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Abstract—This paper presents a novel method for unsupervised DNA microarray gridding based on Support Vector Machines 

(SVMs). Each spot is a small region on the microarray surface where chains of known DNA sequences are attached. The goal of 

microarray gridding is the separation of the spots into distinct cells. The positions of the spots on a DNA microarray image are 

first detected using image analysis operations and then a set of soft-margin linear SVM classifiers is used to estimate the optimal 

layout of the grid lines in the image. Each grid line is the separating line produced by one of the SVM classifiers, which maximizes 

the margin between two consecutive rows or columns of spots. The classifiers are trained using the spot locations as training 

vectors. The proposed method was evaluated on reference microarray images containing more than two million spots in total. The 

results illustrate its robustness in the presence of artifacts, noise and weakly expressed spots, as well as image rotation. The 

comparison to state of the art methods for microarray gridding reveals the superior performance of the proposed method. In 

96.4% of the cases, the spots reside completely inside their respective grid cells. 
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I. INTRODUCTION 

Complementary DNA (cDNA) microarray devices are a valuable tool of biotechnology, enabling monitoring of the 

expression levels for thousands of genes in each experiment. The first step of such an experiment is the isolation of two 

messenger RNA (mRNA) samples to be compared. The two samples are reverse-transcribed into cDNA, amplified using 

polymerase chain reaction and labeled with distinct fluorescent dyes, commonly Cy5 and Cy3. Subsequently the samples 

(targets) are hybridized on a microarray, which is a slide that includes a large number of probes i.e. chains of known DNA 

sequences, on a solid surface. The hybridized microarray is scanned at the wavelength of each dye and the output of an 

experiment is a high resolution digital image for each wavelength. A microarray image consists of a matrix of blocks, each of 

which contains a number of rows and columns of spots. Each spot is an area in the image which represents the level of the 

hybridization between a single probe and the samples. The intensity of each spot signifies the degree of hybridization of the 
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targets to each probe, which is usually a distinctive part of a gene, thereby indicating the expression level of the respective 

gene. 

The quantification of gene expression levels from microarray images is usually performed in three steps, namely gridding, 

segmentation and intensity extraction. Gridding involves partitioning the spots into distinct cells in the image, as well as 

assigning coordinates to each spot, whereas segmentation handles the separation of the spot pixels (foreground) from the 

background. In the last step, the intensity of the foreground and background is extracted from the respective pixels and used 

to quantify the expression levels of the corresponding genes. Since gridding is the first step in the microarray image 

processing, its results significantly affect the accuracy of the following steps, as well as the final results. Even though the 

process of gridding a noiseless image would be quite simple, there are several issues that have to be addressed for real 

images, such as image rotation, irregular spot sizes and shapes, spots of very low or zero intensity, as well as noise and 

various artifacts that are introduced by the wet lab process. A robust algorithm should be unsupervised and able to 

automatically perform accurate microarray gridding under these circumstances, as any user input or intervention would 

introduce variation into the results. Moreover, unsupervised gridding allows high-throughput processing of large amounts of 

data. 

Several methods have been proposed for microarray gridding; they either rely on some user input and adjustments or do 

not achieve a high enough accuracy. Such methods are implemented in ScanAlyze [1], ImaGene [2] or SpotFinder [3] that 

require several parameters to be set by the user. Only a few state of the art methods address the problem of unsupervised 

gridding based on methods such as mathematical morphology [4], Markov random fields [5], Voronoi diagrams [6, 7], 

Bayesian grid matching [8], Gaussian mixture model [9], genetic algorithms [10] or a combination of approaches [11]. 

However, there are still drawbacks that have to be resolved before fully automatic gridding can take place. For example, the 

method proposed in [4] requires that grid rows and columns are strictly aligned with the x and y axes, the region 

segmentation approach proposed in [5] fails to detect many weak signal spots and in [11] the number of rows and columns of 

spots per grid is required. The method presented in [8] employs an iterative algorithm to solve a complex deformable model 

for microarray gridding, but simple linear models such as [10] have been shown to achieve high accuracy. The approach 

proposed in [6, 7] requires the introduction of artificial spots in place of the spots that are very weakly expressed. It is worth 

noting that the use of Voronoi diagrams is equivalent to the use of an 1NN (nearest neighbor) classifier. The method 

proposed in [9] is quite accurate, but the evaluation is performed visually on a small number of spots, without comparison to 

a ground truth reference. Genetic algorithms [10] have the potential to achieve high accuracy, but are very time-consuming 

as they have to evaluate a large number of possible solutions in order to converge. Our preliminary version [12] of the 



 

 

 

proposed method is not entirely unsupervised, as the gridding accuracy depends on the successful selection of a few 

parameters that have to be experimentally determined. 

In this paper we propose the use of soft-margin linear Support Vector Machine (SVM) classifiers [13] for DNA 

microarray gridding that overcomes the aforementioned issues. Several improvements in various steps of the methodology 

lead to a more robust solution, where the optimal operating parameter values are determined automatically. Extensive 

experiments were performed, which lead to the conclusion that any changes to the operating parameters induce negligible 

variations in the accuracy of the results. The more efficient spot detection and filtering, as well as the use of additional data 

in the SVM training process, contribute to the increased accuracy and robustness of the proposed method. The results of the 

proposed method are supported by a thorough exploration of the parameter space, the use of an extensive data set and the 

comparison of the gridding results to the ground truth gridding of the reference images. Prior to the use of the SVM 

classifiers, the distance between rows and columns of spots is estimated, as presented in section II-A, and then a spot 

detection step selects spots that have specific properties, filtering out any irregularities and artifacts. The remaining spots are 

then separated into rows and columns and the SVM classifiers set the separating lines between consecutive rows or columns 

so as to maximize the margin between the spots, without any user intervention. The motivation for the using the linear SVM 

classifier in a gridding application was its well known geometric properties as a maximum-margin classifier [14], as well as 

its tolerance to outliers, in the case of the soft-margin support vector machines. These features provide robustness in the 

presence of weakly expressed spots and in the presence of irregularities or artifacts.  

II. METHODOLOGY 

In the proposed methodology, the distance between consecutive rows and columns of spots is first estimated and then the 

locations of the spots are discovered. Once extracted, that information is used to separate the detected spots into rows and 

columns, which are used as training data for a set of linear SVM classifiers. Each classifier produces one grid line of the 

microarray image grid. In short, the proposed methodology consists of the following steps:  

1. Distance estimation between consecutive rows and columns 

2. Rotation estimation 

3. Image preprocessing 

4. Spot detection 

5. SVM-based gridding 
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Fig 1. Block diagram of the proposed methodology 

 

A. Distance estimation between consecutive rows and columns 

In the first step of the proposed gridding methodology, the distance between consecutive rows and columns is estimated. 

Even though the image dimensions are known and the number of spots in each row and column might also be known, the 

row height and column width cannot reliably be estimated due to image rotation or possibly inaccurate cropping of the 

scanned image. Furthermore, such an estimation would depend on user input and reduce the potential for high throughput 

microarray image analysis. Instead, in order to find the optimal row height, the image is segmented into horizontal stripes 

with a height of dr pixels, which are then averaged. If dr is equal to the distance between the rows, the spots of all rows will 

be highly overlapping in the resulting averaged subimage, producing well defined white areas that are well separated from 

the black background, as shown on the left side of Fig 2b. In the case of a suboptimal value of dr, the spots will partly blend 

with the background (Fig. 2b, right side), producing numerous gray areas instead of distinct black and white areas. In order 

to select the optimal value of dr, the standard deviation of the pixel intensities of the averaged subimage is used as an 

effective measure of spot overlap. A scheme based on the maximization of the standard deviation will result in the 

determination of the optimal row height dr, whereas the optimal column width dc is likewise estimated. 
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Fig. 2. Production of (a) horizontal subimages, (b) averaged subimage for optimal dr and suboptimal dr. 

(c) Detail of averaged subimages 

 

In more detail, given a microarray image of x×y dimensions and an estimate of the distance dr between the rows of its 

spots, the image is segmented into subimages of size x×dr pixels. These subimages are then averaged into a single x×dr 

image. Such images for several values of dr are illustrated in Fig. 3. 
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Fig 3. The averaged row subimages produced for various values of dr 

 



 

 

 

The range of dr values tested can be specified by the user as a parameter, but a wide range ensures successful estimation 

without user intervention and is thus preferred. The standard deviation of the averaged subimages is calculated for all values 

of dr within that range, using a small step in the order of a fraction of a pixel. The values of dr for which the standard 

deviation is a local maximum are selected as candidates for the optimal distance estimation, as denoted by the arrows in Fig. 

4. The local maxima are most often located on multiples of the optimal dr value (points a and d of Fig. 4), as a distance 

estimation of n·dr also results in highly overlapping spots. Other local maxima (points b, c and e) may be present, depending 

on the rotation of the image. For each one of the selected dr values, the average value of the standard deviation in their 

neighborhood is calculated. The resulting value of dr is the one that exceeds its neighborhood average by a greater ratio. In 

the case shown, the greatest ratio is observed for point a, which exceeds the average of its neighborhood by 19.61% and is 

thus selected. 
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Fig 4. Standard deviation of pixel intensity as a function of distance between rows dr 

The selected point a is indicated in bold 

 

B. Rotation estimation 

By analyzing the averaged x×dr subimage for the estimated distance dr, it is possible to calculate the angle of rotation of 

the original microarray image. Figure 5a depicts an x×dr averaged subimage produced from a microarray image that has been 

manually rotated. In order to estimate the rotation angle of the image, a large number of the brightest pixels of the subimage 

are randomly selected. Starting from each of these pixels, the average pixel intensity over all directions ranging from -45° to 

+45° is calculated. The direction that results in the highest average intensity is chosen, as shown in Fig 5b. The rotation 

estimated from the averaged subimage is the median of the chosen directions of all the selected pixels. This procedure is 



 

 

 

repeated for the averaged dc×y subimage generated using the column distance dc estimation. The final result is the arithmetic 

mean of the two image rotation angle estimations. Finally, the input image is counter-rotated so as to realign the rows and 

columns of spots to the x and y axes. The values of dr and dc are recalculated for the counter-rotated image. 

(a) 

 

(b) 

Fig. 5. (a) The averaged row subimage produced by a rotated microarray image 

(b) The directions of highest average intensity 

 

C. Image preprocessing 

 This step involves the normalization of the microarray image by adjusting the intensity histogram into the range 0 to 255. 

This results in effective use of the full dynamic range of the 8-bit image. The edges of the spots are detected by the 

application of the Sobel operator on the normalized image. A threshold T is used to isolate the sharpest edges, which 

correspond to prevalent spots, as shown in Fig. 6. 

Edge detection 
(Sobel)

Threshold

Edge detection 
(Sobel)

Threshold

 

Fig. 6. The result of edge detection and thresholding 

 

D. Spot detection 

The thresholded image (Fig. 7a) is analyzed, in order to locate pixel groups that contain consecutive white pixels. The 

pixels of a group reside on the same spot edge. Each group is represented as a rectangle that circumscribes the pixels of the 

group, as illustrated in Fig. 7b. Ideally, each rectangle should contain the edge of a single microarray spot, however 

depending on the threshold used and the noise present in the image, it might also include artifacts or multiple merged spots. 

Subsequently, only the rectangles that have specific shape and size characteristics should be considered valid, therefore a 

method for filtering the spots is employed. 



 

 

 

The rectangles should be quasi-square in order to contain only one microarray spot, therefore the ratio of the smaller to the 

larger side of each rectangle must be close to unity. Also, each spot should belong to exactly one row and one column, 

therefore its size should not exceed the distance between rows or columns in the image. Hence, any pixel group that has a 

diagonal longer than 22
cr dd +  is discarded. The output of the pixel group filtering is shown in Fig. 7c. 
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(a)  (b)  (c) 

Fig. 7. Grouping and filtering of white pixels 

 

E. SVM-based gridding 

In general, an SVM classifier [13] is provided with a training set { }}1,1{,|),( 2 +−∈ℜ∈= iiii cxcxD , which consists of 

vectors ix  and their respective class labels ci. It produces the normal vector w  and parameter b of the separating hyperplane 

0=−⋅ bxw , which maximizes the margin between vectors ix  of different classes. The width of the margin is equal to 

w/2 , therefore the widest margin is found by minimizing w  under the constraints 1)( ≥−⋅ bxwc ii , i.e. requiring that 

all the vectors in the training set are correctly classified. Figure 8 presents an example of two possible lines for the separation 

of two classes of vectors. Although line l2 is a valid separating line, line l1 maximizes the margin (m1>m2) and would 

therefore be chosen by the SVM. 

The support vector machine described above is called a “hard-margin” SVM and does not take into account any outliers. 

One of its properties is that the separating hyperplane is determined by the support vectors, which are the ones that lie on the 

edges of the margin. Thus, in the case of outliers present inside the margin, the separating hyperplane will be placed 

suboptimally. Figure 9 illustrates this case, where an outlier (denoted by the arrow) forces the SVM to position the separating 

hyperplane significantly closer to vectors with a class label of -1, reducing the width of the margin. This problem can be 

solved using the “soft-margin” SVM, where a slack variable ξi is introduced for each vector ix . The constraints are then 

formulated as iii bxwc ξ−≥−⋅ 1)(  and the separating hyperplane can be found by minimizing  
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where C is a cost parameter that determines the effect of outliers on the resulting hyperplane. Large values of C result in a 

separating hyperplane that is mostly determined by any outliers, while on the other hand, if a smaller value of C is used, the 

separating hyperplane follows the general trend of the training set given to the classifier, ignoring any outliers. The hard-

margin classifier is equivalent to a soft-margin classifier with an infinitely large C. [14] 
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Fig. 8. Separating hyperplanes and their 

respective margins. 

Fig. 9. Reduction of margin width due to an 

outlier, in the case of hard-margin linear SVM. 

 

In order to use the SVM classifier for microarray gridding, the valid spots (Fig. 10a) that have been produced by the 

previous steps are first assigned into distinct rows and columns with respect to the distances dr and dc. For each pair of 

consecutive rows numbered k and k+1, the respective grid line that separates the spots of these rows is calculated by a soft-

margin linear SVM classifier. Every valid spot in the image is represented by a two-dimensional vector ix  that consists of 

the coordinates of the center pixel of the valid spot, and these vectors comprise the training set D. The class label ci of each 

valid spot is determined as a function of the row that it belongs to. More specifically if the spot belongs to any row with 

number ranging from 1 to k, it is assigned to class +1, else it belongs to the rows with numbers greater than or equal to k+1 

and is thus assigned to class -1, as shown in Fig 10b. The classifier is then trained and produces the separating line that 

maximizes the margin between the vectors ix , which is also the resulting grid line. It is only the training phase of the 

classifier that is used for the determination of the grid lines and not the testing phase.  
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 (a)  (b)  

Fig 10. (a) The valid spots and (b) the training set and resulting separating 

line produced by the SVM classifier for the separation of rows 7 and 8 

 

If the successful detection of all spots in the image could be guaranteed, the training set would consist of only the 

necessary spots, i.e. those residing on rows k and k+1. However, in real microarray images, there are cases where several 

consecutive spots might be weakly expressed and therefore not detected, so adding spots from rows above k and below k+1 

to the training set provides more useful data to the classifier for successful gridding. 

In the case that row k contains less than two detected spots, the two grid lines that separate this row from rows k-1 and k+1 

cannot be determined by the use of the SVM classifier. This is a rather rare case considering that the image is normalized 

during the preprocessing step. To cope with this limitation, the endpoints of the two grid lines are positioned equidistantly 

between the endpoints of the first neighboring grid lines above and below them. In the case where the top or bottom rows of 

spots contain less than two spots, the endpoints of the grid lines that cannot be determined are positioned dr pixels further 

from the nearest grid lines.  

Furthermore, the outliers that result from misdetected spots due to artifacts and noise require the use of the soft-margin 

SVM to diminish their effects. In Fig. 11, an outlier has been introduced into the SVM training set. It is evident that in the 

case of a small C (Fig. 11a), the margin is determined by the other spots in the row and the outlier is virtually ignored, 

whereas in the case of a large C (Fig. 11b), a single outlier determines the positioning of the separating line, resulting in a 

line that is significantly closer to most of the vectors of the top row, reducing the margin and rendering it suboptimal for 

gridding. The microarray gridding is completed after the application of the above procedure for the determination of the grid 

lines that separate each pair of consecutive columns of spots.  

 



 

 

 

 

 

C=0.01 C=0.1 

  
Detail: 

 

Detail: 

 
(a)8 (b) 

Fig. 11. The effect of an outlier as a function of the SVM cost parameter C. 

(a) Small value of C, (b) Large value of C 

 

 

 

III. RESULTS 

The dataset used for the evaluation of the proposed method consists of 54 DNA microarray images, from the Stanford 

Microarray Database [15]. The images have 1900×5500 pixels and 16-bit gray level depth. The images include 48 blocks of 

about 870 spots each, for a total of 2255040 spots in the data set. They have been produced for the study of the gene 

expression profiles of 54 specimens of acute lymphoblastic leukemia, which span 37 positive and 17 negative to BCR-ABL 

[16], a fusion gene product resulting from translocation between the 9th and the 22th chromosomes. The dataset is 

accompanied by ground truth annotations regarding the positions and sizes of the spots. 

 In order to enhance the reliability of the results, the data set used for evaluation is a superset of the one used in [10] and 

[12], as it includes all 54 images instead of only 25 used in the previous studies. The statistical analysis is performed 

correspondingly, in order to produce directly comparable results. It is important to note that [10] presents a comparison to the 

state of the art methods [1,3,9], which it surpasses significantly with regards to microarray gridding accuracy. Therefore the 

evaluation of the proposed methodology is performed in comparison to [10]. For the statistical analysis, each spot was 

evaluated as being perfectly gridded when all its pixels reside completely within its respective grid cell, marginally gridded 

when more than 80% of its pixels reside within its respective grid cell and incorrectly gridded when less than 80% of the spot 



 

 

 

pixels reside within its respective grid cell. The evaluation results are shown in Table I. Out of more than two million spots 

present in the data set, 96.4% spots were perfectly gridded, whereas 3.2% and 0.4% were marginally and incorrectly gridded 

respectively. These results show that the proposed method achieves higher quality gridding than the state of the art method 

presented in [10], and consequently it is also superior to [1,3,9]. In comparison to the preliminary version presented in [12] 

which displayed promising results, the achieved accuracy is increased as several changes have been included in the proposed 

method, such as the automatic determination of valid spot sizes based on the distance between rows dr and columns dc, as 

well as the inclusion of the valid spots from the whole image into the training set of each SVM classifier. 

 

 

 
Table I: Comparison of gridding results 

 
 Perfect Marginal Incorrect 

Proposed Method 96.4% 3.2% 0.4% 
Bariamis et. al. [12] 95.1% 4.5% 0.4% 
Zacharia et. al. [10] 94.6% 4.8% 0.6% 

 

 

 

The gridding performance of the proposed method was evaluated using C=0.1, 0.05, 0.01 and 0.005 and T ranging from 8 

to 24. The SVM cost parameter C determines the effect that outliers or noise might have on the separating lines that the SVM 

produces, therefore a small value of C should be selected for successful gridding. The threshold T affects the sensitivity of 

the spot detection step, as well as its susceptibility to noise. The choice of C=0.01 is supported by the results shown in Table 

II, where it produces the most accurately gridded spots compared to the other values of C evaluated. Lowering the value of C 

results in negligible changes of accuracy, but the choice of a larger value would reduce the achieved accuracy. Even though 

the optimal value of C is usually application and data dependent, in the proposed method the choice of a value lower than the 

optimal results in comparable accuracy. Table II also illustrates that the proposed method is highly accurate for a wide range 

of thresholds T, as the greatest percentage of correctly gridded spots is 96.41% for T=12, but the accuracy remains higher 

than 96% for T ranging from 8 to 19. The results illustrate that the effect of threshold selection only marginally affects the 

achieved accuracy.  



 

 

 

 

 

Table II: Percentage of correctly gridded spots as a 

function of the SVM cost parameter C and the threshold T 

 
SVM cost C  

0.005 0.01 0.05 0.1 
8 96.22% 96.20% 95.06% 94.74% 
9 96.27% 96.27% 95.11% 94.80% 

10 96.29% 96.30% 95.15% 94.84% 
11 96.32% 96.35% 95.19% 94.88% 
12 96.34% 96.41% 95.25% 94.93% 
13 96.29% 96.38% 95.22% 94.91% 
14 96.22% 96.34% 95.17% 94.86% 
15 96.15% 96.29% 95.14% 94.82% 
16 96.09% 96.25% 95.10% 94.79% 
17 96.00% 96.18% 95.05% 94.74% 
18 95.90% 96.12% 95.02% 94.70% 
19 95.81% 96.04% 94.93% 94.62% 
20 95.69% 95.95% 94.86% 94.54% 
21 95.55% 95.84% 94.78% 94.46% 
22 95.41% 95.73% 94.66% 94.35% 
23 95.26% 95.62% 94.57% 94.25% 

Th
re

sh
ol

d 
T 

24 95.12% 95.50% 94.46% 94.14% 
 

Although the dataset only includes microarray images with rotation of up to a few degrees, an evaluation method was 

needed to assess the performance of the rotation detection step of section II-B for a wider range of image rotation angles. We 

have therefore manually rotated the images of the dataset by angles θreal ranging from -25° to +25° and used the proposed 

rotation detection method to compute an estimate θest of the rotation for each image. Based on that estimate, the images were 

counter-rotated and gridded. Table III presents the results of the rotation detection as a function of the rotation angle θreal. 

The evaluation was made based on the mean and standard deviation of Δθ=θest−θreal, denoted as mΔθ and σΔθ respectively. 

The mean difference was less than 1.3° for all cases, which resulted in negligible variation of the gridding accuracy 

compared to the original images. The variation of the accuracy was less than 0.3% in all cases. An example of an image 

rotated by 15 degrees, as well as the counter-rotated image and the gridding result are illustrated in Fig. 12. In this case, Δθ 

was equal to 0.9°. 

 
Table III: Mean and standard deviation of difference between actual and detected rotation angles Δθ 

 
θreal -25° -20° -15° -10° -5° 0° 5° 10° 15° 20° 25° 
mΔθ 1.23° 0.62° 0.72° 0.72° -0.21° 0.28° 0.63° -0.42° 0.20° -0.3° -1.02° 
σΔθ 0.41° 0.83° 0.95° 0.58° 0.70° 0.35° 0.88° 0.61° 0.89° 0.72° 0.57° 
 



 

 

 

Figure 13 illustrates the gridding resulting from the application of the proposed method in the presence of artifacts. More 

specifically, in Fig. 13a, 13b and 13c, several bright artifacts are present, whereas in Fig. 13d the top right part of the image 

has been affected by noise during the wet lab process. Despite the presence of these artifacts and noise, the proposed method 

achieves successful gridding in all those cases. Figure 14 illustrates a microarray image area that includes a large and bright 

artifact. Even in the vicinity of the artifact, the gridding is not affected by its presence. 

 

 

(a) (b) (c) 

Fig 12. (a) A microarray image rotated by 15° 
(b) The counter-rotated image (Δθ=0.9°) 
(c) The resulting gridding for this image 
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(c) (d) 

Fig 13. Gridding examples: (a) large artifact, (b) and (c) small artifacts, (d) noise at the top of the image 

 



 

 

 

 

Fig. 14. Detail of successful gridding in the presence of a bright artifact 

 

IV. DISCUSSION AND CONCLUSIONS  

In this paper, we presented a novel method for unsupervised microarray gridding, which consists of five steps. In the first 

step, the distance between rows and columns of spots is estimated. In the second step, the image rotation angle is estimated 

and the image is counter-rotated to align the rows and columns of spots with the x and y axes. In the third step, the input 

image is preprocessed, whereas the fourth step involves the spot detection and filtering. In the final step, a set of soft-margin 

linear Support Vector Machine classifiers determine the positioning of the grid lines. The SVM produces the separating lines 

of the grid so as to maximize the margin between the rows and columns of spots, and displays high tolerance to outliers that 

result from misdetected spots due to artifacts and noise. Furthermore, the proposed method allows high accuracy gridding for 

a wide range of operating parameters by employing efficient filtering of the detected spots based on their size and shape, in 

addition to using soft-margin linear SVM classifier with an extended training set. 

Overall, the advantage of the proposed method is that it manages to perform successful gridding of DNA microarray 

images in the presence of the following conditions: irregular and weakly expressed spots, noise and artifacts, as well as 

rotation. The effects of the irregular spots, the noise and the artifacts are diminished by the high tolerance of the soft margin 

SVM to outliers, as well as by the spot filtering included in the spot detection step. Furthermore, the generalization 

performance of the SVM classifier allows it to determine the grid lines in the presence of weakly expressed spots. Lastly, the 



 

 

 

proposed method estimates the image rotation angle and counter-rotates the input image in order to produce accurate 

gridding. A potential disadvantage of the proposed method is that the SVM classifiers require several detected spots in each 

row and column of spots. Rarely, most of the spots in a row or column might be weakly expressed and not detected. In such 

cases, which account for less than 0.1% of the rows and columns in the data set, the grid line positioning is determined by the 

nearest grid lines. 

Out of more than two million spots present in the data set, 96.4% spots were perfectly gridded, whereas 3.2% and 0.4% 

were marginally and incorrectly gridded respectively. These experimental results show that the proposed method achieves 

higher quality gridding than the state of the art method presented in [10], providing the potential of achieving perfect 

gridding for the vast majority of the spots. 
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