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Abstract
A variety of algorithms have been proposed for brain tumor segmentation from multi-channel
sequences, however, most of them require isotropic or pseudo-isotropic resolution of the MR images.
Although co-registration and interpolation of low-resolution sequences, such as T2-weighted images,
onto the space of the high-resolution image, such as T1-weighted image, can be performed prior to
the segmentation, the results are usually limited by partial volume effects due to interpolation of low
resolution images. To improve the quality of tumor segmentation in clinical applications where low-
resolution sequences are commonly used together with high-resolution images, we propose the
algorithm based on Spatial accuracy-weighted Hidden Markov random field and Expectation
maximization (SHE) approach for both automated tumor and enhanced-tumor segmentation. SHE
incorporates the spatial interpolation accuracy of low-resolution images into the optimization
procedure of the Hidden Markov Random Field (HMRF) to segment tumor using multi-channel MR
images with different resolutions, e.g., high-resolution T1-weighted and low-resolution T2-weighted
images. In experiments, we evaluated this algorithm using a set of simulated multi-channel brain MR
images with known ground-truth tissue segmentation and also applied it to a dataset of MR images
obtained during clinical trials of brain tumor chemotherapy. The results show that more accurate
tumor segmentation results can be obtained by comparing with conventional multi-channel
segmentation algorithms.

1. Introduction
Malignant glioma is one of the common types of primary brain tumor, with an annual incidence
of approximately five cases per 100,000 people per year [2,3]. Over 15,000 new cases are
diagnosed in the United States annually [2]. Although relatively uncommon than other major
diseases, they account for a disproportionate amount of cancer-related mortality. Despite
considerable ongoing research and advances made in surgical and radiosurgical techniques and
chemotherapy, the overall prognosis of malignant glioma remains poor: many new
chemotherapy regimens work well in a small number of patients only. This is probably related
to the extreme genetic, molecular, and tissue-level heterogeneity of brain tumors. Since
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different genetic mutations are likely responsible for different pathophysiologies, the
treatments that exist work well in only a small fraction of patients. The importance of this
problem is expected to increase with the increasing number of available chemotherapeutic
agents, and hence early evaluation of patients’ responses to therapy is extremely important.

Reliable and sensitive methods of assessing the effectiveness of various therapies in brain
tumor patients are important for guiding treatment decisions in individual patient, for
determining optimal therapy for specific patient groups, and for evaluating new therapies. Brain
tumor segmentation from Magnetic Resonance Imaging (MRI) data is becoming increasingly
common in clinical evaluation of tumor response to such treatments [4,5,6,7,8]. In particular,
when robust and reproducible methods are used, tumor volume and shape measures have been
reported to be the most significant predictor of patient outcome to treatment [6,7,8,9,10,11].
Manual segmentation of brain-tumor images for volume measurement has been a common
practice in clinics, but it is time-consuming, labor intensive, and subject to considerable
variation in intra- and inter-operator performance [12]. A consistent, accurate, automated
segmentation method for clinical brain tumor segmentation and measurement is much needed.

Because brain tumors vary greatly in size and shape, automated tumor segmentation remains
challenging. Since some tumors are best differentiated from adjacent normal tissue on
gadolinium enhanced sequences, and others on T2-weighted, FLAIR, diffusion weighted or
perfusion weighted sequences [13], multi-channel segmentation methods that incorporate
several different acquisition protocols/sequences and image contrasts have been widely
adopted.

A great variety of tumor segmentation methods have been proposed in the literature, and they
can be briefly classified into two groups: model-based methods [14,15,16,17,18,19] and
deformation-based methods [20,21,22]. Multi-spectral histogram analysis of T1- and T2-
weighted MRI images was first adopted for tumor labeling in [19]. In this technique, the
distributions of normal tissue, tumor, and edema are estimated from the T1 and T2-weighted
image channels by applying an expectation-maximization (EM) scheme [14]. A variation of
the method segments tissue volumes into normal and abnormal, where abnormal tissues include
both tumor and edema while normal tissues consist of white and gray matters [15]. The
algorithm constrains the normal tissue distribution within certain geometric and spatial
boundaries and identifies the remaining tissue as the abnormal region (tumor and edema). A
graph-based approach has been proposed in [16]. In this method, a Bayesian integration model
is applied to minimize the cost of graph cuts that segment tumor and edema. Alternative
methods involving the iterative procedure of first applying a statistical tissue classification and
then performing a nonlinear registration to an anatomic atlas have been reported in [17].
Another proposed framework uses voxel intensities, neighborhood coherences, intra-structure
properties, inter-structure relationships, and user inputs as the basis of tumor segmentation
[18]. On the other hand, deformable methods employing morphological operations [23], region
growing [20], and level set deformations [21,22] have also been proposed for the identification
of the boundaries of tumor volumes. It is worth noting that most of the deformable tumor
segmentation methods are semi-automated, since the generation of initial points or surfaces is
still difficult to automate.

Despite the advances in computational methods of brain tumor segmentation, a significant
issue remaining is that, due to financial cost and scanning-time constraints, clinical MRI
examinations typically consist of a high-resolution structural T1-weighted images combined
with a couple of low-resolution images of other weighted sequences to allow accurate visual
tumor diagnosis and evaluation via multi-channel images. While this is adequate for visual
qualitative clinical interpretation, automated segmentation of tumor from such data is a
challenge since the images acquired are of different resolutions, especially when some
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sequences are of low-resolutions. Direct alignment and re-sampling of these low-resolution
images to match the structural T1-weighted image will cause considerable misalignment and
significant partial volume effects for low-resolution images. Directly extending the
segmentation produced from the high resolution data [24] to the multi-channel images will also
decrease the segmentation accuracy [25].

To deal with these problems, we propose a Spatial accuracy-weighted Hidden Markov random
field and Expectation maximization algorithm, called SHE for short. In this algorithm, a spatial
accuracy, representing the spatial-resample accuracy of each voxel of the re-sampled low
resolution images, is introduced and used in the model updating and classification. Multi-
channel brain tumor image segmentation is achieved by first aligning the low-resolution images
such as T2-weighted and FLAIR images onto the T1-weighted images and then applying the
SHE algorithm to segment the tumor using the EM algorithm by introducing the spatial
accuracy-weighted Hidden Markov Random Field (HMRF). More weights are given to the
voxels with high interpolation accuracy and vise versa. In this way, the tumor segmentation
results are more accurate than treating the voxels equally. We evaluated and validated this
algorithm using a set of simulated multi-channel brain MR images with known ground-truth
tissue segmentation and also applied it to a dataset of MR images obtained during clinical trials
of brain tumor chemotherapy. The results show that more accurate tumor segmentation results
can be obtained compared with the conventional multi-channel segmentation algorithm by
using the spatial accuracy-weighted HMRF algorithm.

2. Methods
The Hidden Markov Random Field (HMRF) has been widely adopted in image segmentation
and has been shown to be superior to other methods of single-channel human brain MR image
segmentation [25]. But when HMRF is applied to multi-channel MR image segmentation, the
performance has been demonstrated to be inferior [25]. The reason is that the registration
accuracy and spatial re-sampling of multi-channel images (especially the re-sampling of low
resolution channels) strongly affects segmentation results. In this section, we propose to
improve the performance of the HMRF model by considering the spatial accuracy of each voxel
in the HMRF optimization using EM algorithm.

2.1 Spatial Accuracy Vector
A typical brain tumor MRI scan, as performed at our institution, may generate one high-
resolution T1-weighted image (less than 1.5mm thickness) plus several low resolution or thick
section datasets with other weightings, such as T2-weighted and fluid-attenuated inversion
recovery (FLAIR) images of 6 mm slice thickness. Figure 1 shows the example images of T2-
weighted and FLAIR images, and such images normally have low resolutions in z-direction.

Alignment of these low-resolution images to the high-resolution T1-weighted image set, as is
often done prior to multi-channel segmentation, can result in voxel misalignment and
interpolation errors regardless of which of the methods is used. The process of voxel
misalignment can be illustrated as follows: assuming that the task is to align an image I from
one space onto another space S′, we first globally rotate and scale the image so that the
transformed image I′ matches image I according to some image similarity strategy. For different
modality images, mutual information is commonly used. However, as shown in Figure 2, after
transformation we must interpolate image I′ according to the grids defined in S′ using linear
or Spline-based methods. If the voxel is far away from its neighboring grid points, it is called
a low-confidence voxel. In this situation the interpolated intensity for voxel i could be
inaccurate, as represented by voxel B in Figure 2. Thus if a voxel is far away from grids it is
a low-confidence voxel, and vise versa. Treating low-confidence voxels equally with high-
confidence voxels could cause inaccurate model updating and poor segmentation. For example,
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in Figure 2, voxel A is closer to the grids of S than voxel B, it should be given higher weights
when updating the class mean and variance values during segmentation than voxel B, and vise
versa. For multi-channel tumor image segmentation, a similar situation applies to all the images
of a given data-channel type: treating images from all channels equally could also be
undesirable.

To deal with these issues, an accuracy vector for each voxel i is defined as

(1)

where m (m >1) is the number of image channels used, and the spatial accuracy level of voxel
i for channel j (j=1,…, m), aij is defined as,

(2)

where dij (k) is the Euclidean distance from voxel i to its neighboring grid point k in the low
resolution image j, Ni is the number of voxels within the neighborhood of voxel i, from which
the interpolated intensity value of i is obtained, and λ (λ ≥ 0) is the weighting parameter that
controls the strength of spatial accuracy vector. The spatial accuracy vector can be normalized
by,

(3)

2.2 Spatial Accuracy-Weighted HMRF
Zhang et al. [24] proposed the HMRF-EM method of MRI segmentation. This method has
been successfully applied to tissue segmentation of multi-channel normal-brain MRI images,
especially for T1- and T2-weighted images. In this paper, we report improvement of this
method by using spatial accuracy weighting for multi-channel brain image segmentation in
order to deal with the problems mentioned in Section 2.1. In the proposed SHE algorithm,
integration of the spatial accuracy of each registered voxel improves the update of the model
parameters and thus improves the final tissue classification. Suppose that yi = [yi1,⋯, yim]T is
the feature vector describing each voxel i in an image in terms of the component data types,
where m is the number of data channels (number of MR images), xi ∈ L (L ∈{1, 2, ⋯, lmax})
is the class label for each voxel, and L is the class label set, according to the Maximum a
Posteriori (MAP) criterion [24], the segmentation problem can be achieved by determining an
estimate x̂ of the true class label x*[x1, ⋯, xn]T, (n is the number of voxels), which satisfies,

(4)

where P(x) is the prior distribution of the classification, and P(y | x) is the conditional
probability of the feature vectors y of all the voxel of the images given the class label x. We
assume that, for a given class label xi = l, voxel i’s feature vector yi follows a Gaussian
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distribution with parameter θ= {μl, Σl}. Thus, the Gaussian Hidden Markov Random Field
(GHMRF) model [24] can be written as,

(5)

where XNi represents the class labels of the neighboring voxels of voxel i, and Ni means the
neighboring voxels. P(l | XNi) models the conditional probability of label l given the labels of
the neighboring voxels, similar to [24], and g(yi; θl) is the m -dimensional Gaussian function,

(6)

According to [26], the prior distribution of the labels can equivalently be described by a Gibbs
distribution,

(7)

where Z is a normalizing constant and U (X) is the energy function,

(8)

where Vc(x) is one clique potential, and C represents all possible cliques. Here, a clique is
defined as a voxel pair in which the voxels are neighbors. A homogeneous and isotropic MRF
model was adopted in the GHMRF to generate the prior distribution with clique potential
[27]. In our method, we use a spatial accuracy-weighted clique potential function,

(9)

where i and j are a pair of voxel neighbors of a clique c, and the products of accuracy levels
are calculated over all the image channels m. The clique-potential is weighted by the accuracy
of each data-channel’s contribution to the neighbor-pair in order to reduce the influence of a
potentially-inaccurate neighborhood voxel on the current voxel. If there were no re-sampling
estimation in the registration, Vc (x) becomes the original clique potential function δ(xi − xj).

An EM algorithm [28] is used to determine the model parameter θ for each voxel and to solve
the class label x. This EM algorithm consists of two iterative steps: estimate the unobservable
data needed to form a complete data set and then maximize the expected likelihood function
for this complete data set. The whole SHE algorithm can be summarized as follows:

1. Initialize the segmentation/labeling x(0) and the model parameter θ(0).

2. M-step: maximize the expected log-likelihood using Equation (4),
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(10)

where P(y | x, θ(t)) and P(x) are described in Equations (5) and (7). Since solving this
maximization problem directly is computationally infeasible [24], the Iterated
Conditional Modes (ICM) algorithm [29] is adopted. The basic idea of the ICM
algorithm is to use the “greedy”’ strategy in the iterative local maximization, i.e.,
given the images and the current labels of other voxels, the algorithm sequentially
updates the label of each voxel by assuming that this label is dependent on the local
neighborhood. Thus in this step, we iterate through all the voxels and each time update
the labels of one voxel. Notice that the newly updated labels are not immediately used
to calculate the labels of the subsequent voxels, and the labels are updated after all
the image voxels are iterated.

3. E-step: estimate the model parameter θ(t+1) by calculating,

(11)

and

(12)

where P(t) (l | yi) is the posterior distribution for voxel i,

(13)

It can be seen that in this EM formulation, the parameters  and  are
calculated using the accuracy weighting vector a in the M step, and more weights are
given to the voxels with high-confidence, and vice versa.

4. Let t = t + 1 and repeat steps 2 and 3 until convergence, i.e. the label change in two
consequent iterations is smaller than a prescribed threshold, or the maximal number
of iterations has been reached.

Notice that the potential bias field has been removed before performing SHE, by applying the
bias-field correction method [30] in order to deal with the intensity inhomogeneity that
commonly exists in MRI images. In case that lack prior information, the widely-used
discriminate-measure threshold method [31] would be used to estimate the initial segmentation.
In this paper, we use a similar initial-segmentation method that maximizes the inter-class
variances while minimizing the intra-class variances as used in [24].
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3. SHE for Brain Tumor Segmentation
3.1 Brain Tumor Segmentation

The computational framework of SHE for brain tumor segmentation is outlined in Figure 3. In
this framework, the FLAIR and T2-weighted images are first co-registered onto the space of
the T1-weighted high resolution images, and the accuracy weightings are calculated after the
co-registration. In the co-registration, more than 80% of the voxels in the transformed images
have to be interpolated from neighboring voxels that were more than 1mm away. After co-
registration, skull-stripping is performed on the T1-weighted images [32].

By using the skull-stripped T1-weighted image as the mask, the skull is removed from the T2-
weighted and FLAIR images. As shown in Figure 3, the SHE algorithm is then applied to the
multiple channels for tumor segmentation. In our experiments, we used T1- and T2-weighted
images to segment the non-enhanced tumor, and used T1-weighted and FLAIR images to
segment the FLAIR enhanced tumor. Similar procedures introduced in Section 2.2 were applied
in these two steps.

In the experiment, we evaluated the performance of SHE in segmenting brain glioma from T1-
weighted, T2-weighted, and FLAIR images. Next subsection briefly summarize the datasets
and evaluation methods.

3.2 Evaluation of SHE Using Simulated and Real MRI Datasets
Simulated datasets: to validate the proposed SHE algorithm, MRI images with ground-truth
tissue labels were obtained from the BrainWeb [1], including T1-weighted normal brain images
with 1mm slice thickness, 5% noise and 20% intensity non-uniformity. Axial, sagittal, and
coronal images, with 10mm slice thickness were then extracted from the isotropic T1-weighted
image set by down-sampling the data in corresponding directions. Although the low-resolution
channels are simulated by down-sampling the T1-weighted images and there are no tumors in
the images, the simulated data is sufficient to test the performance using spatial accuracy-
weighted HMRF in image segmentation.

Real datasets—MRI data from 15 patients with brain gliomas were used in this study. The
dataset consisted of high resolution T1-weighted images acquired either pre or post-contrast
with 0.94mm × 0.94mm × 1.5mm voxel resolution and T2-weighted and FLAIR images of
0.47mm × 0.47mm × 6mm voxel resolution. Contrast-enhanced T1-weighting provides high
signal intensity in the tumor region but poor contrast between the enhanced tumor and the gray
matter. The regions of high signal intensity in the FLAIR images (corresponding to the “FLAIR
volume” in [14]) include both non-enhancing and enhancing tumor. The volume of abnormal
high intensity in the T2-weighted images is similar, but FLAIR images provide higher contrast
between the abnormal volume and the GM.

In addition to visual evaluation, quantitative measures are also used to compare the
segmentation results. There are several similarity methods for quantitatively comparing binary
segmentations, including Jaccard [34], Tanimoto [35], Simple Matching [36], Volume
Similarity [37], and Russel and Rao (RR) [38]. In this work, we compared the segmentation
results by measuring their Jaccard Similarities and their Volume Similarities. These two
similarity measurement methods can be understood by considering two binary segmentations
I1 and I2, which have been registered to the same grid space S. Let A = {a ∈ S, I1(a) =1} and
B = {b ∈ S, I2 (b) =1} represent the foregrounds of the two segmentations. Consequently, A̅
and B̅ are the backgrounds of I1 and I2. In this study, the tumor and enhanced-tumor volumes
are relatively small. That is, |A̅| ≫ |A| and |B̅| ≫ |B|, where |.| represents the volume of the
segmented tumors or the background (non-tumor regions). The Jaccard Similarity (JC)
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(15)

measures the overlay of two segmentations while Volume Similarity (VS)

(16)

compares the volumes of each segmentation without considering their positions.

4. Results
4.1 Validation Results Using Simulated MR Brain Images

Both the original HMRF-EM method in [24] and the proposed SHE method were applied to
axial and coronal images for two-channel image segmentation. Figure 4 (top row) shows such
simulated low-resolution images in two channels. The first channel is the images down-
sampled in z-direction, and the second channel shows the image down-sampled in y-direction.
The results are shown in Figure 4 (second and third rows). Compared to the original HMRF-
EM method, the SHE method generated a better segmentation. The red arrows in Figure 4
illustrate the improvement in tissue-segmentation in white matter. The sensitivity and
specificity of these two segmentation methods are shown in Table 1. It can be seen that SHE
increased the sensitivity of gray matter (GM) segmentation from 65.4% to 72.6% and slightly
improved the sensitivities of in cerebral-spinal fluid (CSF) and white matter (WM)
segmentation.

We also segmented the three channels, i.e., down sampled images in x, y, and z directions. The
result is shown in Table 2: the sensitivity of WM segmentation increased from 75.7% to 87.2%
after the integration of the spatial accuracy vector. These results demonstrate that the proposed
spatial accuracy weighting scheme significantly improves the results of the SHE algorithm in
brain tissue segmentation. The underlying reason is that potential higher weights are given to
the voxels with high interpolation confidence across all the channels and spatial relationship
has been modeled effectively using the HMRF model. In this way, the SHE algorithm reduces
the side effect caused by the blurry interpolated low-resolution images, and thus yields more
accurate segmentation results than HMRF-EM algorithm.

4.2 Brain Tumor Segmentation
We applied the proposed algorithm on the dataset of 15 patients, and Figure 5 shows typical
segmentation results from four of them (referred to as subject A, B, C, and D respectively).
The segmentation results have been overlaid on the original MRI images. High resolution T1-
weighted images of subjects A and C were acquired pre-Gadolinium and those of subjects B
and D were acquired post-Gadolinium. Although the non-enhancing and enhancing tumor
volumes vary significantly in size, shape, and position, SHE successfully segmented both the
non-enhancing and enhancing-tumor volumes in both cases.

To evaluate SHE algorithm, we compared its automated segmentation results with the results
of semi-automated manual segmentation performed under expert supervision. The semi-
automated segmentation was performed by two experts using ITKSnap software [33]. As it is
difficult for raters to distinguish abnormal FLAIR volume from CSF on the T2-weighted
images, the raters segmented enhancing tumor volumes from post-Gadolinium T1-weighted
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images and non-enhancing tumor volumes from FLAIR images. On each image set, the raters
drew several 3D spots inside the volume of abnormality and used ITKSnap to create a boundary
which was then revised as needed. This is illustrated in Figure 6. Segmentation of each FLAIR
and post-Gadolinium T1-weighted images took approximately 20 minutes per subject.

Examples of semi-automated segmentation results and SHE segmentation results are shown
in Figures 7 and 8. Figure 7 shows the segmentation results using T1-weighted and T2-weighted
images, and Figure 8 shows the segmentation results using contrast-enhanced T1 images and
FLAIR images. The SHE segmentation results correspond more closely to the boundaries of
abnormality on the source images than the semiautomated segmentation results as illustrated
by the red arrows in Figures 7 and 8, possibly due to operator fatigue during manual
segmentation. For example, the SHE results match the intensities of T1-weighted or contrast-
enhanced T1 images better than the semi-automated results, and also there are some artificial
lines/effect in the semi-automated results, which might be caused by some manual assignment
of voxels to tumor regions.

Quantitative comparisons between the semi-automated segmentation results by rater 1 and rater
2, and the automated SHE segmentations of both non-enhancing and enhancing tumor are
shown in Figure 9 and 10, respectively. For semi-automated segmentation, two raters manually
mark the tumor with assistant of the ITKSnap software, and automated segmentation is
achieved by applying the SHE algorithm. The high volume-similarity (over 0.90) between the
automated and semi-automated results for both tumor and enhanced-tumor segmentation
indicates that the automated segmentation method is comparable to semi-automated
segmentation. Semiautomated segmentation provides reliable and consistent segmentation
results between raters, as indicated by the high volume similarity between raters. The JC value
between the semi-automated and automated (SHE) results is comparable to the JC value
between the two semi-automated segmentation expert operators. In summary, the automated
SHE segmentation provide comparable segmentation results as the semi-automated ones by
raters, and it provides a highly automated tool for tumor segmentation using multi-channel
images for clinical evaluation of tumor response to treatment.

5. Discussion and Conclusion
In this paper, we proposed to use the spatial accuracy-weighted hidden Markov random field
and expectation maximization for brain image segmentation from multi-channel images. The
algorithm is an important improvement over the powerful HMRF-EM segmentation algorithm
in dealing with multi-channel images with different resolutions, and it is especially useful to
clinical MRI datasets containing a combination of low and high resolution images. Using the
simulated datasets with known ground-truth, we have demonstrated that the proposed SHE
algorithm yields more accurate segmentation results than HMRF-EM. Moreover, the
automated segmentation results from clinical MRI data obtained during a clinical trial
demonstrate robust results comparable to those obtained by manual assisted segmentation
methods.

We are integrating the SHE method into a computerized system to aid the diagnosis and follow-
up of glioblastoma multiforme patients. Although this method does not completely eliminate
the problem of inaccuracy resulting from registration of low-resolution image data to high-
resolution data, the algorithm presented suggests a promising research direction for automated
segmentation of clinical brain tumor images.

Currently, it takes similar amount of time for the SHE method to segment tumor on a P4 3.0GHz
2GB memory PC (20–25 minutes). However, since the image process pipeline is fully
automated, and the human operation time is greatly reduced (less than one minute per dataset),

Nie et al. Page 9

Comput Med Imaging Graph. Author manuscript; available in PMC 2010 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



and this frees the human operators for other activities. Furthermore, with the rapid advance of
parallel computing techniques and multi-core PC systems, as well as the optimization of the
software, the computation time of SHE will be reduced significantly in the near future.

Finally, certain conditions affecting the results of SHE were encountered in the current study.
For example, the touching of tumor voxels with the skull would cause the failure of automated
skull strip step (the FSL BET software). On the other hand, intensity inhomogeneity in MR
images would sometimes reduce the accuracy of segmentation as some parameters of the skull
stripping and inhomogeneity correction software need to be adjusted based on individual
image. In our current implementation, the skull stripping images and the inhomogeneity
corrected images are displayed automatically after the preprocessing, and the SHE algorithm
is called only when the users are satisfied with the preprocessing results. In our future work,
we plan to address such conditions in the SHE software to prevent from sinking into the skull
areas and to handle intensity inhomogeneity in the algorithm.
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Figure 1.
T2-weighted and FLAIR images are generally with low resolution in z-direction.
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Figure 2.
Re-sampling of a low-resolution image (S) with large slice thickness onto the space of the high-
resolution image (S′). S represents the globally aligned image grids overlapping on image S′,
and the traditional re-sampling methods will interpolate the intensity of S according to the grid
of S′. It can be seen that the corresponding voxel A in S′ is close to the grid points of S and is
of high-confidence level, however, the point of voxel B in S is far from the grid points and is
of low-confidence level.
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Figure 3.
The framework of SHE segmentation of MR brain images for tumor segmentation.
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Figure 4.
Normal brain tissue segmentation results using two channels. Channel 1 and 2 are axial and
coronal T1 images with 10mm slice thickness, respectively.
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Figure 5.
An example of the brain tumor and enhancement segmentation results. Blue: edema; Brown:
tumor.
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Figure 6.
Semi-automatic tumor segmentation using ITKSnap. (a) Preprocessing with selection of initial
spots; (b) final segmentation result.
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Figure 7.
Brain tumor segmentation results: visual comparison between manual (semi-automatic) and
automatic methods.

Nie et al. Page 18

Comput Med Imaging Graph. Author manuscript; available in PMC 2010 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 8.
Enhancement segmentation result: visual comparison between manual (semi-automatic) and
automatic (SHE) methods.
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Figure 9.
Similarity of segmentation results between semi-automated results by different raters and the
automated results for non-enhanced tumor. “Rater 1 – Rater 2” represents the similarity
between two semi-automated results of two raters, “Rater 1 - SHE” represents the similarity
between semi-automated results by rater 1 and automated results; “Rater 2 - SHE” is the
similarity between semi-automated results by rater 2 and the automated results.
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Figure 10.
Similarity of segmentation results between semi-automated results by raters and automated
results for enhancing tumor. “Rater 1 – Rater 2” represents the similarity between two semi-
automated results of two raters, “Rater 1 - SHE” represents the similarity between semi-
automated results by rater 1 and automated result s; “Rater 2 - SHE” is the similarity between
semi-automated results by rater 2 and the automated results.
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Table 1
Normal brain tissue segmentation using two channels.

Tissue HMRF-EM SHE

Sensitivity Specificity Sensitivity Specificity

CSF 0.804 0.861 0.837 0.867

GM 0.654 0.827 0.726 0.844

WM 0.812 0.858 0.824 0.915

Average 0.757 0.849 0.796 0.875
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Table 2
Normal brain tissue segmentation using three channels.

Tissue HMRF-EM SHE

Sensitivity Specificity Sensitivity Specificity

CSF 0.843 0.858 0.867 0.878

GM 0.703 0.802 0.711 0.891

WM 0.757 0.932 0.872 0.912

Average 0.768 0.864 0.817 0.894
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