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Abstract
This paper presents an automatic method for segmentation of brain structures using their symmetry
and tissue type information. The proposed method generates segmented structures that have
homogenous tissues. It benefits from general symmetry of the brain structures in the two hemispheres.
It also benefits from the tissue regions generated by fuzzy c-means clustering. All in all, the proposed
method can be described as a dynamic knowledge-based method that eliminates the need for
statistical shape models of the structures while generating accurate segmentation results. The
proposed approach is implemented in MATLAB and tested on the Internet Brain Segmentation
Repository (IBSR) datasets. To this end, it is applied to the segmentation of caudate and ventricles
three-dimensionally in magnetic resonance images (MRI) of the brain. Impacts of each of the steps
of the proposed approach are demonstrated through experiments. It is shown that the proposed
method generates accurate segmentation results that are insensitive to initialization and parameter
selection. The proposed method is compared to four previous methods illustrating advantages and
limitations of each method.
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I. Introduction
Segmentation is the first step in many image analysis and interpretation applications and one
of the growing fields of image processing. Segmentation of anatomical structures and
extraction of their pathological features from magnetic resonance images (MRI) are
challenging problems that are essential for the quantitative evaluation of tissues, structures,
and organs of the human body. To this end, a variety of automatic methods have been developed
among which boundary and region based approaches constitute two major categories.
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Snakes, initially introduced by Kass and Terzopoulos [1], are the primary groups of boundary
based methods. Various alternatives for reducing dependency of these methods on initialization
are proposed, e.g., a constant evolving force by Cohen [2] and an adaptive force by Xu and
Prince [3]–[4] known as Gradient Vector Flow (GVF). To increase the robustness of these
models, orthogonal gradient components are considered [5]. However, numerical errors are
inevitable problems in estimating important geometric parameters such as normal vector and
curvature.

The level set method is developed as an implicit representation of contours to overcome the
numerical errors in addition to simplicity of extending to higher dimensions. It follows
topological changes and extracts accurate geometric parameters such as curvature

 (where φ is almost always the signed distance function in which |∇φ| =1)
[6]. In the level set method, an appropriate embedding function φ: I × [0 T] → R is used to
implicitly propagate boundaries C(t) in the image plane (C(t) = {x ∈ I| φ(x, t) = 0}) [7]–[8].
The level set theory is used to find a solution to the evolution equation. To this end, solving

the Euler equation ( ) for φ and finding pixels in which φ equals zero yields the
boundary, where φ is the level set function and F is the evolving force [4],[9]. Efficient
numerical methods are proposed for solving this equation, such as fast marching and narrow
band methods [10]–[11]. Various boundary based models are proposed based on the advantages
of the level set method. In classical methods, the following equation is used.

 where V0 (constant force) and ∇c. ∇φ (advection
term) help with the detection of weak boundaries [12]. In the geodesic active contours, the

evolution equation  is used where  is the
evolving force and p is either 1 or 2. Here, c serves as a constant velocity and helps with the
extraction of weak boundaries [8].

Prior work on boundary based methods and their related flaws are numerous. For solving their
problems, region based methods are introduced. These methods are related to statistical
methods, texture based approaches, and clustering. Active contours without edges and density
based methods are also considered in this group. Intensity histogram (parametric or non-
parametric) and the variance of the image intensities are examples of the quantities used in the
region based methods [13]–[14]. Statistical methods may also use intensity information [15]
or curvature gradients in addition to shape index for each pixel or voxel [16]–[17]. The
probabilities of each pixel belonging to each class are estimated using the label parameters and
the prior probabilities. Then, each pixel is associated with the class that has the maximum
posterior probability. Mixture models are also commonly used in the statistical segmentation
methods. Recent work provides inference on fully adaptive spatial mixture models combining
a variational Bayes approximation with a second-order Taylor expansion of the components
of the posterior distribution [18].

Clustering methods form a group of region based approaches that use most discriminating
features extracted from the image regions. By associating each feature vector to only one class
or to all classes with deferent levels of association, crisp or fuzzy clustering methods are
derived, where fuzzy clustering methods are widely used in image segmentation [19]. The key
point here is that although fuzzy methods are appropriate for segmenting tissues, but
segmenting structures requires additional complementary methods. Using the distance between
two pixels based on a homogeneity criterion and an object similarity measure as the fuzzy
characteristics, fuzzy-connected methods are developed for image segmentation.
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Computational complexity of these methods is their main weakness for segmenting brain
structures when compared with other methods [20]. In their application to brain structure
segmentation, the Sulcal Findi is segmented by finding connected regions exceeding a depth
threshold based on a geometric depth measure [21]. Moreover, there are methods that combine
the boundary and region information [22]–[23].

Active contours without edges are also considered as another group of region based methods
that are based on Mumford-Shah method. Minimizing specific energy term which results in
two separate regions with most homogeneity [24] makes these methods proper for segmenting
structures that have weak boundaries. In addition, structures whose inside intensity are either
higher or lower than their outside can be segmented by such methods. This partitioning
criterion, however, may fall into trouble when segmenting structures such as thalamus with
sides reaching cerebrospinal fluid (CSF) with high contrast and sharp edges and other sides
being adjacent to white matter with low contrast and weak edges [25]–[26].

Texture based methods are applicable to images with specific patterns and high signal-to-noise
ratio (SNR). The ways the textons, as texture elements, are defined result in different texture
based approaches. Updating the probability density function (pdf) of each pixel and comparing
it with the one belonging to textons, regions with specific textons may be segmented [27].
Genetic algorithms are used as an alternative method for finding the optimal texton and
segmenting desired regions of the image [28].

In other attempts, shape models are developed using Principle Component Analysis (PCA)
which uses the signed distance function from the average [29]–[30]. PCA may be used to
evaluate the distribution function of shape parameter based on the training samples [30]. This
method is limited to the parametric deformation between the reference shape and the evolving
contour [31]–[32]. Also, covariant shape deformations of neighboring structures may be used
as another source of a priori information [33]. Likewise, there are methods that use a shape
prior as a functional of the distance between the evolving contour and the reference curve
[34]–[35]. Although the use of shape models may increase the segmentation accuracy, it
requires statistical information about the shape of the structure [36].

Exploring the literatures, it is noted that all available medical information is not used in the
segmentation process. None of the existing methods is suitable for structures that have both
weak and strong boundaries. In addition, when the structures of interest in the testing datasets
are different from the training datasets in terms of their shapes or locations, these methods
generate inaccurate segmentation results. In this paper, we present on a promising method that
is based on general anatomical constraints consistently found in different subjects. This is in-
line with recent efforts by other groups in applying anatomical constraints such as those defined
based on fuzzy spatial relationships [37] and selection of the lateral ventricles as anatomical
landmarks for the segmentation of the caudate nucleus [38]. It is also inline with the methods
that use spatial information from an atlas besides the likelihood functions estimated from the
training datasets, e.g., Akselrod-Ballin et al [39].

Our proposed method is based on three novel ideas: 1) estimation of the entropy dynamically
for multiple structures; 2) inclusion of a symmetry criterion based on the general symmetry of
the brain structures in the two hemispheres; and 3) addition of a force based on the tissue type
information to keep the contours in the correct tissue type.

The main idea of the proposed method is to replace complex energy terms by anatomical
knowledge that improves segmentation of specific structures. In addition, inclusion of
structures that are from the same tissue type in the pdf estimation process improves the
estimation results. Consequently, the segmented structures are most homogenous and accurate
[40]–[41] and capable of preserving more details of the structures. Furthermore, by including
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a novel constraint based on the fact that the structures are symmetric in general, the
segmentation results become almost independent of initialization unlike many other methods
proposed in the past. Last but not least, using fuzzy c-means clustering, structures shape
information is used in the segmentation process, making the proposed method independent of
the statistical information unlike the statistical methods discussed above [29]–[31]. All
together, these three novel forces can segment the brain structures accurately even if the
evolving curves are improperly initialized. The details of the structures are preserved mainly
due to the dynamic entropy estimation and the fuzzy clustering method applied in this method.

The proposed method segments double-sided structures (existing in both hemispheres)
accurately. The results of using multi-structural pdf’s in the segmentation of caudate and
ventricle are compared with those of the single structure. In addition, using a fuzzy tissue type
criterion, the caudate is segmented accurately even when the initial contour is inappropriate
(covers both of the caudate and ventricles). This shows robustness of the proposed method to
the accuracy of the initialization process. It should be noted that although the symmetry force
may not play a positive role when there are structural deformations in the brain, the method
may still preserve robustness based on the other two forces (dynamic entropy optimization and
fuzzy tissue type criterion). For example, asymmetric ventricles segmented and shown in this
paper serve as an illustration of this property. However, if there are large deformations in the
brain, the proposed method may be incapable of segmenting the structures. This also holds for
other state-of-the-art methods and is attributed to the large deformations of the brain structures
that are not considered in the a priori knowledge (shape models) used in the current automatic
segmentation methods.

The rest of the paper is organized as follows. The proposed method is explained in Section II.
Experimental results are presented in Section III and conclusions are given in Section IV.

II. Proposed Method
The proposed method is most appropriate for the segmentation of structures that are of the
same tissue type, e.g., gray matter, like putamen and caudate and are also similar on both sides
of the brain. The constraint that the related structures are composed of the same tissue type
increases the accuracy and reduces dependency of the segmentation results on the model
parameters and the initialization process. Based on the anatomical texts such as [42], certain
brain structures like putamen and caudate are composed of the same tissue type and have very
similar shapes in the two hemispheres. Therefore, it is beneficial to minimize a density-based
energy of the structures that are made of the same type of tissue. Also, a symmetry force should
improve the segmentation results. The benefit of using the symmetry interaction is shown by
improperly initializing the contour. Without using the symmetry interaction, the algorithm is
much more parameter dependent.

Almost all of the current methods depend on the initial contour unless this dependency is
reduced by using the training datasets and approximating the locations and the shapes of the
desired structures. This makes such methods dependent on the selected datasets and the
registration process. To avoid this dependency, an energy term is used that minimizes
misplacement of the model on the desired tissue. In our method, each image is clustered into
5 tissue classes: 1) background; 2) skull; 3) CSF; 4) gray matter; and 5) white matter. Using
the proposed criterion, improper initial contours are moved to the desired tissue. For instance,
since ventricles and caudate are from different classes, when the initial contours overlap both
tissue classes, this moves the caudate model away from CSF.
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A. Dynamic Density Based Energy Optimization
Image segmentation can be viewed as a function optimization process. In this view, entropy is
an appropriate objective function for optimization due to its close relationship with the image
intensity uniformity in the segmented region. In the proposed method, the entropies of multiple
evolving contours are minimized simultaneously to find regions with most uniform intensities.
To estimate the entropy, the pdf’s of the structures are needed. Since there are multiple
structures in the brain that are made of the same tissue type, all of these structures are used in
the estimation process to increase its accuracy. Note that this estimation is done in each iteration
of the algorithm and thus it is called “dynamic” in this paper. Then, to solve the evolution
equation, the level set theory is applied. In this method, the active contour is equal to the zero
crossing of a higher dimensional signed distance function φ(x, t). Using φ: I × [0 T] → R as
the embedding function, it is possible to implicitly propagate boundaries C(t) in the image
plane such that C(t) = {x ∈ I| φ(x, t) = 0} [10].

Suppose that the evolving contour is represented with C(t): [0, ∞] → RN and the initial contour
is identified by C(0). φ(x, t = 0): x ∈ RN is introduced so that φ(x, t = 0)= ±d is the distance
between the point x and the initial contour C(0). The final boundary is generated by solving
the Euler equation of φ and finding pixels in which φ equals zero [12], [43]. The evolution
equation can be written as:

(1)

where φ is the level set function and F is the evolving force that pushes the contour towards
the desired boundaries.

The proposed method optimizes a functional based on the information theory. The first term
of this functional is named ϕ (q(I (x), Ω)) and is based on the work of Herbulot, et al [40] and
Jehan-Besson, et al [44]. It can be considered as a homogeneity descriptor since it describes
the complexity of a region. Therefore, the final contour will surround a region with maximum
homogeneity or minimum entropy. This term is defined as:

(2)

where q(I (x), Ω) is defined in Eq. (3) and is an estimate of the pdf of the intensity values in
the region surrounded by the contour. For maximal robustness, the estimation is done using
the region Ω which includes regions of all of the desired structures that are from the same tissue
type. The Parzen window method is applied to estimate q(I (x), Ω) as:

(3)

where K represents the Gaussian kernels with the zero mean and standard deviation of σ.

As shown in Figure 1, the pdf q(I (x), Ω) is estimated using pixel intensities inside both of the
green and red contours since they are all composed of gray matter. For the ventricle system,
Ω consists of the ventricles on both hemispheres that include CSF.

Using the shape gradient method and a dynamic scheme, the objective function can be written
as:
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(4)

where the region Ω(τ) depends on an evolution parameter τ and consists of all models with the
same tissue type. The Ω(τ) changes in each iteration based on the curve evolution and results
in a new region with a new pdf and therefore a different entropy. The new pdf is estimated
using Eq. (3) but Ω is updated in each iteration. This means that a dynamic version of Eq. (2),

i.e.,  is used to estimate the pdf in each iteration of the
algorithm.

To establish the curve evolution equation, J (Ω(τ)) is differentiated with respect to τ to yield:

(5)

where N is the unit inward normal of the contour and  represents the derivative
of ϕ in the direction of V. Computing the domain derivative  [40],[44]–[45], the following
equation is obtained for the evolution of the contour:

(6)

Using the results, a region-based objective function is defined as [44]:

(7)

in which there is a competition between the background and object regions.

B. Fuzzy Tissue Type Force
Dependency of the segmentation results on the initial contour may be reduced by using the
training datasets to model the shapes and locations of specific structures. However, this
approach requires image registration and makes such methods dependent on these datasets. To
avoid these limitations, we apply the fuzzy c-means clustering algorithm on each image
individually to segment white matter, gray matter, and CSF. This allows integration of the
tissue type information (prior knowledge) into the segmentation process and makes the
proposed segmentation method independent of the statistical information required in the
statistical methods.

Using a set of functions uj: X → A, j = 1,.., m with A = [0, 1], the vector X belongs to all clusters.
The following cost function is most commonly used in fuzzy clustering [19].
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(8)

where d(xi, θj) can be any distance (dissimilarity) measure between the data point xi and the j-
th cluster center (θj) and q is the fuzziness coefficient. Minimizing J with respect to θ and U
subject to the following constraints, the membership of xi to the j-th cluster is found.

(9)

where

(10)

As discussed above, by applying the fuzzy c-means clustering, each image is segmented into
5 clusters (tissue classes). In Figure 2, three main clusters (white matter, gray matter, and CSF)
are shown.

Adjacency of structures like caudate and ventricles may complicate the segmentation process,
especially when the initial contours cover both structures. For example, the green contours in
Figure 1 that are supposed to segment the caudate may evolve incorrectly towards the blue
contours that are supposed to segment the ventricles. Using the following fuzzy criterion,
however, the contours gradually enter their related tissue even they are misplaced in the
initialization process (this is shown later in the Results Section).

The proposed fuzzy criterion is added to the evolution equation as a second energy term. To
this end, the fuzzy tissue type term is defined for the j-th structure as:

(11)

where φj is a signed distance function related to the j-th structure in each side of the brain and
H represents the step function. The fuzzj (x) is a function which uses the clustering results to
identify the tissue related to the j-th structure. For instance, if the j-th structure is the left caudate,
fuzzj (x) equals zero if x belongs to gray matter (GM) and equals one if it belongs to the other
clusters.

(12)

The Euler-Lagrange equation for updating φj is [44]:
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(13)

where δ(φj)represents the Dirac delta function and fuzzj is the fixed function used for Efuzzj
minimization.

We reduce the dependency of the proposed method on the clustering results by applying fuzzy
tissue type to one side of the brain (e.g., the right side) in an iteration of the algorithm. The
other proposed constraint, based on symmetry is applied to the structures on the other side (in
this example, left side). Consequently, combining density-based force and fuzzy tissue type,
the following formula describes the total evolving force applied to the j-th model related to the
right side structures (λ is a parameter that adjusts the impact of the fuzzy force).

(14)

Note that in using Ffuzzj, there is no need for image registration. In the next iteration, symmetry
and fuzzy tissue type forces are exchanged between the two hemispheres so that application
of the method is not restricted to fully symmetric brains and the clustering results (see Figure
3).

C. Symmetry Interaction
A symmetry surface may be defined for the brain such that the structures in the two hemispheres
are approximately symmetric with respect to it. This surface may be used to improve
segmentation accuracy and robustness for these structures. Here, we explain our approach for
defining this surface and using it in the segmentation process. The proposed dynamic curve
evolution starts from two separate contours of the two structures (ventricles and caudate) in
the each side of the brain. The symmetry surface is detected based on Liu and Collins’s work
[46]. Then, the contours are reflected with respect to the symmetry surface to segment the
structures on the other side of the brain.

C.1. Symmetry Surface Definition—There are several methods for the defining the
symmetry surface. Some methods maximize the correlation between the image and its
reflection with respect to the symmetry surface and others optimize other similarity measures
[47]. We use Liu and Collins’s method [46] to find the symmetry line (axis) in each slice. Using
the symmetry axes of all slices, the surface of reflection is found for the entire volume. In this
method, by rotating and cross-correlating the rotated image with its vertical reflection about
the center, the offsets of the symmetry axis is found; see [46] for details.

C.2. Symmetry Interaction—As mentioned previously, in an iteration of the algorithm, the
symmetry constraint is added to the evolution of the contour on one of the hemispheres (e.g.,
left side). To this end, the shape symmetry term is defined for the j-th structure as:

(15)

where  and  are signed distance functions for the j-th structure in the right and left

hemispheres, respectively. The Euler-Lagrange equation for updating  is [44]:
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(16)

where  is chosen to be a fixed sign distance function for  minimization.

Combining the symmetry force and the multi-structural density-based criterion, the following
formula describes the total evolving force applied to the j-th left side model (λ is a parameter
that adjusts the impact of the symmetry force).

(17)

Note that using the symmetry interaction reduces dependency of the proposed method on the
fuzzy clustering results, represented by the fuzzy tissue type force. It increases the robustness
of the method by integrating anatomical information in the segmentation process.

D. MRI Datasets
The MRI datasets used in this work and their manual segmentations are obtained from the
Center for Morphometric Analysis at Massachusetts General Hospital, available at IBSR
[48]. For each subject, T1-wighted volumetric images with slightly different voxel sizes
(0.938×0.938×1.5 mm3, 1.0×1.0×1.5 mm3, 0.837×0.837×1.5 mm3) are used but normalized
to the Talairach orientation (rotation only). The images are processed by the CMA “autoseg”
bias field correction routines to remove the field inhomogeneity effects from the images. The
3D-Slicer software [49] was used for visualization of the results.

E. Summary of Proposed Method
For a step-by-step presentation of the proposed method, a flowchart of the steps of the method
is provided in Figure 4 and described below.

As discussed in the above subsections, the proposed method is based on dynamic entropy
estimation, fuzzy tissue type criterion, and symmetry interaction. Initialization is done
manually for one hemisphere while it is done automatically for the other by estimating the
symmetry plane of the brain and reflecting the initial contours to the other hemisphere. Next,
in each iteration of the algorithm, the aforementioned forces are calculated and applied on each
evolving contour. To minimize the chances of incorrect evolutions of the models, in each
iteration of the algorithm, one of the symmetry or fuzzy tissue type forces is applied to one of
the hemispheres and the other to the other hemisphere. This is switched between the
hemispheres in the next iteration to allow the method to work properly even when the two
hemispheres are not fully symmetric. The steps of the proposed method, also shown in Figure
4, are as follows.

1. Manual initialization on one side (e.g., right side).

2. Detection of the symmetry plane, reflection of the initial contours, and initialization
on the other side.

3. Calculation of the following three criteria:

3.1. Dynamic entropy minimization over the regions with the same tissue type.

3.2. Fuzzy tissue type force based on the fuzzy c-means clustering method.
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3.3. Symmetric criterion that tries to evolve the contours similar to the other side.

III. Experimental Results
This section is composed of three parts. In the first part, experimental results of applying the
proposed method to the segmentation of the caudate are presented. Here, impacts of the
parameters and each of the proposed constraints on the segmentation results are discussed.
Segmentation of the ventricles is described in the second part. Application of the proposed
method to thalamus and putamen and comparison of the results of the proposed method with
those of previous methods are explained in the third part. The quality of the segmented
structures is evaluated using the Dice similarity and Hausdorff distance measures [50]. The
Hausdorff distance is measured in the units of voxel.

Table 1 compares the accuracy of the 3D segmentation of the caudate for different values of
the parameter λ for MRI data of 6 subjects. Although λ in (14) and (17) can be selected
differently, we use the same value for both. Note that the accuracy varies slightly among the
subjects but its variation is negligible. The mean value of the similarity measure changes about
1% when λ varies in the range of 0.1 to 1. Statistical tests (pair-wise t-tests) are done to evaluate
the dependency of the proposed method on λ. The average and standard deviation of the
resulting p-values are 0.44±0.31, indicating that there is no significant difference between the
results obtained for different values of the parameter λ. The segmented caudates are shown
three-dimensionally in Figure 5. They are shown slice by slice in Figure 6. In all experiments,
the initial contours are placed on the desired structures similar to what is done using a brain
atlas.

The proposed fuzzy tissue type, symmetry interaction, and estimation of pdf’s using all
structures of the same tissue type have increased robustness of the segmentation method and
decreased its dependency on the initial contours. To illustrate this, Figure 7 compares the
segmentation results of using various initializations. Improper initializations use contours that
overlap two neighboring structures or tissue types (e.g., white matter and gray matter or gray
matter and CSF). This figure shows that the proposed approach guides the improper
initialization towards correct segmentation without a need to change the model parameters.
Table 1 illustrates that the results of the proposed method are independent of the initialization
and the parameter λ. Table 2 lists accuracy of the extracted caudate on each of the selected
slices shown in Figure 6 evaluated using the Dice measure, confirming accuracy of the results.
Pair-wise t-tests are done to evaluate dependency of the performance of the method on the
variations in different slices through the structure. The p-values of the t-tests for the first and
second, first and third, and second and third slices are 0.66, 0.02, and 0.01, respectively. These
results indicate that the performance of the method on the third slice is different from those of
the other slices. This is also visible in the summary statistics in the last row of Table 2.

We have compared our proposed method with two strong region based methods: active contour
without edge [25]; and Herbulot’s density based optimization [40] in Figure 8. The active
contour without edge method is a strong region based method. However, since the gradient
information is ignored in this method, it is not capable of accurately segmenting structures like
caudate that have both weak and strong edges; see Figure 8(a). In Figure 8(b), the segmented
caudate is shown using the Herbulot’s method. This method does not segment the caudate
correctly unless the initialization and model parameters are selected properly. However, using
the same initialization and parameters, the results improve when dynamic density based
minimization is applied; see Figure 8(c). In Figures 8(d)–(e), the effects of including symmetry
and fuzzy tissue type are shown. The caudate segmented using all of the proposed steps with
λ = 0.6 is shown in Figure 9(f). Table 3 shows the effect of using each of the constraints in the
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segmentation of the caudate by the Herbulot’s density based method. As shown, each of the
proposed constraints increases the segmentation accuracy when the same initialization is used.

Table 4 shows accuracy of the segmentation of the ventricles by the proposed method for
different values of the parameter λ using MRI of eight subjects. Note that the method is robust
with respect to the subjects and parameter changes. As shown in the last row of the table, the
mean value of the similarity measure changes only about 1% when λ varies in the range of 0.1
to 1. Pair-wise t-tests find the average and standard deviation of the p-value to be 0.41±0.25,
confirming independency of the results from the parameter λ. The final segmentation results
of the ventricles for 6 of the subjects are shown in Figure 9.

We have noticed that with appropriate initialization, Herbulot’s density based method works
fine in segmenting high contrast structures such as ventricles that are surrounded by regions
with higher or lower intensity on all sides. However, with improper initialization, this method
does not work properly and the proposed constraints improve the results. Figure 10 shows this
problem and the effect of dynamic pdf estimation, symmetry interaction, and fuzzy tissue type
on the results. Figure 10(a) shows the ventricles segmented using the Herbulot’s method. Note
that the ventricles are not segmented correctly. Using the same initialization and model
parameters, the segmentation results are improved as the proposed steps are applied; the results
are illustrated in Figures 10(b)–(e). These improvements are quantified in Table 5.

To evaluate the effect of the proposed multi-structure pdf estimation method, a comparison is
presented for the single structure (model) versus multi-structure (multi-model) estimation
when using an improper initialization. Figure 11(a) shows the results when each model evolves
using its own information (pdf is estimated using the region defined by the model). Figure 11
(b) show the results when all four models are used in estimating the pdf. Note the improvement
achieved by using multiple regions for the estimation of the pdf.

Finally, to compare the proposed 3D method with our previous 2D methods, we have
segmented putamen, ventricle, caudate, and thalamus in 2D. Table 6 quantitatively compares
the segmentation results of 4 brain structures in 8 subjects, illustrating applicability of the
proposed method for their segmentation. Comparing the summary statistics on the last row of
the table with those of the Tables 1 and 4 shows that the performance of the 2D method for
different subjects is more variable than that of the 3D method. Table 7 compares the results of
the proposed method with those of three previous methods. The first method is a combination
of gradient and active contour without edge methods [22]. This method is developed
specifically for the segmentation of thalamus and structures with both weak and strong edges
like caudate and thus works well for them. The second method (symmetry and statistical prior
shape) uses training datasets to extract prior shape model. To extract the prior shape of each
structure, a cardinality metric is used where caudate and ventricle are labeled and the
registration metric counts the number of corresponding pixels that have the same labels.
Amoeba method is used to optimize the metric, which does not require analytical derivatives
of the metric. The ITK [51] and SPM [52] software are used for the registration of the labeled
datasets and intensity volumes, respectively. This method works well for low contrast
structures with weak edges like putamen and thalamus, as also shown by the results listed in
Table 7. It outperforms the proposed method of this paper for these particular structures but
the proposed method of this paper has the advantage of not needing any training datasets
[53]. The third method uses fuzzy tissue type in addition to dynamic pdf estimation [54] and
its segmentation results are quantitatively evaluated and reported in the third row of Table 7.
Quantitative evaluation of the segmentation results of the proposed method are listed in the
last row of Table 7. Note that the proposed method generates most accurate results for caudate
and ventricles that have been its focus. Sample 3D segmentation results of the proposed method
for caudate and ventricles are illustrated along with those of an expert in Figure 12.
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IV. Conclusions
This paper presents a novel, robust, multi-structure segmentation method for the segmentation
of double-sided structures. To overcome two common problems in automatic segmentation of
the brain structures (sensitivity to improper initialization and parameter selection), a novel
method is proposed to integrate approximate symmetry of structures in the two hemispheres,
tissue type of the structures, multi-structural estimation of pdf, and density based optimization.
The proposed method generates homogenous structures in terms of their tissue type and is
robust to improper initialization and parameter selection. Experimental results show that the
proposed symmetry interaction decreases dependency of the method on initialization. The
proposed use the tissue types in the image alleviates the need for prior statistical information
about the structures. Robustness of the proposed method is shown by illustrating that the results
it generates using proper and improper initializations are very similar. Other methods do not
segment the desired structures accurately if the initialization is improper.

In the first step of the proposed method, the proposed dynamic pdf estimation improves the
segmentation accuracy without a need to change initialization or models parameters. When
segmenting the caudate, our use of more gray matter than the other tissues such as CSF in pdf
estimation increases the probability of having more of the desired tissue (gray matter) in the
segmented structures than other tissues and thus improves the segmentation accuracy.

Applying the active contour without edge as a strong region based method, it is shown that
such methods are not appropriate for segmenting structures that have both weak and strong
edges, e.g., caudate. They are however suitable for segmenting structures that have weak
boundaries only. Comparing the proposed method with this type of region based method,
superiority of the proposed method in segmenting the caudate without changing the parameters
or the initialization is established. In addition, as explained previously, boundary based
methods are also unable to segment structures with both types of boundaries.

In most of the previous methods, the tail of the caudate which is a challenging part of the
structure is omitted. Our results, evaluated for the entire volume without cutting the tail, show
that the proposed multi-structural density based optimization generates homogenous structures
in terms of their tissue type. In addition, many of the previous papers lack quantitative
evaluation of the segmentation results [55] and those with quantitative evaluation use a number
of 2D slices for this purpose [56]. As such, we have compared the results of our proposed
method on 2D slices of the volume for the caudate to those of [56]–[59], showing superiority
of our method. Table 8 compares accuracy of the results of the proposed 2D and 3D
segmentation methods for two brain structures with those of the corresponding methods in the
literature. Note that the proposed method outperforms the others in segmenting caudate and
ventricles. In addition, the tissue type information extracted from the image allows the method
to work independently of the prior statistical information of the structures and the initial models.
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Figure 1.
An axial T1-weighted MR image of the brain on which initial contours for putamen (red),
caudate (green), ventricles (blue) are shown.
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Figure 2.
(a) An axial T1-weighted MR image of the brain. (b) White matter cluster. (c) Gray matter
cluster. (d) cerebrospinal fluid (CSF) cluster.
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Figure 3.
(a) An axial T1-weighted MR image of the brain on which improper initialization for caudate
and ventricles is shown. (b) The same image with the segmentation results for caudate and
ventricles when no fuzzy tissue type is used. Note that the models have evolved into each other.
(c) The same image with the segmentation results for caudate and ventricles when fuzzy tissue
type is used. Note that here the models do not evolve into each and generate appropriate
segmentation results.
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Figure 4.
A flowchart of the proposed method showing main steps and three forces used in the algorithm.
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Figure 5.
3D visualization of the segmented caudate for 6 different subjects.
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Figure 6.
T1-weighted MRI of 3 brain slices of 4 subjects on which and the boundaries of the segmented
caudate are shown.
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Figure 7.
T1-weighted MRI of a brain slice on which improper initialization and correct segmentation
results are shown. First row shows the initializations. Second row shows an intermediate stage.
Third row shows final segmentation of caudate and ventricles. Note that the final results are
independent of the initialization.
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Figure 8.
A T1-weighted MRI on which caudate segmented by different methods are shown. (a) Active
contour without edge. (b) Herbulot’s method. (c) Dynamic pdf estimation is added. (d)
Symmetry interaction is added. (e) Fuzzy tissue type is added. (f) Fuzzy tissue type, symmetry
interaction, and dynamic pdf estimation are added with λ = 0.6.
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Figure 9.
Ventricles segmented by the proposed method for 6 different subjects.

Bahmanbijari et al. Page 24

Comput Med Imaging Graph. Author manuscript; available in PMC 2011 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 10.
A T1-weighted MRI on which ventricles segmented by different methods are shown. (a)
Herbulot’s method. (b) Dynamic pdf estimation is added. (c) Symmetry interaction is added.
(d) Fuzzy tissue type is added. (e) Fuzzy tissue type, symmetry interaction, and dynamic pdf
estimation are added with λ = 0.6.
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Figure 11.
A T1-weighted MRI on which caudate and putamen are segmented by different methods. (a)
pdf is estimated using each model individually. (b) pdf is estimated using all of the models.
Initializations are the same. Note the improvement in the results when pdf is estimated using
all of the models.
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Figure 12.
Final caudate and ventricle models are shown in green and blue in (a) and (d), respectively.
The neurologist segmentation is shown in pepper. Final segmentation of the caudate and
ventricles superimposed on 2 T1-weighted images are shown in (b) and (c).
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Table 2

Accuracy (Dice similarity %) for 3 randomly selected slices of the caudate.

Accuracy First slice Second slice Third slice Average

Subject 1 95.12 95.01 93.18 94.43

Subject 2 95.15 95.07 94.05 94.76

Subject 3 93.78 93.88 93.14 93.60

Subject 4 94.50 94.50 92.89 93.96

mean±σ 94.64±0.65 94.62±0.55 93.32±0.51 94.19±0.51
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Table 7

Means and standard deviations of Dice similarity % for 4 brain structures segmented using 4 different methods
in 2D.

Caudate (average
of left and right)

Ventricles
(average of left

and right)

Putamen
(average of left

and right)

Thalamus
(average of left

and right)

Boundary and region
based combination

85.94±9.93 80.94±4.49 75.04±7.25 82.94±4.64

Symmetry and
statistical prior shape

85.11±4.43 81.27±4.61 85.83±4.63 87.50±4.51

Fuzzy tissue type 89.61±2.59 86.11±5.09 77.83±9.24 73.11±4.71

Proposed method 90.16±2.38 86.31±4.35 82.05±7.86 74.58±5.14
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