject. Given the input function, the exact phantom can then be generated
using the rate constants for the structures detailed in table 1, [23]. The output time frames were
generated assuming time frames with durations Atj, j = 1, ---, m, m = 22, given in minutes, 0.2,
8% 0.0333,2 x 0.1667,0.2,0.5,2%x 1,2 x 1.5,3.5,2 x5, 10 and 30.

In our experiments, in order to control the computational overhead of the reconstructions, we
reduced the image size of the phantom from 256 x256 to 128 x 128. To do this we needed to
relabel the structure assigned to a given voxel. This was done by averaging the quantity
K1ks/(ko + k3) over the 2-by-2 neighboring voxels at the finer resolution. Then the voxel at the
coarser level was labeled as belonging to the structure for which this average is closest to the
structure value. The Kinetic values were then assigned, the TTAC output values calculated, and
then projected to the sinogram space Yyielding projected noise-free sinogram data P. For
simplification, the instrumental and physical effects, including attenuation, Compton
scattering, decay and random coincidences, were not simulated. Poisson noise was then added
to the projected data using S = poissrnd(P) where the Matlab®,[19] function poissrnd uses
vector P as the means of Poisson densities to generate the noisy sinogram data S. Based on this
noisy sinogram data, concentration images are reconstructed using the Expectation-
Maximization (EM) algorithm, [14].

Several data sets were generated: To investigate errors introduced by violation of the
irreversibility assumption, k4 = 0, we tested both ks = 0 and k4 > 0. Similarly, we tested both
with and without noise in the sinograms to investigate the effects of the proposed method due
to noise in the sinograms. Gaussian noise with noise levels 0%, 5%, 10%, 15% and 20% was
added to the input function, i.e.

C,(1))=u(t))(1+CV7;), (11)

where 7 is selected from a standard normal distribution (G(0, 1)), and CV =0, 0.05, 0.10, 0.15
and 0.20. 100 random realizations are tested in each case.

We summarize the test data sets in table 2, using a character triple to classify each test. The
first character of the triple indicates whether k4 = 0 or kg > 0, 0 or +, respectively. The second
character indicates the noise level on the input function, 0 or +, for noise-free, or with added
noise, respectively. To indicate the noise level + is replaced by 1, 2, 3 and 4 to indicate noise
levels 5%, 10%, 15% and 20% as necessary. The third character indicates whether noise is
added to the sinogram, again 0 or +, respectively. Therefore, for example, +3+ represents the
test case for kg > 0, 15% noise in u(t) and Poisson noise added to the sinogram.
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4. Results
To evaluate the simulations quantitatively we define the relative error of the k" realization for
voxel i:
K, ~ Kine
rk=——ap—» =L N, k=1,---, 100,
Ktrue

where K" is the estimated value of the true value of the uptake rate K_at the k" realization

true

for voxel i. Over 100 random simulations, and N voxels, we calculate the bias, i.e. the mean
of the relative errors, and the deviation from the mean:

7= SN i ‘ :Zzlzlﬁ(ﬂr’* 7l
100N 100N ' 12

. . — N 100 o
Absolute relative errors |rj| and associated mean RZZizlzk:ﬂriH/lOON, and deviation,

N 100 —
D:Zi:IZk:I il = RI/N, are also calculated. Note the deviations are l; measurements
which do not overweight outlier and large error samples, as is the case for the I,-based
measurements such as the root mean squared error.

In the images shown in the figures we illustrate the calculated uptake rates K of the FDG.
Images for the CMRGIc can be obtained by directly scaling K. In figure 1 we compare the
result of using Patlak and TV-Patlak for estimating the uptake rates with respect to no noise,
20% noise in the input function, Poisson noise in the sinogram, and finally with respect to the
case in which the irreversibility assumption is violated but without noise in the sinogram or
input data. In each case the histogram of the relative errors is given on the left, the Patlak image
in the middle and the TV-Patlak on the right. The different scales in the histograms are due to
the total number of results illustrated. When there is no noise (triples 000 and +00) the
histogram illustrates results over all voxels but only one simulation, while for the noisy
simulations the results are for all voxels over all 100 realizations of the noise. The TV-Patlak
images are more homogeneous in all cases and the relative errors are smaller. The figures
clearly show the improvements of employing the TV-Patlak method as compared to using
Patlak independently for each voxel. This is confirmed in figure 2 in which images with noise
in the sinogram, positive k4 and different noise levels in the input function are shown.

Quantitative measurements, confirming the illustrations, are presented in table 3. There we
also present the results for conventional Patlak’s method with post-smoothing by two standard
filters:

1. a Gaussian filter (Patlak-GF), size 3-by-3 with standard deviation 0.5, generated by
Matlab functions filter2(fspecial(‘gaussian’, 3, 0.5), img) and

2. amedian filter (Patlak-MF) generated by Matlab function medfilt2(img) for a 3-by-3
neighborhood.

Consistent with the observation in [21,16], we find that violation of the Patlak assumption,

k4 = 0, introduces about 10% bias; r= 0 when k4 = 0 but r= 10% for ks > 0. The rows 7y (std)
and “# 10% (#15%)” provide complementary supporting information, indicating that the TV
is minimized by TV-Patlak; as compared to Patlak, Patlak-GF and Patlak-MF the number of
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voxels with larger error is reduced. In particular, we emphasize that TV-Patlak provides a
better noise removal mechanism than popular post-filtering approaches.

In figures 3 and 4 we illustrate the uptake rates and relative error in the uptake rates,
respectively, calculated by Patlak, TV-Patlak, Patlak-GF and Patlak-MF for one simulated data
case +4+, i.e. kg > 0, 20% noise in the input function and Poisson noise in the sinograms. The
uptake rate image generated by Patlak-MF is visually smoother than that by TV-Patlak, but
the equivalent histograms show that the relative error is higher for Patlak-MF than for TV-
Patlak; the Patlak-MF image is over-smoothed.

In figure 5 we illustrate the relative error of noisy case +4+ for gray matter regions in the
phantom, including frontal lobes, occipital lobes, insula cortex, temporal lobes and globus
pallidus, which are of interest for Alzheimer’s disease research. The error bars show that all
estimation methods for gray matter regions have negative bias and there are fewer cases with
high error by TV-Patlak.

Finally, we note that the computational cost for the TV-Patlak Algorithm 1 is about 6.5 seconds
while for Patlak, Patlak-GF and Patlak-MF they are 0.48, 0.55 and 0.58 seconds respectively
for a 2D image on a PC with 1GHz CPU and Matlab code.

5. Discussion

In this section we discuss issues relevant to the proposed TV-Patlak method.

1. Regularization constant a: There are many approaches for determining the choice of
an appropriate regularization constant a. A good reference would be [24] in which
the methods of unbiased predictive risk-estimation, generalized cross validation, and
the L-curve are described. In general, the choice of « depends on the noise level of
the problem. Here o balances the homogeneity of the uptake rate against the residual
of the traditional Patlak least squares data fit. For the PET imaging application, noise
inthe TTAC data depends on the scanner, the reconstruction method, the tracer dosage
and even the kinetics of individuals. It is therefore possible to make a standard
parameter setting for commonly-used environments. The most convenient method for
the selection of « is the so-called L-curve, [10,11], which plots total variation against

N 2
Zi:1||Wi(A(Xf,,\‘f)T - bi)”; for all tested a. The L-curve clearly displays the
compromise between of the homogeneity and the residual of the Patlak fitting
equations. The a corresponding to the left lower corner of the L-curve is considered
as the optimal choice. One representative L-curve of our simulations is illustrated in
figure 6. We found for our simulations that a suitable choice is a = 0.2, but certainly
it will in general depend on the reconstruction algorithm. For example, the simple EM
method and filtered backprojection algorithms introduce more noise than the
maximum a posteriori (MAP) algorithm, [8,1]. For real data not only are there
additional sources of noise but the choice for o will also depend on the specific tracer.
However, once an appropriate « is found by L-curve for a specific imaging
environment, it can be fixed for future imaging calculations.

2. Constant 5: We use Newton’s method for the case 5 # 0 to solve the optimization
problem (5). Other methods for solving the TV problem with g # 0 are discussed in
[24], which includes the primal-dual method [4]. A good choice of  avoids numerical
difficulties for small derivatives and provides a good approximation of the TV. For
our tests we found that the results are not sensitive to the choice of  and thus suggest
the use of =108 as a good choice for FDG-PET brain imaging. If we wish to avoid
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the choice for g the TV term in (5) can be reformulated as a set of linear constraints,
and other algorithms are possible, [2].

3. Boundary values: Ateach iteration of the algorithm, after updating x and before doing
any function evaluation or other calculation, the boundary voxels need to be updated.
The value of each boundary voxel is set to the average of its active neighbors in four
directions.

4. Computational efficiency: For computational efficiency and to minimize memory
usage, it is important to not only use sparse storage strategies for the relevant matrices
but also to use appropriate algorithms for the solution of the large scale sparse linear
systems given by (9). Here we use the QMR iteration, [7]. Moreover, if a general
Newton’s or quasi-Newton method with approximated Hessian were used, the cost
in time and memory would be much more expensive because the approximated
Hessian matrix is generally dense. In addition to achieving sparsity, the Hessian
matrix is calculated accurately; and the convergence should be faster. For our
simulations convergence is achieved in eleven iteration steps on average. The Matlab
code of the TV-Patlak method can be downloaded from
http://math.asu.edu/~hongbin.

6. Conclusions

A qualitative improvement in imaging of PET uptake can be achieved by using a global model,
with the total variation as a penalty term, to obtain the voxel uptake rates. The resultant uptake
images have spatial homogeneity over brain regions with similar kinetics and distinct edges
between brain regions that have different kinetics. It is statistically validated that the TV-Patlak
significantly reduces the relative errors of the calculated parameters as compared with those
generated by Patlak’s graphical method, and post-smoothing by Gaussian and median filters.
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Gradient calculation
To find the gradient of ®(z), we first derive the Jacobian of f(z).
1. Fori=1,-,Nandl=1, 2N

4)(,’ - 2x,—b - 2X,‘I_, ifl=i

ofi | 2x, = 2xi, if =iy,
Az | 2x;, —2x;, if I=i,
0, otherwise. (13)

2. Fori=N+1,--,2Nandl=1, - 2N

of {Pn, ifl=i— N

e W

0, otherwise, (14)

where

( pi1 ) :2ATA( Xin ) ~24Tp,,.
pi2 Yin

Because Vyp; = 1/(2¢;)Vyfi fori=1, -, N, V,® = (Vf(z))"g, where

g=[1/2¢1),1/Q2¢2),--- ,1/Q2¢,) @, @, - -~ ,a]".

Hessian matrix

To find the Hessian matrix for ®(z), we first derive the Hessian matrix for each function fj(z).

L Fori=1, N, V2 f is sparse

iy i .
>, | 4 2 2 )
Vofi=l ) 0 'I.”'
-2 0 2 g (15)

2. Fori=N+1, - 2N, the Hessian matrix is again sparse.

i—-N i i-N
AnLfi=| au g ; where ( a1 du )zZATA.
y 2 22
Q21 q22 q 1 q (16)
Thus

N w2 _ 2N
2 _ xx'Fi» NxN 2,
V-®(z)= él ( 0 )+a g V- fi,

NxN°* NxN i=N+1
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where

s 1 1 _,
V= — @vxﬁ(vxmﬂz—%m s

1
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Figure 1.

Comparison of Patlak and TV-Patlak for imaging the uptake rate K. In each case on the left is
the histogram for the relative error as compared to the exact simulated value, in the middle the
Patlak image and on the right the TV-Patlak image. The first row compares the estimation by
Patlak and TV-Patlak with no noise added. The second, third and fourth rows provide the
comparison with 20% noise added in the input, Poisson noise added to the sinogram, and
positive kg, respectively.
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Figure 2.
Comparison of Patlak and TV-Patlak for imaging the uptake rate K. In each case on the left is
the histogram for the relative error as compared to the exact simulated value, in the middle the
Patlak image and on the right the TV-Patlak image. In each case Poisson noise is added to the
sinogram and k4 > 0. The level of noise for 100 realizations added to the input is 5%, 10% and
20% respectively, for each row from top to bottom.
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Figure 3.

Comparison of Patlak (upper-left), TV-Patlak (upper-right), Patlak-GF (bottom-left) and
Patlak-MF (bottom-right) for imaging the uptake rate K for one simulated data case +4+, i.e.
k4 >0, 20% noise in the input function and Poisson noise in the sinogram.
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Figure 4.

Histograms for the relative error (12) in the uptake rate calculated by Patlak, TV-Patlak, Patlak-
GF and Patlak-MF, for 100 realizations of the data case +4+, i.e. kg > 0, 20% noise in the input
function and Poisson noise in the sinogram.
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Figure 5.

Histograms for the relative error (12) in the uptake rate of gray matter regions calculated by
Patlak, TV-Patlak, Patlak-GF and Patlak-MF, for 100 realizations of the data case +4+, i.e.
ks > 0, 20% noise in the input function and Poisson noise in the sinogram.
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Figure 6.
L-curve for the simulation case ‘+4+’. Total variation against the sum of weighted residuals,

N 2
i.e. ZiZIHWi(A(xi,_\‘f)T = b)|J,, for « from 0.0498 to 0.8187 is plotted. o = 0.2 i associated
with the left lower “corner”.
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Brain regions and rate constants[12] for slice 64 of the Zubal head phantom [26].

Table 1

Brain Regions

K1 mi/min/g

ko 1/min

k3 1/min

k4 1/min

frontal lobes
occipital lobes
insula cortex
temporal lobes
globus pallidus

0.102

0.130

0.062

0.0068

thalamus

0.082

0.105

0.060

0.0068

putamen
caudate nucleus

0.070

0.070

0.054

0.0068

internal capsule
corpus collosum
other white matter

0.054

0.109

0.045

0.0058
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Table 2

Summary of the test cases. Here 0 in columns two and three indicates the noise-free case, while + indicates noise
was added. In column one the O indicates k4 = 0. The same comments apply, but with the irreversibility assumption
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violated for all triples starting with +, indicating k4 > 0.

Ks | u(t) | Sinogram | Comments

0 0 Errors only caused by reconstruction

0 + Errors in TTACs caused by reconstruction plus Poisson noise
0 + 0 Errors in Cp(t)

+ + General case for irreversible compartmental model
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Algorithm 1

Given initial guess z = [x; y] and tolerance ¢ > 0

Page 22

Repeat

1 Solve for Az in

V2 o)Az = — V().

2 Stopif |[VOTAZ| <e.
3 Line search: Choose step size s.

4 Update: z =z + sAz.

9)
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