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Abstract
In this paper, we introduce a new approach for tensor field segmentation based on the definition of
mixtures of Gaussians on tensors as a statistical model. Working over the well-known Geodesic
Active Regions segmentation framework, this scheme presents several interesting advantages.
First, it yields a more flexible model than the use of a single Gaussian distribution, which enables
the method to better adapt to the complexity of the data. Second, it can work directly on tensor-
valued images or, through a parallel scheme that processes independently the intensity and the
local structure tensor, on scalar textured images.

Two different applications have been considered to show the suitability of the proposed method
for medical imaging segmentation. First, we address DT-MRI segmentation on a dataset of 32
volumes, showing a successful segmentation of the corpus callosum and favourable comparisons
with related approaches in the literature. Second, the segmentation of bones from hand
radiographs is studied, and a complete automatic-semiautomatic approach has been developed that
makes use of anatomical prior knowledge to produce accurate segmentation results.
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1. Introduction
Tensor features appear in various areas of image processing, with the notable example of
DT-MRI (Diffusion Tensor Magnetic Resonance Imaging) (6). Other possible applications
are the strain tensor for cardiac motion analysis or elastography (60; 62) or the use of the
LST (Local Structure Tensor) (34; 10; 28; 40) for texture analysis.
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When dealing with tensor-valued data, traditional approaches for filtering, registration or
segmentation have been adapted in order to account for the special properties of this data
modality.

In this paper, we introduce mixtures of Gaussians on tensor fields as a new statistical model
for the segmentation of tensor valued images. This new model will be later applied to two
different medical imaging problems, the segmentation of DT-MRI and the segmentation of
bones from hand radiographs.

The segmentation method presented in this paper is based on the flexible and well-known
Geodesic Active Regions (GAR) segmentation setting (51). Level set methods are employed
for the implementation of curve evolution (24; 47; 50; 49) to complete the segmentation
scheme.

In order to validate the proposed segmentation method, two different applications are
considered. The first one is the segmentation of the corpus callosum from DT-MRI in a data
set of 32 volumes1. Results show mixtures of Gaussians on tensors to provide higher
accuracy and robustness than other related approaches in the literature (71; 44; 45).

The second application of the segmentation method proposed is the segmentation of hand
bones from radiographs, an important problem related to the automatic assessment of bone
age, for which a golden solution has not been reported yet. Texture is a relevant feature in
bone tissue in radiographs, and the introduction of mixtures of Gaussians on tensor fields
can also help improve the segmentation of textured images through the use of the LST,
widely accepted as a powerful feature extractor for this kind of images. We propose a global
scheme that employs both the intensity and the texture information for segmentation, and
adaptively adjusts the importance of each of them depending on the image characteristics
and the current state of the segmentation process. Our approach benefits from the previous
definition of the mixtures of Gaussians on tensor fields and, as it is completely symmetric
regarding how the texture and the intensity information are treated, allows for a simple yet e
ective technique for balancing the weight of each.

All in all, this paper presents several contributions to the segmentation of tensor fields and
its application to different types of medical imaging. As a theoretical core element, we
introduce the mixtures of Gaussians on tensor fields and a complete segmentation method
based on the GAR model. This method can be directly applied to any tensor-valued image,
and it is the case with the extensive DT-MRI dataset that has been employed for the
segmentation of the corpus callosum, our second major contribution. With regard to the
segmentation of gray level images, the introduction of a parallel segmentation approach that
uses both the intensity and the texture (which is represented by means of the LST and is thus
a tensor-valued image) is the third main contribution of this work. Finally, a complete
segmentation technique for hand bones in radiographs is presented as an application of such
scheme.

The paper is organized as follows: first, in Section 2, we review the state of the art in tensor
field segmentation, focusing on DT-MRI segmentation and the use of the LST for texture
segmentation. Section 3 introduces the mixtures of Gaussians on tensor fields, the key
theoretical component in our approach. Later, the complete segmentation scheme proposed
will be presented, considering its two possible variants (working directly on tensor-valued
images, such as DT-MRI, or on gray-valued textured images, such as hand radiographs). In

1The introduction of the mixtures of Gaussians on tensor fields, together with their application to DT-MRI segmentation, constitutes
an extension of the shorter work presented in (18).
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Section 5, the two medical imaging applications considered in this paper are presented and
results are shown and discussed. Finally, we summarize the most important elements of this
work in Section 6.

2. State of the art and related work
Much of the early work on analysis and segmentation of tensor data was devoted to DT-
MRI, and relied on the obtention of scalar diffusion or anisotropy features from the tensor,
such as in (8; 68; 53; 52; 64; 17; 71). Later, Rousson, Brox et al. proposed in (13; 58) to
apply the vector-valued version of the GAR model for multivariate Gaussian distributions
(59) to the vector consisting of the nonlinearly diffused free components of the LST. This
way, the image was treated as though it were multiespectral, being the channels each of the
components of the tensor.

The first level set segmentation approach directly working on tensor data was proposed by
Feddern et al. (25). In their work, they employ an approach based on the GAC (Geodesic
Active Contours) model (15; 39) and adapted to tensor data by using the trace of the LST of
the tensor data as an edge detector that stops the evolution of the contour in the presence of
edges. Using a completely different approach, a modified k-means algorithm (33) was
proposed in (69) to segment the thalamic nuclei from DT-MRI.

Most recent approaches for the segmentation of tensor data make use of variational methods
and level sets based on the information given by tensor dissimilarity measures. The
Frobenius distance, J-divergence (also known as symmetrized Kullback-Leibler distance)
and the Riemannian geodesic distance, among others, were proposed in (66; 35; 65).
Different formulations for the statistical modeling of the data were also presented, as the
definition of Gaussian distributions directly on the tensor domain (45; 44). When compared
to all these approaches, the mixtures of Gaussians for tensor fields presented in this paper
constitute a more advanced statistical model, thus enabling the segmentation to adjust to a
higher complexity in the data.

In (67), a graph cuts segmentation was proposed using either the Log-Euclidean distance (2)
or the J-divergence. This method, however, needs strong user interaction as certain tensors
need to be selected belonging to the different regions, thus imposing hard constraints to the
segmentation. Ziyan et al., in (72), proposed a spectral segmentation algorithm for the
thalamic nuclei from DT-MRI data.

Another recent approach to DT-MRI segmentation was presented by Awate et al. (5; 4), who
presented a fuzzy C-means algorithm that, instead of incorporating Gaussian class models,
uses nonparametric data-driven statistical models. The motivation underlying this approach
lies in the fact that, because of the anatomical characteristics of fiber bundles, they change
their orientation significantly. Thus, the tensor statistics do not accurately fit Gaussian
models, whereas nonparametric statistical models can efectively adjust to these situations.
Using a Log-Euclidean metric, the segmentation of different structures in the white matter is
performed.

With respect to the application of tensor field segmentation to the segmentation of textured
images through the LST, any segmentation method that makes use of the LST can benefit
from all the refinements in tensor field segmentation explained before. However, the LST
does not include any intensity information, which can be very valuable in the segmentation
process. In (58), this drawback was addressed by adding the intensity to the feature vector
otherwise composed of the LST components. Later, in (20), several modified structure
tensor architectures were introduced that incorporate the intensity information. However,
encoding both the intensity and the LST information either in a vector or a tensor form is not
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completely appropriate, as the texture information naturally fits a tensor architecture,
whereas the intensity information fits a scalar (or vector, in the case of colour images)
scheme. In order to overcome this limitation, a combined approach was proposed in (19)
where a tensor segmentation scheme is applied to the LST while a scalar approach is used
for the intensity, both under the same general framework. This work was able to obtain
remarkable results in the segmentation of textured images, showing better results than other
well-known texture segmentation methods such as Bouman's approach (11; 12).

The approach described in this paper presents, nevertheless, two main advantages with
respect to the method in (19). First, it employs the more appropiate mixtures of Gaussians as
a statistical modeling both for the tensor and the intensity information and, second, defines a
completely symmetric technique for the estimation of the relative importance of the intensity
and texture information. In the former approach, because of the different nature of the
respective distances employed for the intensity and the LST (Euclidean and J-divergence or
geodesic distance, respectively), the calculation of the relative importance of both elements
in the segmentation is not symmetric, and therefore can be biased.

3. Mixtures of Gaussians on tensor fields
In this section, we introduce the main theoretical contribution of this paper, that is, the
definition of mixtures of Gaussians on tensor fields. To that end, we first recall Gaussian
distributions on tensors, and later present the mixtures of Gaussians. Parameter estimation, a
key issue for mixtures of Gaussians, is last addressed.

3.1. Gaussian probability density function of tensors
Let us consider the definition of Gaussian distributions on tensors introduced by Lenglet et
al. in (45; 44). Following this definition, the probability density function (PDF) for a certain
tensor Ti belonging to the manifold  of the real n × n symmetric positive definite
(SPD) matrices is:

(1)

where T ̄ is the empirical mean of the tensor field over a set of N tensors and Λ is the
associated covariance matrix, whose size is d × d, with d being the number of free
components in a n × n tensor (for 2 × 2 tensors, d = 3, whereas for 3 × 3 tensors, d = 6). The

symmetric matrix βi depends on the chosen metric  and is given by .

Finally, the map  associates to each matrix βi its d independent
components.

As can be seen, for this Gaussian formulation a metric must be chosen to measure the
dissimilarity between tensors. In (45; 44), the Frobenius norm of the difference of tensors,
the J-divergence and the geodesic distance were tested, and empirical evidence showed that
the geodesic distance outperforms the other two distances, while the J-divergence performs
also better than the Frobenius norm.

Once a metric has been chosen, the definition of the PDF is based on the usage of the vector
φ( βi). Grounded on Riemannian geometry, βi is the initial velocity of the geodesic joining T̄
and Ti (see (45) for details). In Table 1, the definitions of the Frobenius, Kullback-Leibler-
based J-divergence and geodesic distances are given, together with their associated values
for βi.
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As for the estimation of the parameters of the distributions, the empirical mean tensor T̄
over a set of N random tensors Ti is defined as the minimizer of the expectation of the
squared distances between a tensor T and each element:

(2)

There are closed-form expressions for the mean tensor using the Frobenius and the J-
divergence distances, whereas an iterative algorithm must be employed for the geodesic
distance (see (45; 16) for details).

With regard to the empirical covariance matrix Λ, it is estimated by means of

(3)

Other efforts have been made in the literature on the statistical characterization of tensor
fields. In (27), a method was developed for producing averages and modes of variation in
the space of SPD matrices. In (7), the authors use the tensor contraction operation, applied to
fourth- and second-order tensors in the exponent of a normal distribution for tensor-valued
data. However, only when the fourth-order tensor is isotropic, an explicit analytical
expression for the PDF can be obtained.

3.2. Mixtures of Gaussians on tensors
Starting from the definition of Gaussian PDFs over tensor fields seen before, we will define
a new PDF consisting of a mixture of Gaussians. For a mixture of K Gaussians, the PDF for
a tensor Ti will be:

(4)

where we denote by Θ the set of parameters: αk, k = 1, . . . , K are the mixing probabilities
of the different components of the mixture, and each Gaussian distribution is characterized
by its mean tensor T ̄k and its covariance matrix Λk.

In order to estimate the parameter vector Θ, a Maximum Likelihood (ML) approach by
means of the Expectation-Maximization (EM) algorithm will be followed, as it is customary
for mixtures of Gaussians. The EM (23; 55) algorithm is a general method to find the ML
estimate of the parameters of an underlying distribution from a dataset when the data are
incomplete or, equivalently, there is a many-to-one mapping from an underlying distribution
to the distribution governing the observation.

Next, we present the derivation of the EM algorithm for parameter estimation in mixtures of
Gaussians on tensors.

3.2.1. EM algorithm for tensor mixtures of Gaussians—Let us consider again the
PDF correspoding to a mixture of Gaussians on tensors given in Eq. 4. Hereafter, and in
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order to simplify the notation, we will express the dependencies of φ(βi(T̄k)) simply as
φi(T̄k). The log-likelihood we seek to maximize will be given by

(5)

where we have denoted by gk(Ti|Θk) the PDF of each of the components of the mixture,
with parameters Θk = {αk, T̄k, Λk}. We first derive the log-likelihood with respect to the
mean tensor T̄k:

(6)

As the relationship between φ(βi) and T̄ is not simple, and depends on the employed
distance, the differentiation we need to perform is not easy to compute. Instead, we will
reconsider the Gaussian density function as p(ti|t ̄, Λ), where ti is a vector consisting of the
free components of the tensor Ti and t̄ is the corresponding mean vector. Then, and recalling

that we have , we can directly express the dependence of φ

as . Now, we can express  as follows:

(7)

For each element i we have

(8)

Indeed, . With respect to , it depends on the choice
of the tensor distance. Therefore, a closed-form expression for the mean tensor cannot be
obtained in general, and a numerical approximation must be made given a tensor size and a
chosen metric.

We now can make use of the result in Eq. (8) in order to rewrite Eq. (6):

de Luis-García et al. Page 6

Comput Med Imaging Graph. Author manuscript; available in PMC 2012 September 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(9)

where  depends on the choice of the distance measure. Equivalently, the mean tensors T̄k
are obtained as

(10)

With regard to the estimation of the parameters Λk and αk, their derivation does not change
with respect to the vectorial case:

(11)

(12)

(13)

3.2.2. Estimation of the complexity of the mixture—The described estimation
procedure of the parameters of a mixture of Gaussians assumes that the number of
components K is known in advance. However, this is not usually the case, and therefore the
number of components, that is, the complexity of the mixture, has to be estimated as well.
The issue of estimating the number of components of the mixture has been addressed before
in the literature (26; 1; 56; 29; 41; 9; 57).

For the estimation of the complexity of the mixture of Gaussians on tensor fields, we will
follow in this work the approach by Figueiredo et al (26). This method is based on the use of
the MML (Minimum Message Length) criterion, implemented by means of a modified EM
algorithm that leads to an integrated model selection and estimation procedure. Given a
maximum initial number of components of the mixture, K, a modified maximization step is
used where the mixture probabilities are updated following a modified expression:
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(14)

where N is the overall number of parameters that specify each component of the mixture.
Using this modified EM algorithm, the estimation of parameters starts using the maximum
number of components considered. As the algorithm iterates, the mixture components whose
probability is very reduced are annihilated, and so the final parameter estimation is
inherently an estimation of the number of components of the mixture.

4. Segmentation method
Once the mixtures of Gaussians on tensors have been introduced together with a ML
approach for the estimation of their parameters, we are ready to describe the segmentation
approach that will be applied using this model. The segmentation method, which is based on
the GAR model, seeks the minimization of the following energy term (see (51) for details):

(15)

where  denotes the partition of the image domain Ω. This energy functional
is the basis of all the functionals considered in this paper, and has also been employed in a
number of other works in the literature (13; 51; 58; 70).

Now, instead of the image I, let us consider the more general field F(x), which can be a
scalar or a vector valued image, or alternatively the tensor valued image containing, at each
pixel, a diffusion tensor or the LST of the original image. Then, we can rewrite Eq. (15) as

(16)

where Θi, i = {1, 2}, describe the probability distributions over each region, and  is the
contour that divides regions Ω1 and Ω2. The last term in the equation is an additional
regularizing component that penalizes the length of the segmenting contour.

Starting from this model, two different variants of the segmentation method must be
considered depending on the type of image under consideration. When dealing with a
tensor-valued image, such as the case of DT-MRI, the functional in Eq 16 can be directly
applied. However, if the image is scalar or vector-valued, we propose to extract the texture
information by means of the LST. Then, the intensity and the LST are processed in parallel,
both with a mixtures of Gaussians model. We next present the details of both variants, and
depict in Figure 1 an schematic diagram of them.

4.1. Segmentation of tensor fields: MoGoT
When F(x) is a tensor field, T(x), the energy functional we seek to minimize is

(17)

where p(T(x)|Θi) follows the mixture of Gaussians model introduced in the preceding
section (Eq. (4)).

In order to perform the segmentation, the energy functional must be minimized with respect
to the statistical parameters Θi and to the segmenting surface, which is represented by means
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of the level set function ϕ. This is done following the two-step EM technique. For a fixed
level set, the statistical parameters are updated with their ML estimators. Next, the
segmenting surface is evolved following the level set equation (see (59) for details):

(18)

where δ(ϕ) is the Dirac function. This approach will be referred to as MoGoT (Mixtures of
Gaussians on Tensors), and is suitable for the segmentation of tensor-valued images, as it is
the case of DT-MRI, and constitutes a refinement of the tensor segmentation scheme
successfully employed in (45; 44) on that sort of data.

4.2. Segmentation of textured images: AdMoGIT
We propose a combined approach for the segmentation of textured images, which performs
a separate but parallel processing of the intensity information and the texture information,
encoded by means of the LST. For the tensor information, the MoGoT segmentation method
introduced before can be applied in a straightforward manner. Similarly, scalar mixtures of
Gaussians are employed for the intensity information, thus yielding the following combined
energy functional:

(19)

where p(T(x)|Θti) and p(I(x)|Θci) are the PDFs corresponding to the mixtures of Gaussians
over the LST and over the intensity, respectively, and β1 and β2 are weighting factors that
balance the relative importance of the LST and the intensity-based term, as further explained
in Section 4.2.1.

Once again, the minimization of the energy functional is performed, with respect to the
statistical parameters, by means of their ML estimators and, with respect to the segmenting
surface, by means of an evolving level set, whose evolution equation is:

(20)

This segmentation scheme will be hereafter referred to as AdMoGIT (Adaptive Mixtures of
Gaussians on Intensity and Tensors). In this approach, the choice of the weighting
parameters β1 and β2 is an important issue, as it balances the influence of the intensity and
the texture in the segmentation process. We next introduce an adaptive method to determine
this parameters through the segmentation process.

4.2.1. On the use of the KL distance to obtain β1 and β2—If β1 = β2 in Eq. (20),
the LST and the image components are equally weighed and so they have the same
importance in the segmentation process. However, it is also possible to adaptively adjust this
parameter depending on the relative discriminative power of the LST and the components
terms. The estimation of the relative importance of both types of features is related to the
problem of the structure-texture decomposition of images, which is an important issue in the
literature (31; 3), specially for denoising purposes. Usually, image decomposition is
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performed via an energy minimization process. This kind of decomposition still needs an
initial guess of the splitting parameter between the geometrical and textural components and
is beyond of the scope of this paper. Other efforts on measuring the discriminative power of
the different channels are those in (14; 61). In the first work, Cardelino et al. considered the
PDFs of the different feature channels in both regions Ω1 and Ω2 and computed the
Kullback-Leibler distance between them. A large value for that distance belonging to a
particular channel means that the channel provides good discrimination power. However, in
(14) the previous slice of the volume data is employed for this procedure as a correct
distinction between both regions is needed, which may not be available in a general case.
With regard to the work by Sandberg et al. (61), the variations on the different features
between both regions are considered as a criterion to discriminate among the feature
channels. Again, this approach needs all channels be commensurate. In (19), a method was
proposed for the comparison of the discriminative power of the intensity and tensor
information based on the calculation of two distance measures of the separability of the
mean tensor or intensity values over the two regions. However, as the tensor and intensity
distances employed are not the same, this approach is not symmetric, and thus a bias can
appear in the final calculation of the weighting parameters.

In this paper, we propose an approach related to the work by Cardelino et al. Taking into
account that the modeling distributions of the chosen features are available, and since the
underlying idea for the design of the weighting factors is related to the comparative
measurement of the separation of the segmenting classes in terms of the features in the
different channels, we will employ the well-known symmetrized Kullback Leibler distance
(also named J-divergence) for the calculation of the weighting factors. To that end, these are
defined as:

(21)

(22)

where p(T|Θi) is the estimated PDF of the tensor field over region i, and p(I|Θi)) is the
estimated PDF of the intensity. Symmetrized Kullback-Leibler distances are always
employed. As can be seen, we aim to measure the separation between the tensor
distributions with relation to the separation between the intensity distributions. Those
distributions which are at a larger distance are therefore favoured in the weighting of the
energy terms. The described method to obtain β1 and β2 presents the advantage of using the
complete information about the statistical distributions of the data. Furthermore, the
formulation is completely symmetric, as the same measure (i.e. the Kullback-Leibler
distance) is employed for the tensor and for the intensity features.

From a practical point of view, there exists a closed form for the J-divergence between two
Gaussian distributions with common mean and different covariance matrix. However, for
Gaussian distributions on scalars or vectors with different mean values or mixtures of
Gaussians, an analytical calculation is, to our knowledge, not available. Even though,
numerical integration can be performed easily as, if we recall the definition of the
symmetrized Kullback-Leibler distance, we have

(23)
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The computation of the tensor counterpart of the Kullback-Leibler distance is, however,
more problematic, as numerical integration cannot be directly performed. In order to
overcome this difficulty, we next propose an alternative procedure to compute the KL
distance for the tensor case.

4.2.2. Monte Carlo simulations to approximate the KL distance on tensor
distributions—The symmetrized Kullback-Leibler distance between two mixtures of
Gaussians on tensor fields p(T|1) and p(T|2) is given by

(24)

where  is the space of SPD tensors of size n × n where the integration must be
performed. Once the explicit analytic integration is discarded, most numerical integration
algorithms rely on the approximation of the integrand along intervals of constant size. The
problem here, as we are not lying in an Euclidean space, is to define such intervals on

.

A simple and elegant way to overcome these difficulties is to run a Monte Carlo simulation
(48) to perform the numerical integration. In our case, each of the two summands in Eq. (24)
can be regarded as

(25)

where fX(x) is a PDF, and therefore ∫ fX(x)dx = 1. Then, and in order to obtain the
expectation of g(x), one can just compute

(26)

where the points xi, i = 1, . . . , N have been generated according to the PDF fX(x). A
procedure for the generation of tensors according to Gaussian distributions is described in
(43).

Using the described Monte Carlo technique, the calculation of the symmetrized Kullback-
Leibler distance between two distributions on tensors is performed as briefly summarized in
Table 2.

5. Applications to Medical Image Segmentation
In this section, we describe the application of the segmentation method proposed in this
paper to two different modalities of medical images. First, we address the problem of DT-
MRI segmentation, for which the mixtures of Gaussians on tensors can work directly as seen
in Section 4.1. Afterwards, the segmentation of bones from hand radiographs is studied. For
this application, the variant of the proposed segmentation method presented in Section 4.2
needs to be employed, as we are dealing with gray-level textured images.

5.1. DT-MRI Segmentation
As explained in deeper detail in Section 2, the segmentation of tensor fields has evolved in
the last few years mostly driven by the appearance of DT-MRI as an emerging medical
imaging modality that allows the in vivo measurement of the anisotropy properties of water
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diffusion in tissues. This new modality opens new possibilities for the analysis of anatomical
structures whose visualization is not feasible using conventional MRI.

With regard to the different human anatomical brain structures whose segmentation from
DT-MRI has been attempted, the thalamus and its nuclei were segmented in (69; 37). In (71;
36; 38; 42; 46; 44) the corpus callosum was segmented, while the cortico-spinal tract was
extracted in (38; 46). Other structures such as the lateral ventricles have been also
segmented (42).

We will devote here to the segmentation of the corpus callosum from a set of DT-MRI
images. This particular structure has been chosen since it constitutes a valuable benchmark
for the evaluation of tensor field segmentation methods, as it has been attempted more
commonly than other structures. Besides, the introduction of initial contours for the
segmentation can be easily done from slices showing the FA, while the delineation of these
initial contours for other structures such as the thalamus nuclei is much more problematic.

5.1.1. Segmentation method—The segmentation will be performed according to the
following characteristics:

• The employed dataset consists of DT-MRI volumes of 32 subjects, which were
acquired on a 1.5 Tesla scanner. The acquisition parameters were: b value = 1000
sec/mm2, TE=1000 msec, TR=89 msec, along six diffusion-sensitizing directions.
The images were obtained on 79 planes with 128 × 128 pixels per slice 2.

• We will apply the MoGoT segmentation method, based on the definition of
mixtures of Gaussians on tensors and intended for tensor-valued images. The
maximum number of components for the mixtures of Gaussians over the tensor
field will be 5 for each class.

• As for initial contours, the body of the corpus callosum will be roughly delineated
for 3 central sagittal slices of the volume, upon the visualization of the FA.

• Following an EM approach, the level set evolution and the update of the parameters
of the mixtures of Gaussians are iterated until convergence. In order to reduce the
computational expense, the parameters will be updated once every five level set
iterations, instead of once every iteration. Also, only a random selection of points
uniformly distributed over the image (after the consideration of a mask that
delineates the skull) is used for the parameter estimation of the background.

5.1.2. Results—The segmentation method proposed has proved to successfully extract the
corpus callosum from DT-MRI images; the following results support this statement.

First, for a sample DT-MRI volume, we show in Figure 2 the segmenting surface at three
different stages of the segmentation process. As can be seen, the segmentation evolves from
the initial surface, growing appropriately to eventually capture the whole corpus callosum
until it reaches a steady state.

In Figure 3, the segmented corpus callosum for a sample volume is depicted from different
viewpoints, in order to better describe the shape of the segmented structure.

2This volume dataset was kindly made available by the Signal Processing Institute at the École Polytechnique Fédérale de Laussane,
within a research collaboration under the scope of the 6th Framework Program Network of Excellence Similar. This is thankfully
acknowledged.
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Results shown so far illustrate the performance of the segmentation method for a single
sample volume. In order to show the overall performance for all the volumes in the
employed dataset, in Figure 4 we show a selection of the obtained segmentation results.

Once the suitability of the proposed method for the segmentation of the corpus callosum has
been assessed, we next compare its performance with different variations of the model on a
sample DT-MRI volume; specifically:

• In Figure 5(a), we show the obtained segmentation result for the application of our
segmentation approach based on the fractional anisotropy data instead of the
diffusion tensor (MoGoFA, Mixtures of Gaussians on Fractional Anisotropy).
Therefore, scalar mixtures of Gaussians were employed.

• In Figure 5(b), the segmentation result using a strictly supervised version of the
MoGoT method is shown (SMoGoT, Supervised Mixtures of Gaussians on
Tensors). This implies that the estimation of the parameters of the Gaussian
mixtures is performed only once, before the segmentation process starts. This
estimation is based on the initial contours delineated by the user on three central
sagittal slices, for region 1, and on random points outside this contours, for region
2. These parameters are then employed through all the level set evolution and are
not updated as the segmentation evolves. The maximum number of components of
the mixtures of Gaussians is, as before, 5.

• In Figure 5(c), the segmentation result for the same sample volume is shown, where
the segmentation approach is identical to the one before, except that the maximum
number of components of the mixtures of Gaussians has been set to 1.

• Finally, in Figure 5(d), the original segmentation result with the MoGoT
segmentation method is shown for comparison (the maximum number of Gaussian
components is 5).

The comparison of the obtained results allows for the discussion of a number of interesting
issues. First, it is clear that the use of a scalar descriptor of the tensor as the fractional
anisotropy does not suffice for the segmentation of the corpus callosum. Although scalar
tensor invariants were employed in (71) for the segmentation of the corpus callosum and
other brain structures, our results suggest that a very fine tune of the parameters would be
needed for a successful segmentation, thus making it difficult for its general use.

With regard to the use of a supervised version of the proposed segmentation algorithm,
results in Figure 5 (b),(c) show that these supervised variants have trouble at successfully
segmenting the region of the splenium (posterior part of the corpus callosum). Indeed, the
supervised functioning of the segmentation algorithm has a lack of flexibility, as it entirely
relies on the parameters estimated in the training stage. Since the initial contours were
delineated on three mid-sagittal slices, the estimated parameters are not able to fully capture
the variability of the complete corpus callosum. Within a supervised mode, if the number of
Gaussian components increases, the flexibility of the estimated model tends to decrease due
to an overfitting effect, a fact that explains the smaller extension of segmentation result in
Figure 5 (b) with respect to Figure 5(c).

In order to illustrate the effect of using a single Gaussian instead of the mixtures of
Gaussians proposed, we show in Figure 6 some segmentation results of our approach
compared to those of the segmentation method in (45; 44), based on the use of a single
Gaussian for the tensor probability density function (geodesic distance was also employed
for this segmentation method, together with the same initial surfaces and identical
segmentation parameters). Although this approach was able to obtain good segmentation
results on the employed dataset, it encounters some problems in the region of the splenium
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in some cases when compared to the MoG approach, and it shows lower accuracy and some
artifacts for some other subjects.

This increased performance showed by the segmentation approach proposed in this paper is
related to the ability of the MoG to capture a higher complexity in the data with respect to
the single Gaussian model. Even though this point constitutes an advantage of the general
MoGoT segmentation method over the single Gaussian approach by Lenglet et al., further
investigation must be made on the tradeo between adaptivity and flexibility of the data
model in order to advance towards more robust DT-MRI segmentation methods.

Results in Figure 6 visually illustrate some of the advantages of the MoGoT model over a
single Gaussian method. In order to provide also quantitative results, an indirect validation
using ROI-based tractography was performed. A direct validation would require the manual
segmentation of the corpus callosum from the DT-MRI volumes, which was not available
for our dataset and is extremely difficult to obtain.

White matter segmentation is commonly employed to define ROIs for subsequent
tractography generation and analysis. Then, the performance of a segmentation method is
related to its ability to provide ROIs that produce fiber tracts belonging to the desired fiber
bundle. Figure 7 (a) shows tractography results using the segmented corpus callosum as ROI
for one of the DT-MRI volumes in the dataset. As can be seen, most of the obtained fiber
tracts belong to the correct fiber bundle, while some undesired fibers belonging to the
cingulum and other adjacent white matter structures are also produced. Considering this
scenario and given a tractography method using a fixed set of parameters, the performance
of the segmentation method can be measured in terms of the number of correct fibers and
the ratio between the correct and incorrect fiber tracts that are generated through the
tractography process (see Figure 7 (b)). Figures 7 (c) and (d) provide these results for the
proposed segmentation method and the method proposed by Lenglet et al. (45; 44), which is
equivalent to using MoGoT with K = 1. Both methods obtain a similar number of correct
fiber tracts (there is not a statistically significant difference, p-value=0.4233), while MoGoT,
with K = 5, provides a higher ratio of correct/incorrect fibers than Lenglet's method (mean
values are 6.2749 and 5.0250, respectively, and there is a statistically significant difference,
with p-value=0.0243).

In order to provide further evidence about the relevance of the differences between the use
of Gaussian mixtures and a single Gaussian model, we show in Table 3 a statistical analysis
of the comparison between both approaches. In order to find out whether there are
statistically significant differences in the segmentation results using both approaches, a set
of shape descriptors was computed for each segmenting surface of the dataset, composed of
central moments of different orders. The resulting feature vectors for each approach were
afterwards compared using a paired T-test, if Gaussianity was found by means of a Chi-
square test, or a Wilcoxon test otherwise. As can be seen from the table, 4 out of 8 shape
descriptors are significantly different using both approaches. This indicates that, while the
segmentation results are similar (statistically significant differences for all shape descriptors
were not expected, as both approaches provide reasonable segmentation results), there are
consistent and relevant differences between them.

5.2. Segmentation of Bones from Hand Radiographs
Let us now address the problem of the automatic and semiautomatic segmentation of hand
bones from radiographs. The importance of this issue stems from a procedure called bone
age assessment, which is frequently employed in pediatric radiology. It is is aimed at
determining the state of skeletal evolution of a patient from a radiograph of the non-
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dominant hand and wrist. Many diseases and syndromes a ecting growth result in a
significant discrepancy between bone age and chronological age (54; 30).

Two major methods are used for bone age assessment on children: the Greulich-Pyle method
(32) and the Tanner-Whitehouse (TW3) method (63). The former is an atlas-driven method
which is based on visually comparing the radiograph with a number of atlas patterns. Bone
age is assessed on the basis of the pattern which more accurately resembles the clinical
image according to the physician's perception. TW3 method uses a detailed shape analysis
of several bones of interest, leading to their individual classification into one of several
stages. The subjective nature of the Greulich-Pyle method, and the considerable complexity
of TW3 method, make the automation of bone age assessment a highly desirable goal, in
order to assist the radiologist in performing a more objective, fast and accurate analysis.

In order to achieve an automatic or semiautomatic expert system for bone age assessment
from hand radiographs, the segmentation of the bones of interest is very convenient as a
prior step for further analysis based on the segmented shapes or simply as a necessary step
for the determination of the regions of interest. To that end, we will employ the AdMoGIT
segmentation method described in Section 4.2, i.e. a GAR model over mixtures of Gaussians
on the intensity and the LST with an adaptive weighting of both sources of information.
Segmentation will be performed in a supervised manner, that is, training regions will be
located for the estimation of the statistical parameters of the mixtures of Gaussians prior to
the segmentation process. To that end, an automatic procedure has been designed that
permits the automatic location of the necessary training regions based on the anatomical
prior knowledge.

5.2.1. Segmentation method—The segmentation method proposed is designed to
segment all the bones of interest from the viewpoint of the TW3 bone age assessment
method. These are the radius and ulna, the five metacarpals and the fourteen phalanges. The
segmentation of the carpal bones is more complex, and their use for bone age assessment is
limited because it is only relevant within a reduced range of age. Therefore, the
segmentation of the carpal bones will not be our priority, although in most of the cases the
segmentation of the former will be successfully achieved as well. We show in Figure 8 the
workflow of the segmentation process. As can be seen, the statistical parameters from the
intensity and the LST are obtained from training regions that are defined using prior
anatomical knowledge.

For the estimation of the statistical parameters, training regions must be defined for each
class. This task, which is critical for the segmentation to succeed, can be performed in a
manual, automatic or semiautomatic fashion. In this work, an elaborated automatic method
has been developed that finds the necessary training regions using prior anatomical
knowledge about the structure of the hand and its bones. Nevertheless, sometimes it can
occur that the segmentation results are not satisfactory due to the fact that the training
regions, although correctly placed on the radiograph, do not adequately represent the
segmenting classes. In order to solve this, a semi-automatic stage has been included in the
segmentation workflow that allows the user to interactively add some training regions in
order to refine the obtained segmentation results.

Starting from the hand radiograph, the process to place adequate training regions for each
class within each region of influence is primarily based on the location of interior points to
the different bones. Circular regions will be then created around these located seeds that will
correspond to the training regions of the bone segmentation class. With respect to the soft
tissue class, circular regions will be also created around points outside the bones, as well as
other points located near the border of the hand silhouette, also known to be outside the
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bones. The overall method takes advantage of the anatomical prior knowledge about the
general shape of the human hand, and also employs signal processing techniques in order to
filter 1D profiles extracted from the radiograph along relevant directions, and to locate
salient points that correspond to the seeds we seek. The procedure was partly presented in
(21; 22) (we refer the reader to these references for further details), and Figure 9 shows
several stages of it.

5.2.2. Results—Once the segmentation method has been fully described, we present the
experimental results obtained using the described approach.

First, results will be shown and studied in detail for a sample radiograph. The original image
is shown in Figure 9 (a). The automatic procedure described before is applied on it in order
to obtain the necessary training regions. Points are located in this way for both regions, as
shown in Figure 9 (d), where training points belonging to the class bones are coloured in
blue and points belonging to class soft tissue are coloured in red.

Once the training regions have been selected, the statistical parameters are estimated, and
three sets of parameters are estimated that describe both classes in terms of their intensity
and their LST for each region of influence. A maximum number of 5 components was
imposed for the mixtures of Gaussians in order to limit the computational burden of the
calculations and to avoid an overfitting of the mixtures of Gaussians to the training data.

Using the estimated parameters, the iterative segmentation is performed with an evolving
level set. Figure 10 shows the evolution of the segmenting contour at an initial, intermediate,
and final point.

As can be seen, the segmentation results are quite accurate except for the carpal region,
where the segmenting contour is not able to detect the two carpal bones that are already
present at this stage of skeletal development. As stated before, these bones are not employed
in most cases when performing the bone age assessment, because they are only relevant for
very early stages of growth. However, a finer refinement of the segmentation results is
possible if some manual seeds are placed in order to perform a more accurate estimation of
the parameters. In Figure 11 (a), the complete set of training regions considered for a new
segmentation is drawn. These training regions include the ones that were automatically
placed, and a few more that have been manually included around the carpal bones in order to
improve the segmentation results in this specific area. The final segmenting contour is
shown in Figure 11 (b), that now accurately fits the bone contours all over the radiograph.
Some details of this segmentation result are shown in Figure 11 (c), (d) and (e) that illustrate
the accuracy of the segmentation method.

6. Conclusions
In this paper, we have presented a novel approach for image segmentation based on the
processing of tensor features using a statistical model consisting of a mixture of Gaussians.
Starting from the well-know GAR segmentation framework, this approach can be directly
applied to tensor-valued images, yielding a more flexible model than the use of a single
Gaussian distribution. When applied to scalar images, our approach can be employed to
perform the segmentation taking into account both intensity and texture, with the latter
encoded by means of the LST. This way, the flexible mixtures of Gaussians are employed as
a statistical model for both types of information. Furthermore, as this combined
segmentation approach is completely symmetric, it is possible to evaluate the relative
discriminative power of the intensity and the texture so as to balance the relative importance
of both terms in the segmentation process.
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In order to show the suitability of the proposed methods for the segmentation of medical
imaging, we have selected two different applications. The first one is the segmentation of
the corpus callosum from DT-MRI, a task that has been attempted in many works devoted to
tensor field segmentation in the literature. Results over a large dataset show that our
approach is capable of successfully segmenting the corpus callosum, and that using mixtures
of Gaussians on tensors as a statistical modeling yields more accurate and robust results
when compared to related approaches in the literature.

The second application is the segmentation of bones of interest from hand radiographs, for
which and automatic-semiautomatic approach has been designed. The segmentation is
performed after training regions have been located making use of anatomical prior
knowledge. Then, the results can be further refined by introducing some manual intervention
to locate additional training points.
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Figure 1.
Two different variants of the use of mixtures of Gaussians on tensors for segmentation. The
first variant, working directly on tensor-valued images, is presented in Section 4.1. The
second variant, which works on scalar or vector-valued textured images, is presented in
Section 4.2.
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Figure 2.
Initial contour and different stages of the evolving level set for a sample DT-MRI volume.
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Figure 3.
Different perspectives of the segmented corpus callosum.
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Figure 4.
Segmentation results for the corpus callosum in a selection of the DT-MRI volumes.
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Figure 5.
Segmentation results, for a sample volume, using MoGoFA (a); SMoGoT, Kmax = 5 (b);
SMoGoT, Kmax = 1 (c); MoGoT, Kmax = 5 (d).
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Figure 6.
Views of the segmentation results for the corpus callosum of different volumes using a
single Gaussian model (44; 43) (red) and MoGoT model proposed in this paper (green).
Results show a better accuracy of our approach in the region of the splenium (three left
cases), and a higher robustness to artifacts (three right cases).
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Figure 7.
(a) Tractography results using corpus segmentation as ROI; (b) Correct fiber tracts (green)
and incorrect ones (red); (c) Comparison of number of correct fibers using segmentation
method by Lenglet et al. (45; 44) (K = 1) and proposed method (K = 5); (d) Comparison of
ratio between correct and incorrect fibers using segmentation method by Lenglet et al. (45;
44) (K = 1) and proposed method (K = 5).
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Figure 8.
General workflow of the hand bones segmentation method.
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Figure 9.
Automatic method for the location of the training points in the radiograph: (a) Original
image; (b) Squeleton of the hand silhouette; (c) Location of the training regions inside the
phalanges; (d) Final training regions for bones (blue) and soft tissue (red).
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Figure 10.
Initial, intermediate and final contour for the segmentation of bones on the sample
radiograph.
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Figure 11.
(a) Training regions including some manually placed points around the carpal bones; (b)
Segmentation results using the training regions shown in (a); (c), (d), (e) Segmentation
details of the areas indicated as rectangles in (b).
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Table 1

Squared distances and their gradient for T̄ and Ti.

Distance
D2(Ti, T

‒) ∇Ti
D2(Ti, T

‒) = − βi

Frobenius norm trace((T̄ – Ti)(T̄ – Ti)T) T̄ – Ti

J-divergence 1
4

(trace (T‒−1
Ti + Ti

−1T
‒) − d) 1

4
(Ti

−1 − T
‒−1

TiT
‒−1)

Geodesic 1
2

trace (log2 (T‒−1∕2
TiT
‒−1∕2)) T

‒
log (Ti

−1T
‒)
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Table 2

Summary of the EM algorithm for mixtures of Gaussians on vectors and tensors.

Numerical calculation of the symmetrized KL distance dK L,t(p(T|Θ1), p(T|Θ2))

Step 1 Generate N tensors T1,i according to p(T|Θ1)

Generate N tensors T1,i according to p(T|Θ2)

Step 2

Compute
1
N

∑i=1
N g1(T1,i), where g(T1,i) = log ( p(T1,i ∣ ϴ1)

p(T1,i ∣ ϴ2) )
Compute

1
N

∑i=1
N g2(T2,i), where g(T2,i) = log ( p(T2,i ∣ ϴ2)

p(T2,i ∣ ϴ1) )
Step 3

Calculate dKL ,t(p(T ∣ ϴ1), p(T ∣ ϴ2)) =
1
2

1
N

∑i=1
N g1(T1,i) +

1
N

∑i=1
N g2(T2,i)
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Table 3

Results of statistical tests of significance on the difference between the MoGoT model and the single Gaussian
approach for DT-MRI segmentation.

Shape moments T-test (p-value) Wilcoxon test (p-value)

m 000 
†† 0.0001

m 111 
† 0.4380

m 112 †† 0.0194

m 121 
†† 0.1162

m 211 
†† 0.0225

m 221 
† 0.0030

m 212 
†† 0.1782

m 122 
†† 0.1906

Significance is considered for p < 0.05.

†
Paired T-test was performed as Gaussianity could be assumed.

††
Wilcoxon test was applied as Gaussianity could not be assumed.
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