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ABSTRACT 

 

The development of an integrated MultiSpectral Imaging (MSI) system yielding hyperspectral cubes 

by means of artificial neural networks is described. The MSI system is based on a CCD camera, a 

rotating wheel bearing a set of seven interference filters, a light source and a computer. The resulting 

device has been elaborated for in vivo imaging of skin lesions. It provides multispectral images and is 

coupled with a software reconstructing hyperspectral cubes from multispectral images. Reconstruction 

is performed by a neural network-based algorithm using hetero-associative memories. The resulting 

hyperspectral cube provides skin optical reflectance spectral data combined with bidimensional spatial 

information. This combined information will hopefully improve diagnosis and follow-up in a range of 

skin disorders from skin cancer to inflammatory diseases. 

Keywords: Imaging system; Multispectral images; Hyperspectral cube reconstruction; Neural 

networks; Spectral reflectance; Skin cancer 
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1. Introduction: 

Early melanoma detection has gained major attention for the development of non-invasive imaging 

techniques [1] [2] and computer-based solution [3] [4]. Those efforts try to bring objective 

measurement of skin lesions. The use of skin colour in dermatological diagnosis relies mainly on 

direct visual analysis and/or RGB (red, green, blue) colour photography. This approach has limits due 

to the poor colour discrimination of the human eye and brain, and their inability for comparisons at 

different times. In order to overcome such limitations, measurement of optical reflectance from skin 

lesions can provide valuable spectral information, potentially useful for diagnosis. This can be 

achieved by combining advantages of spectrophotometers (spectral resolution) and digital cameras 

(spatial resolution), in MultiSpectral (MSI) and HyperSpectral (HSI) Imaging systems. MSI and HSI 

systems have the capacity to acquire images at different short spectral bands, including wavelengths 

which the human eye is unable to capture. Therefore, it is possible to extract extra information about 

light-matter interaction that is usually concealed within RGB images. Some skin diseases appear to 

exhibit specific reflectance properties. For instance, according to Tomatis et al. [5], cutaneous 

melanoma may have different variegation above specific wavelength values as compared to non-

melanoma lesions. Currently, the use of MSI devices in dermatology is limited to few devices [5] [6] 

[7]. A new category, consisting of HSI systems is currently under investigation in several research 

groups, in microscopy [8] [9] and for in-vivo optical diagnosis [10] but limitations of HSI are 

generally their complexity and cost [11]. MSI usually involved 4 to 16 spectral bands when HSI is 

able to record a much higher number of very narrow bands (20-200). HSI provides a Hyperspectral 

Cube (HC) which contains contiguous spectra. In contrast, multispectral images should be considered 

as discrete spectra. 

 

In this contribution, the development of an integrated MSI system, composed of a CCD camera, a 

rotating wheel and a set of interference filters, is described. The MSI is coupled with software that 
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reconstructs hyperspectral cubes from acquired multispectral images. Our system is innovative since it 

evolves from a MSI into a HSI system without the need for an increased number of filters. 

In this article, the following section presents the MSI systems. Then, the hyperspectral cube 

reconstruction method is detailed. Finally, preceding the discussion, results of cube reconstruction are 

presented. 

2. Materials and methods: 

2.1. Acquisition system of multispectral images: 

The multispectral imaging system is called ASCLEPIOS standing for Analysis of Skin Characteristics 

by Light Emission and Processing of Images Of Spectrum. For ergonomic purpose, the acquisition 

system (Figure 1) is divided in two parts, a light source compartment and a hand-held device. 

 

Figure 1. ASCLEPIOS system description 

The light source compartment houses the illumination device, the rotating wheel and the set of 

interference filters. A xenon light source (175 W) with light spectrum in the range of 380 nm to 1000 

nm is employed. The filter wheel holds the set of interference filters and gradually rotates to position 

each filter in front of the light source yielding a light source of a specific waveband. Seven 

interference filters fully cover the visible domain from 400 to 800 nm. The set of filters sample the 

chosen domain into equal spectral bands (bandwidth of approximately 60 nm). The filters have peak 
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transmittance that range from 60 to 80%. The light at a specific waveband is carried out by optic fibres 

to the back of hand-held device. The back of the hand-held device also houses the camera. The use of 

a filter wheel in comparison to other system was motivated by a flexibility offered by the different 

width and transmittance selection of commercial filters.  

Considering this configuration, the camera and the illuminating optics fibres, both oriented toward the 

skin, are enclosed in a hand-held device protecting the acquisition of external light. Thus, the skin is 

only illuminated with light of specific wavebands. The extremity of the hand-held device includes a 

nozzle which sets a constant distance of 10 cm between the skin area and the camera. For each spectral 

band illumination, the system acquires images 1280 x 960 pixel images coded in 16 bits using a single 

monochrome CCD-based camera. The monochrome camera is based on the IEEE-1394 data 

transferring protocol, with acquisition rate capacity of 30 frames.s-1 at full resolution. A magnifying 

lens is mounted in front of the camera which provides an useful area of 2.85 cm x 2.2 cm, yielding a 

spatial resolution of 45 pixels mm-1. The spectral sensitivity range of the CCD image sensor matches 

with the set of interference filters and the light source spectral range. 

After positioning the hand-held device nozzle on the skin area under study, the user presses a wireless 

remote control located in the handle of the hand-held device. The pressure triggers the acquisition 

which is performed in less than one second. The system yields seven monoband images which 

compose one multispectral image.  

2.2.  Hypersectral cube reconstruction: 

The aim of hyperspectral cube reconstruction is to retrieve, from the camera signal, the reflectance 

spectrum in each pixel (linked to the physical property of the skin element) but also to increase the 

number of bands within the same spectral range. The reconstructed spectral volume of cutaneous data, 

also called hyperspectral cube (HC), provides a 3-dimensional volume (x,y,z) where x and y are for 

spatial dimensions and z for spectral dimension. 

The HC is reconstructed using a neural network-based algorithm proposed by Mansouri et al [12]. The 

artificial neural networks (ANN) are composed of two steps, learning and reconstruction [13]. In order 
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to reconstruct spectra linked to the physical properties of the skin element, the proposed method takes 

into account a model of light propagation, used to extract the reflectance information.  

Figure 2 presents the model we used with the spectral response of all the elements involved in the 

acquisition process. Such a model aims at separating each element of the acquisition process to retain 

the reflectance information r(λ) only. 

 

Figure 2. Synopsis of the spectral model of the acquisition process in a multispectral system. 

By using this model and by considering a linear optoelectronic transfer function, I(λ), Фk(λ), O(λ) and 

α(λ) can be substituted by the spectral sensitivity Sk (λ) of the kth filter. Therefore, the reflectance 

spectra r needs to be estimated from the known camera response and the spectral sensitivity leading to 

an inverse problem.  

Artificial Neural Networks are modelled on the human brain and aim to mimic the function of 

biological neural networks. ANN is composed of neurons link to each other by synapses. These 

synapses have coefficients which correspond to the weight of the connection. ANN have to be 

configured, meaning that the weights of the synapses have to be set to produce desired output from 

specific input during the learning process. A self-supervised learning method is chosen to determine 

the correct weight of the different connections. Perceptron is a basic model of neural networks. It is a 

binary classifier where the output, which is function of the neuron activation, is either 0 or 1 for 

deterministic perceptron. This limits the generalisation capacity. Knowing that perceptrons give same 

response to same stimulus after training, the function that converts the activation into a response is 
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modified. It is changed to give probabilistic response using the Boltzmann distribution. Rather than 

outputting 0 or 1, this distribution delivers proportional response (restricted into [1 0]). Such 

perceptrons lead to the creation of associative memories (in our case heteroassociative). 

Heteroassociative memories is used due to its modularity in regards to the different size of the input 

and output vectors. Such neural networks have a capacity of generalization, meaning that a trained 

network can output expected data from input it has never seen before. Such capacity improves the 

stability of inverse problem. 

The self-supervised learning method trains the network with provided input and known output. The 

learning process stops when the minimum of the validation error is reached. The rule of training 

applies is the Delta rule known as Widrow-Hoff rule which consists of continuous modification of the 

input connections weight in order to reduce the difference (mean squared error delta) between an 

expected theoretical response and the observed one of the neuron. The learning process is performed 

using the GretagMacBeth ColorChecker made of 24 patches which represent spectra encountered on a 

daily basis and whose spectral properties are known. The learning procedure involves acquisition, by a 

spectrophotometer, of the p patches (with p=1,...,24), providing N (N depends on the sampling rate) 

values of spectral reflectance curve for each patch which composed a learning matrix R (size [NxP]). 

Also, the acquisition by the MSI of a multispectral image, containing K (with K=7) gray-level values 

for each patches is embedded in a matrix D (size [KxP]). Both set of data provides a set of 

corresponding pair which are used by the neural network to perform a supervised learning, using 

matrix D as input and matrix R as expected output. The learning stops when it reaches the minimum of 

the validation error. Once learned, ANN outputs a coefficient matrix Q (called synaptic coefficient 

matrix) of size [NxK]. 

The neural network employed in the hyperspectral cube reconstruction uses heteroassociative 

memories due to its modularity with regard to the different size of the input and output vectors. From 

Figure 2, the reflectance spectrum r of each pixel is reconstructed using the camera response d and the 

result obtained from the ANN learning step (called coefficient matrix). The reconstruction associates a 

vector of K values obtained from the multispectral images to a vector of N values corresponding to the 
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sampled spectral reflectance. Using matrix notation, the expression of the neural network 

hyperspectral reconstruction leads to: 

     (1) 

where xp is the vector (size {Kx1]) containing the multispectral input values, Q (size [NxK]) is the 

coefficient matrix and Op is the reconstructed spectra (size [Nx1]). 

The reconstruction of a hyperspectral cube is fast and simple as the operation is a product between the 

coefficient matrix and the camera response. The implemented reconstruction function is flexible and 

allows different sampling rate from 10 nm to 1 nm yielding reconstructed spectra of  N values (ranging 

from 40  to 400 respectively).   

3. Results: 

As hyperspectral cubes contain spectra for each pixel; comparison should be done between the 

theoretical values from the spectrophotometer and the reconstructed spectrum. In our experiment, a 10 

nm reconstruction sampling rate is selected in order to compare with a commercial spectrophotometer 

Minolta CM-2600d. 

To evaluate the performance of hyperspectral cube reconstruction, two different metric scales are used, 

the Goodness of Fit Coefficient (GFC) and the Reconstruction Percentage (PRec). 

The GFC is based on the Schwartz inequality and is calculated using the following formula: 

  (2) 

where Rm(λj) is the spectral value measured with the spectrophotometer at wavelength λj and Rr(λj) is 

the reconstructed spectra value at wavelength λj. j refers to the wavelength from 1 to N, where N 

represents the total number of sampled spectral reflectance values. In our system, this criterion has the 

advantage of being bounded between 0 and 1, providing an easy interpretation. According to 
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Hernandez et al. [14], the reconstruction is good if the GFC is above 0.99 and perfect if higher than 

0.9999. 

The reconstruction percentage is a criterion which evaluates the distance between two spectra. It 

requires a higher precision for the spectrum part having low amplitudes. A good reconstruction will be 

close to 100%. It is defined by: 

   (3) 

The norm operator ⋅  defines a distance between two vectors. 

Two sets of data were used to validate the reconstruction. The first set included the 24 reconstructed 

patches of the GretagMacBeth chart and was compared with the value of the 24 patches acquired by 

the spectrophotometer. The average GFC is 0.99717086 with a standard deviation of 0.00450589 and 

the average PRec is 0.97975842 with a standard deviation of 0.04107166. These results reveal a good 

reconstruction of the learned patches. 

To validate reconstruction, the set of 14 skin-tone colour patches reconstructed by ASCLEPIOS and 

the one recorded by the spectrophotometer were compared. The average GFC was 0.99237746 

(standard deviation = 0.00647645) and the average PRec is 0.94137762 (standard deviation = 

0.02454477). PREC has a lower value for skin tone patches; this might be the effect of the strong 

reflection from the digital MacBeth colorchecker chart in comparison to the GretagMacBeth chart 

used for the 24 patches. These results confirm the good reconstruction already obtained with the 

learned patches. They also provide evidence that the ANN using heteroassociative memories have a 

capacity of generalization. 

4. Discussion: 

Our ASCLEPIOS system has shown that the cube data improve spectral resolution of the system but 

also provide skin reflectance information in each pixel of the entire hyperspectral data cube. In 
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comparison with other MSI systems, the range of dermatological applications for ASCLEPIOS is wide 

because it provides two types of processing, spatial processing and spectral processing. Spatial 

processing allows image processing on the data cube as a whole or each plane at a time. The spectral 

approach allows signal processing on all the spectra of the data cube. The strength of the system is the 

capacity offered by the possible combination of spatial and spectral processing over the hyperspectral 

data cube. Whether this device can effectively improve clinical diagnosis and follow-up in 

dermatology remains to be studied. 
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