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Abstract
We developed multi-scale, live-time interactive visualization of color image data, including
microscopic whole-mouse cryo-images serving many biomedical applications. Using true-color
volume rendering, we interactively, selectively enhanced anatomy using feature detection. For
example, to enhance red organs (vessels, liver, etc.) and internal surfaces, we computed a red
feature from R/(R+G+B) and surface features from color/gray-scale gradients, respectively. For
>70GB cryo-image volumes, we developed multi-resolution visualization, which provided low-
resolution rendering of an entire mouse and zooming to organs, tissues, and cells. Fusions of
fluorescence and color cryo-volumes uniquely showed biodistribution of metastatic and stem cells
within an anatomical context.
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1. Introduction
We are creating specialized image visualization techniques for the enormous, information
rich data sets from whole-mouse cryo-imaging. The cryo-imaging system at Case Western
Reserve University provides high-resolution, large field-of-view, anatomical color and
molecular fluorescence image data by alternatively sectioning and imaging the block face
[1–3]. The samples are flash frozen in liquid nitrogen after embedding them in a histological
medium called Optimal Cuttting Temperature (OCT) compound. The frozen block is
alternatively sectioned using a cryomicrotome and imaged in a tiled fashion yielding very
large, high resolution data volumes. Cryo-imaging is unique in that it fills the gap between
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in vivo imaging such as with MRI or CT and histology, allowing one to image along the
continuum from mouse → organ → tissue structure → cell. Color image volumes present
many more opportunities for volume visualization than do gray-scale volumes such as those
from CT or MRI, and we are exploring enhancements. We acquire volumes at microscopic
resolution, resulting in data sets as large as 70 GB, far exceeding the maximum RAM
(32GB) available on our PC imaging workstations. This necessitates fast, multi-resolution
volume rendering to aid data interpretation. Other microscopy methods with large data sizes
will also benefit from the multi-scale visualization approach. For example, we have recently
processed gray scale cryo-electron microscopy images exceeding 250 GB. In addition to
color images, cryo-imaging provides fluorescence images of one or more fluorophores in
studies using targeted imaging agents, fluorescently labeled stem or cancer cells, targeted
drug delivery, tissue-specific fluorescence of transgenics, etc. Multiple modalities (bright
field color, fluorescence, multi-spectral imaging, etc.) provide opportunities for renderings
of fused data, to enable fast, efficient data interpretation.

Over the last two decades, direct volume rendering has been a key technology for
visualization of large 3D datasets from scientific, engineering, and medical applications [4–
11]. However, several factors still inhibit its widespread use including the complex
interrelationship of rendering parameters, the lack of interactivity, and the design of a
suitable transfer function to be used during volume rendering [12]. Interactivity during
volume rendering helps in quickly locating anatomical structures of interest and in
conducting localized investigations for the presence of one or more fluorescent markers.
This kind of interactivity would permit simultaneous studies of anatomical, molecular, and
functional data from several organs. Due to the advent of high-performance graphics
hardware, rendering and interacting with fusion volumes can be performed in just a few
seconds of computation time. Fluorescence and bright field volumes can be rendered
simultaneously with the ability to dial in/dial out transparency of each of these volumes
permitting data exploration and interaction in a way not previously possible.

Transfer function design greatly affects the visual outcome of volume rendering [6;8;9]. A
transfer function assigns values for optical properties, such as color and opacity, to original
values of the data set being visualized. The design of effective color and opacity transfer
function from scalar-valued data has been the subject of substantial research over the last
years with the design of the color transfer function (1-channel grayscale to 3-channel RGB
color mapping) often much more difficult than the design of an opacity transfer function (1-
channel gray scale to 1-channel opacity mapping) [5]. In the case of grayscale data, the
scalar is the grayscale intensity value and the color mapping results in a pseudo color
assignment. A separate gray-scale to opacity mapping function is designed for opacity.
When color information is available in original data, one can use a 3-channel to 3-channel
mapping function to assign pseudo color values when natural colors do not provide adequate
contrast. In applications (e.g., cryo-imaging) where high-resolution high-contrast true color
information is available and is essential for making biologically useful inferences, it is
desirable to employ true-color volume rendering. An appropriate choice of an opacity
transfer function still needs to be made, and this largely depends on the data itself. For
example, in routine medical visualizations of CT data it is often possible to use pre-defined
1D opacity transfer functions to highlight certain tissue types, such as bone or liver [6;13].
Further, a combination of data attributes such as color channel values, grayscale value,
gradient of channels, and grayscale gradient can be mapped to a suitable opacity value as in
the case of multidimensional opacity transfer functions reported in the literature [5;8;9]. In
some previous studies [5;11], transfer function design was preceded by a tissue classification
step where mathematical classifiers were used to determine the class (tissue type) of each
voxel. First, a lookup table was designed that assigns opacities to each tissue type using a
simple all-or-none (or hard) classification that uses grayscale values. This was not suitable
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for tissue interfaces thereby requiring a probabilistic (or soft) classification method that
employed maximum likelihood classifiers or piecewise linear mapping to assign opacities
based on the probability of every voxel belonging to the various predetermined tissue types.
Pattern recognition classification can be a computationally demanding step, which would be
problematic for fast visualization of our extremely large cryo-imaging data sets (>70GB for
a color cryo-image volume of an adult whole mouse).

In this paper, we explore direct volume rendering techniques using natural colors with the
opacity values being a function of color and gradients from the data. Specific anatomical
structures are enhanced using a two-step process – feature detection followed by rendering
using suitable opacity transfer functions (OTFs). We exploit a variety of color feature
detection strategies and methods for computing gradients. We include all within a graphical
user interface which allows one to either pull up organ-specific stored visualization
parameters or interactively (i.e., in live time) identify best choices for visualizing a
particular tissue of interest. Multi-resolution rendering allows one to zoom into a region at
full resolution and slicing functions allow one to create multiplanar reformatted sections
showing single fluorescent cells. We chose the Amira (Visage Imaging, San Diego, CA)
[14] 3D visualization/analysis software package to create our visualization pipeline. Similar
techniques to ours have been previously used on data from the Visible Human Project [15–
18]. In particular, opacity transfer functions involving color and color gradient feature
detectors [6;8;9] have been employed to derive rendered opacity values. However, we note
that the superior resolution and the fluorescence imaging capability of cryo-imaging make
our data and techniques distinct from those of Visible Human Project.

The rest of the paper is organized as follows. In Methods, we describe the feature detectors
and OTFs used in creating enhanced volume renderings and the design of our visualization
interface. In Results, we illustrate renderings and provide anecdotal user evaluations on
embryonic and adult mouse cryo-image data sets. Finally, in Discussion, we discuss the
effect of parameter values (e.g., threshold, scalar weights), choice of transfer function, the
use of gradients, and computer hardware limitations on volume rendering based on our
experiences.

2. Methods
2.1 Cryo-imaging system

The whole mouse cryo-imaging system was developed in Dr. Wilson’s laboratory at Case
Western Reserve University. It consists of a modified, bright field/fluorescence stereo
microscope; a robotic imaging system positioner; and a customized, motorized cryostat, all
fully automated by a control system. By alternately sectioning and imaging, the system
acquires 3D, high-resolution, large field of view, color and molecular fluorescence image
volumes from sequential images of the tissue block face. Applications include stem cells and
regenerative medicine, imaging agent optimization, phenotyping, characterization of spatial
gene expression, validation of in vivo medical imaging data, etc. Details of the system,
sample preparation, and a review of some applications are described elsewhere [1;2].

2.2 Color-based Feature Detectors
We exploit the rich color separation of cryo-images using color ratio feature detectors.
Examples of red, green, and blue ratio feature detectors (cR, cG, cB) are shown below,
where R, G, and B refer to the 8-bit data for red, green, and blue channels, respectively. All
of our feature detectors are designed to lie in the [0, 1] interval.
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(1)

These color detectors provide an opportunity to highlight various tissues of interest. It is also
possible to derive other color detectors. For example, for detecting stomach and intestinal
regions, which are predominantly brown in color, we exploited the fact that brown is
composed of one part of R, two parts of G, and zero (0) parts of blue. A brown feature
detector is therefore expressed as a weighted linear combination of red and green feature
detectors.

(2)

Similarly, one could define a purple feature detector with equal amounts of R and B.

(3)

To highlight the brain, spinal cord, and eyeballs, which had a “light red” tone in the whole
mouse test data set, a mixture of R, G, and B in the ratio 0.5R + 0.25G + 0.25B produced the
most acceptable results as evaluated visually. This resulted in a specialized "light red"
feature detector.

(4)

For detecting gray tones, we used another specialized feature detector that exploits the fact
that gray is composed of balanced amounts of R,G, and B.

(5)

A low value of cGRAY indicates presence of “gray” in volume. It is clear from the
formulations of (3) – (5) that the responses of these feature detectors lie in the interval [0, 1].

2.3 Gradient-based feature detectors
Data gradients are useful in visualization and interpretation of internal structures and
surfaces within volumetric data. Many possibilities exist. First, one can compute gradients
on grayscale data. Given the color vector [R, G, B] at a voxel location (x, y, z), the grayscale
value Ig is simply computed as follows (using the Y component of the RGB to NTSC YIQ
transformation matrix [19]:)

(6)

Using the central difference operator, a numerical estimate of grayscale gradient at a voxel
location (x, y, z) is obtained:
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(7)

A useful gradient function for rendering is the normalized magnitude of the grayscale
gradient vector in (7):

(8)

Here, Ig,max denotes the maximum grayscale value (Ig,max =255 is common for rendering).
Similarly, gradient magnitudes can be computed from each color channel by substituting Ig
with R, G, or B in equations (5) and (6). Normalized gradient magnitude feature detectors
for R, G, and B are listed below:

(9)

Yet another approach is to compute gradients directly from color vector data. Color vector
data can be represented using several color spaces (RGB, L*u*v*, YCbCr, HSV, YIQ, etc.)
[19]. It has been reported that the L*u*v* color space is perceptually linear unlike the RGB
color space [6;9] which is non-linear in terms of human perception. This important
observation suggests that computing gradients in perceptually linear spaces would be more
appropriate for visualization by a human user. Following a color space transformation from
RGB to L*u*v*, we computed two gradient measures pertaining to the color data vector:
color distance gradient magnitude and color distance gradient dot product [6;9]. Let C(x,y,z)
denote the color volume in L*u*v* color space. The color distance gradient vector Ḏ(x,y,z)
is given by

(10)

where ∇x, ∇y, ∇z denote the x, y, and z components respectively of the color distance
gradient vector and are defined by:

(11)

In (11), the function d on the two color vectors C1 and C2 in L*u*v* space is defined by:
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(12)

where Ci,L*, Ci,u*, and Ci,v* denote the L*, u*, v* components respectively of vector Ci. The
color distance gradient magnitude (CDGM) is then simply given by:

(13)

The above measure can be easily normalized to lie in the interval [0,1] by dividing the RHS
of (13) by the maximum CDGM value obtained for a given volume. The normalized CDGM
based feature detector is given by:

(14)

For the color distance gradient dot product, we first compute the normalized color distance
gradient vector as follows:

(15)

The color distance gradient dot product (CDGDP) is then defined by:

(16)

where. denotes the dot product and neighbori denotes the six neighbors of a voxel. Note that
CDGDP is already normalized to lie in the range [0,1].

2.4 Opacity Transfer Functions
The color (c) and normalized gradient magnitude (g) feature detectors, which are scalar
quantities introduced in Equations 1–5, 8 and 9, serve as inputs to opacity transfer functions
(OTF’s), denoted by o in this section, which finally assign a scalar α-opacity value to each
voxel in the volume for rendering based on c and g. We have investigated threshold,
sigmoidal, and power-law OTF’s. We use a threshold OTF with a threshold parameter, T,
and a weighting factor, w, for combining the effects of color and gradient.

(17)

A threshold OTF can introduce step artifacts in the rendering that can be alleviated with a
sigmoidal OTF.
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(18)

Above, w is a weighting factor, T is a threshold, and γ controls the width of the transition
period. The α values are rescaled to lie in the interval [0,255]. For comparison purposes, we
have also used a power-law OTF [6;9], as given below with the following parameters– a
scalar k, an exponential γ, and weight w, with "." representing multiplication.

(19)

2.4.1 Linear combination after OTF mapping—An alternative approach to α-opacity
assignment involves computing separate OTF’s for c and g, and linearly combining them
using w, the weighting factor. Such a linear combination is represented below for the case of
sigmoidal OTF’s, where "." represents multiplication:

(20)

2.4.2 Multiplicative combination of data and gradient in OTF—In some cases, it is
more advantageous in terms of memory and computation time to (i) compute c and apply an
OTF such as the sigmoidal o(T,γ,c) based on only color feature, and (ii) multiply gradient
feature g with the OTF computed in step (i) to obtain the final opacity value for a gradient-
enhanced rendering. The resulting equation for α-opacity is given below where the "."
symbol represents multiplication.

(21)

2.5 Color Volume Rendering and Visualization Pipeline
A block diagram of our volume rendering and visualization pipeline is shown in Fig 1. The
baseline volume rendering is created by simply using the gray value at each voxel as the
"feature". In this case, to obtain a rendered opacity value, we complement the gray value by
subtracting it from 255, thereby making darker structures more opaque than brighter ones.
This is equivalent to using a Ramp OTF. The enhanced volume rendering employs color and
normalized gradient magnitude feature detectors along with threshold, sigmoidal, and power
law OTF's to generate a rendered opacity value. In cases where data and gradient are both
employed in deriving the rendered opacity, a suitable combined detection strategy is applied
(sec 2.4). The rendered opacity value is then combined with the original color channel
values and provided as input to a true color volume renderer to create the final rendered
volume. We evaluated several software packages in terms of volume rendering capability
and chose the Amira (Visage Imaging, San Diego, CA) rendering engine because of its true
color support and better quality.

2.6 User Interface for Enhanced Color Volume Rendering (UIECVR)
We have created an intuitive volume visualization user interface, UIECVR, that allows for
live time interaction for volume rendering of color data. A schematic block diagram of the
UIECVR interface is shown in Fig. 2. We illustrate the visualization workflow using an
example mouse bright field color volume. Starting from a baseline volume rendering (Fig.
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2A), the region-of-interest (ROI) specification tool is launched (Fig. 2B) to quickly identify
a 3D rectangular region for “slab” volume rendering. The ROI can be modified by dragging
the small spheres identifying the bounding box, eliminating any extra structures which
would otherwise limit our ability to volume visualize a tissue of interest. Typically, we
render the entire volume at low resolution using our default scheme, identify an ROI, and
then create an enhanced rendering at full resolution from the ROI (more details about multi-
resolution rendering are provided later in this section.) The cropped, zoomed-in ROI for our
mouse volume has been shown separately in Fig 2C. UIECVR allows one to select
appropriate color feature detectors [cR, cG, and cB in (1)] to be applied to ROI's. In addition
to standard color feature detectors, there is support for preset color detectors [e.g., “brain” or
"light red" detector, brown, gray, etc. in (2) – (5)]. Our interface also supports normalized
gradient magnitude feature detectors [(8) and (9)], and color vector gradient based feature
detectors [(13) – (16)]. Finally, one can choose the OTF (e.g., threshold, sigmoid, and power
law OTF) and its parameters for volume rendering. Color and gradient feature detectors can
be combined either by a weighted sum or multiplicatively (section 2.4). A weighting factor
w lets the user chose the relative contribution of color and normalized gradient magnitude
feature detectors. In the case of fluorescence data, one would use the same interface, but
with either Red or Green channel selected according to the fluorescent imaging agent used.
In our system, the blue channel is not acquired during fluorescence imaging since emission
band of most fluorophores lies in the green or red parts of the spectrum. Also, the gradient
magnitude feature detector, and the sigmoidal and power law OTF's are not available for
fluorescence data because of its sparse nature. Fig. 2D shows an enhanced volume rendering
for the user-defined ROI of the example mouse in Fig. 2C. In this case, we used the red
color feature detector and a sigmoidal OTF to visualize the kidneys and surrounding
vasculature. User settings for a given visualization “session” can be saved into a file on the
hard drive for later recall allowing one to optimize rendering for a given experiment and
recall it for the next tissue specimen in the experiment.

We chose to implement the visualization pipeline described above using the Amira TCL
scripting language, which is part of the software package and enables fast prototyping of
visualization workflows. We have also implemented a multi-resolution volume rendering
feature to enable the visualization of the extremely large (> 70 GB) cryo-image data sets.
For multi-resolution volume rendering, we are using “large disk data access,” a proprietary
data store from Amira which uses multiple disk files with a single reference file that holds
pointers to data, thereby enabling faster and easier access to specific regions in the volume.
Routines allow one to access rectangular solid sub-volumes with a voxel skip factor which
sets the resolution of the data to be read from disk. Multi-resolution access is quick,
especially considering the data size, allowing live time interaction. For example, the user
can identify a sub-region containing an organ or tissue of interest within a low-resolution
rendering of the entire volume. The sub-region can then be interrogated at a higher
resolution in the context of nearby low resolution data.

2.7 Evaluation of volume renderings
We briefly describe the method adopted for evaluating the quality of volume renderings
created by the different feature detectors and OTF's discussed earlier. Comparing one
volume visualization to an another one created using a different feature detector and OTF in
a rigorous way is not a straightforward proposition. DLW has many years of experience in
quantitative image quality evaluation on 2D and 2D+time images [20–23]. We considered
some quantitative image quality evaluations by human subjects using techniques such as
ROC, forced choice, double-stimulus continuous-quality scale, etc., but we felt that
anecdotal responses from expert users was more appropriate at this stage of development.
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After establishing our software, we obtained consensus anecdotal responses from three
expert users and results in the text are based upon their findings.

3. Results
The objective of our experiments was to visualize organs and tissues from the mouse
volume that are anatomically interesting with minimal user intervention. Since each organ
had unique color properties, different feature detectors were required to produce visually
appealing, optimal volume renderings of organs. Also, we tested feasibility of applying
stored visualization settings from one mouse volume to the next. Last, we present results
from handling very large data sets through the use of a multi-resolution visualization
scheme.

The most commonly occurring tissue color in our specimens is deep red (e.g., heart, liver,
kidneys, lungs, etc). First, we conducted experiments where we evaluated the feasibility of
the deep red detector, cR, for segmenting organs from a whole mouse volume. Results were
compared to our baseline true-color volume rendering of the whole mouse where opacity
was set to the inverse of grayscale value (Fig. 3A). A threshold of T = 0.6 when used along
with a threshold based OTF was found to adequate to highlight mainly lungs, liver, kidneys
and some surrounding vasculature, all of which are red (Fig. 3B). Using gradient detectors
(Fig. 3D) produced a volume rendering where internal details (especially in the lung and
kidneys, see orange and green arrows respectively) are more clearly visible as compared to
when color detectors are used (Fig. 3B).

In case of the brain and surrounding regions, along with the spinal cord, vascularization
imparts an overall "light red" or pinkish coloration. For highlighting such regions, the color
feature detector cLIGHTRED was found to be appropriate. Threshold based OTFs can result
in noisy renderings due to the abrupt change in opacity at the threshold value; a sigmoid
OTF with γ=50 and T = 0.55 was found to be more appropriate for highlighting brain, spinal
cord, eyeballs, and olfactory bulbs all of which had light red content (Fig. 3C). Further,
gradient enhancement was applied to the rendering in Fig. 3C using multiplicative
combination [see (21)] to produce the rendering in Fig. 3E. The lobes of the brain and spinal
cord (see orange and green arrows respectively) are more clearly highlighted as compared to
the rendering in Fig. 3C.

By cropping the volume, we can remove clutter and more clearly delineate organs, and some
examples follow. First, we note that abdominal tissue is a combination of both deep and pale
red. A slab from the abdominal region was used, and the cR and cLIGHTRED feature
detectors were both employed along with sigmoidal OTF with γ = 50 and T = 0.6. The two
volume renderings were fused to show the structure of one of the kidneys along with the
adrenal gland (Fig. 4A). The “slab” was moved to a slightly different location and cR only
was applied to visualize kidney and pancreas in great detail (Fig. 4B).

Similarly, the head has a combination of both deep red (vasculature) and light red (brain)
tissue. Starting from a whole mouse (Fig. 5A), a slab that includes the head and spinal cord
was chosen and the cR and cLIGHTRED feature detectors were employed along with a
sigmoidal OTF (γ = 50, T = 0.6) and fused to create a volume rendering (Fig. 5B) where the
brain, spinal cord, olfactory bulbs, and collecting veins along with surrounding vasculature
were highlighted. Last, we applied the cR feature detector in the abdominal region to obtain
a high quality volume rendering where the inferior vena cava and the hepatic venules were
clearly highlighted (Fig. 5C).

We next evaluated the use of gradients on opacity values, which enhances internal edges and
surfaces. We combined gradients multiplicatively with cLIGHTRED feature detector and a
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sigmoid OTF with γ = 50 [see (20)] on a slab chosen in a region that includes head and
spinal cord (Fig. 6). In the resulting volume rendering, the boundaries around brain, brain
stem, and spinal cord have been clearly enhanced. We next chose the same slab as above,
and employed a linear combination of data (0.8) and gradient (0.2) prior to OTF mapping
(Fig. 7). More anatomical details were seen with respect to homogeneous structures in brain,
spinal cord and surrounding tissues (Fig. 7A) and edges were less prominent. When these
weights were reversed, edges were highlighted better (Fig. 7B). When data and gradient
were combined after OTF mapping [see (20)] with same weights used in Fig. 7A, a
visualization was obtained where data and gradient features were both highlighted (Fig. 7C).

We then compared the sigmoidal OTF with the previously reported power-law OTF (Fig. 8).
We set out to enhance vasculature (i.e., deep red tissue) in the mouse volume. The red
feature detector (cR) with α-opacity assignment using sigmoidal OTF was quite successful
at enhancing these features (Fig. 8A). Although the same red feature detector (cR) was used,
renderings created from α-opacity assignment using power law OTF were less successful in
delineating vasculature (Fig. 8, B-C).

We created fused volume renderings of color anatomy and molecular fluorescence image
data. In Figure 9, a true-color brightfield volume, and a single-channel fluorescence volume
mapped to shades of green, have been fused to show GFP-labeled Lewis lung carcinoma
(LLC) cells which had homed to the adrenal gland of an adult mouse. We controlled relative
transparencies to reveal varying amounts of color brightfield and fluorescence through live
time user interaction, allowing one to easily visualize fluorescently labeled cells within an
anatomical context.

Our software allows one to store and recall default visualization parameters. We found that
with color brightfield data, one can use default parameters to visualize different data sets.
The robustness of this approach is illustrated. We applied settings from Fig. 3B (cR, OTF =
threshold, T = 0.6) to two other adult mouse volumes (Figs 10B and 10C). As a comparison,
Fig. 10A shows the settings of Fig. 3B applied to the original whole mouse volume. We
obtained very similar renderings, indicating that our approach was robust. We have repeated
this in many other instances and even applied uniform visualization parameters in a recent
study of over 20 mouse embryos. We have not yet determined a completely automated
method for visualizing a new, unknown data set. However, with a library of presets, an
experienced user can get close and then quickly adjust parameters to optimize a new
visualization.

Using an embryonic mouse dataset, we evaluated feature detectors where gradients were
computed directly from color vector data (Fig. 11). Apart from a baseline rendering (Fig.
11A), the CDGM and CDGDP as given by (14) and (16) respectively, were used for feature
detection along with sigmoidal OTF's. By operating on color vector data, these gradient
detectors (Fig. 11, B-C) better enhance boundaries between tissue types and changes in
tissue orientation, not previously possible with scalar gradients.

Our multi-resolution interface allows one to render the entire mouse on the screen at low
resolution, define a bounding box of interest, and create a new rendering of the sub-volume
at higher or even the highest available resolution. This process can be repeated to enable one
to view a mouse, an organ, a tissue, and finally single cells. In Figure 12, we illustrate this
multi-resolution capability by showing renderings from a single >70 GB adult mouse
volume at two different resolutions (skip factor of full volume = 8, skip factor for lung = 0,
i.e., full resolution). Zooming in to a new resolution requires disk drive access. The wait
time for rendering depends upon hardware and the time to render goes as follows: drive over
the internet > drive on the computer > solid state disk (SSD) on the computer. With an Intel
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X25E SSD, we were able to read and render a 256 × 256 × 256 sub-block of color data,
consisting of 64 MB, at a new resolution from the >70 GB mouse data set in about 90
seconds.

4. Discussion
Cryo-imaging provides a unique opportunity to employ microscopic resolution, true-color
bright field and co-registered fluorescence image data in order to visualize molecular
processes within an anatomical context. This enables us to study bio-distribution of stem
cells, malformations in specific organs and tissues, nanoparticle visible drug delivery,
imaging agents, gene expression profiles, etc. A key aspect of volume visualization is
transfer function design, and this has been a topic of significant research within the volume
visualization community in the past decade [6–9]. A high degree of user interactivity is
desirable in user interfaces for 3D data exploration [8]. Our UIECVR interface has been
designed with usability, interactivity, and flexibility in mind. Our main contribution is the
suite of carefully designed color and normalized gradient magnitude feature detectors that
enable us to quickly highlight tissues of interest in a given volume, save these settings, and
then quickly apply these settings to the next volumes. Our visualization software covers a
wide range of choices for feature detectors and OTFs, along with volume editing/cropping
and multi-resolution data access options. Our investigations have specifically revealed that
the sigmoidal OTF is most effective in producing volume renderings with smoothly
highlighted edges (Figs 3–7). Further, the parameter γ controlling the behavior of sigmoid
around the threshold value T is crucial, with a larger γ providing sharper delineation. Also,
normalized feature detectors have enabled us to define thresholds (T) in a uniform fashion
across different data sets (e.g., see Fig. 10). In general, applying feature enhancements on
thick slabs of data (~50–100 slices) has proved useful in terms of visualizing structures of
interest. 2D multiplanar reformatted slices overlaid on 3D renderings have helped the user
home to a region of interest more quickly and efficiently. Volume fusions generated using
our interface (e.g., Fig. 9) have been very useful in obtaining anatomical perspective while
simultaneously analyzing molecular markers anywhere in the specimen volume. One of our
major challenges is efficient handling of extremely large data sets. A tiled dual-modality
(color bright field and fluorescence) acquisition with an adult whole mouse using 4×5
microscope acquisitions and 40µm section thickness generates > 70 GB of color image data
and > 25 GB of fluorescence data, a prohibitively large size for volume rendering on a
machine with a conventional, single graphics processor. As a remedy to the extreme data
problem, we designed the multi-resolution volume rendering approach (Fig. 12). Multi
resolution greatly improves the visualization experience. For example, one can render a
mouse, an organ, a tissue, and then even single cells. We have found this very useful for
examining the biodistribution of implanted fluorescent stem cells. Multi-resolution volume
rendering enables one to explore large data sets without resorting to time-consuming manual
segmentation. There are some hardware considerations. Data access time can be greatly
reduced by employing modern Solid State Disk (SSD) hard drives, which generally have
higher data read and write speeds as compared to conventional hard drives. As for graphics
hardware, the larger the amount of graphics RAM, the smaller the decimation that needs to
be applied to produce high resolution renderings of sub-regions within the large data sets.

In conclusion, volumes of color data provide many opportunities for volume rendering not
found with gray scale data such as CT or MRI. We have exploited these opportunities to
create a platform for multi-resolution, volume visualization of extremely large color and
fluorescence image data sets, oftentimes using stored visualization parameters. The platform
allows us to quickly recognize anatomy and zoom into particular regions of interest. It has
already shown great utility in many of our cryo-imaging studies of mouse phenotyping, stem
cells and regenerative medicine, cancer, imaging agents, etc.
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Fig. 1.
Block diagram of color volume rendering pipeline for cryo-imaging data. Baseline feature
detection uses voxel grayscale value as feature combined with ramp OTF to obtain a
rendered alpha opacity value. Enhanced feature detection employs color and normalized
gradient magnitude feature detectors along with threshold, sigmoidal, and power law OTF's
detailed in sec 2.2 – 2.4 to obtain rendered opacity. The effects of data and gradients are
combined (combined detection strategy) using techniques detailed in sec 2.4. The rendered
alpha value along with original RGB channel values are provided as input to the Amira
volume renderer, which uses an emission and absorption model to render a 3D volume.
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Fig. 2.
A schematic block diagram of UIECVR illustrating 3D region-of-interest (ROI) selection
followed by feature enhancement. The user starts from a baseline volume rendering (A) and
launches the interactive ROI specification & cropping tool. A 3D ROI (green solid dots) is
selected (B) and the whole mouse cryo-image volume is cropped (C). Next, the preferred
color feature detection and OTF parameter settings are made to create an enhanced volume
rendering. In this example, we used the red feature detector and a sigmoidal OTF to
visualize the kidneys and surrounding vasculature (D).
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Fig. 3.
Enhanced true color volume rendering using color and normalized gradient magnitude based
opacities on whole mouse data. (A) The baseline volume rendering is obtained by setting
opacity equal to the inverse of grayscale value. (B) Volume rendering from thoracic and
abdominal region using simple threshold OTF after “deep red” detection (C) Volume
rendering from head and thoracic regions using sigmoidal OTF after “pale red” detection.
(D) and (E) show volume renderings obtained using the same feature detectors as in (B) and
(C) but with gradient enhancements. Compared to color detectors, gradient detectors enable
better visualization of internal structures of organs, e.g., lung (orange arrows in B and D),
kidney (green arrow in B and D), lobes of brain (orange arrows in C and E), and spinal cord
(green arrow in C and E).
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Fig. 4.
Full resolution volume rendering from an ROI highlighting kidney and surrounding regions.
(A) A single 2D slice showing kidney and adrenal gland which were highlighted by cR and
cLIGHTRED feature detectors along with a sigmodial OTF to create a volume rendering
(inset). (B) High resolution volume rendering within an ROI showing the pancreas along
with a cutaway view of the kidney in the adult mouse. In this case, cR feature detector was
employed and a sigmodial OTF was applied after feature detection.
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Fig. 5.
High resolution volume rendering using data feature detectors. (A) Low resolution whole
mouse volume rendering showing ROI's selected for enhancement (boxes), following which
feature detection was performed on high resolution mouse data from the selected ROI's. (B)
The cR (deep red) and cLIGHTRED (pale red) feature detectors were both applied along
with a sigmodial OTF in a region that included brain and spinal cord. In the resulting
rendering, one can clearly see olfactory bulbs, spinal cord, collecting veins, and other
vasculature. (C) Abdominal vasculature including hepatic venules, heart and vena cava. The
cR (deep red) feature detector, was employed along with a sigmodial OTF, and no
decimation.
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Fig. 6.
A gradient-enhanced volume visualization from a slab chosen from a region that includes
the head and spinal cord in adult mouse clearly highlights in the brain the left and right
cerebral hemispheres as well as the lobes, the spinal cord, the eyeballs, and olfactory bulbs.
The gradients were combined multiplicatively with data attributes as per (21).
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Fig. 7.
Comparison of adult mouse volume renderings obtained from linear combination of data and
gradient effects, both prior to and after OTF mapping. (A) A slab in a region that included
the head and spinal cord was chosen and a linear weighting of 0.8fc, BRAIN + 0.2fg,GRAY was
applied prior to assigning opacities using a sigmoidal OTF with γ=50. The hemispheres and
lobes of the brain, spinal cord, and eyeballs were clearly highlighted in the resulting
rendering. (B) The weights for data and gradient were reversed (0.2fc, BRAIN + 0.8fg,GRAY)
resulting in a higher contribution of gradients towards rendered opacity. As a result, the
fissure dividing the two cerebral hemispheres is more clearly visible. (C) An interesting
variation included mixing data and gradient effects by α-opacity assignment after OTF
mapping as in (20), i.e., employing a linear combination of two OTFs - one for fc,BRAIN and
the other for fg,GRAY with weights of 0.8 and 0.2 (respectively).
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Fig. 8.
Visualization of vasculature using red feature detection and different OTF's. (A) Our red
feature detection step followed by α-opacity assignment using sigmoidal OTF targets only
specific features (deep red tissue) for enhancement. (B) Red feature detection followed by a
power law OTF with k = 1 and γ=2) does not provide clear delineation between different
tissue types due to its non-saturating nature. (C) Tissue delineation can be somewhat
improved by reducing γ (e.g., k=1, γ = 0.5 was used), although this rendering still does not
delineate vasculature as clearly as the OTF in A above.
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Fig. 9.
Fusion of anatomical color and molecular fluorescence image showing homing of GFP-
labeled cancer cells to adrenal gland in a model of cancer metastasis. (A) baseline true-color
rendering. (B) enhanced rendering using CDGM feature detector. (C) surface rendering of
LLC cancer cells segmented from fluorescence data using region growing. (D) fusion of
brightfield and fluorescence renderings. (E, F) Visualization effects created by changing
relative opacities during fusion.
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Fig. 10.
Enhanced true color volume rendering of three different adult mouse volumes using
identical settings for feature detector and OTF. (A) The rendering of Fig. 3B obtained with
our default test data set is repeated. It uses the red feature detector, threshold OTF, and T =
0.6. (B, C) Stored settings from the visualization session for (A) were applied to two other
adult mouse volumes and resulted in very similar renderings, demonstrating the robustness
of our approach.
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Fig. 11.
True-color volume renderings from E13.5 embryonic mouse data set using gradients
computed directly from color vector data. (A) Baseline rendering created using the inverse
of grayscale value. (B) fg = CDGM in the L*u*v* color space [(13) and (14)] was used for
feature detection. Boundaries between internal organs are more clearly visible. (C) fg =
CDGDP was used [see (16)]. This clearly shows local texture within sub-regions in volume
and finer details such as the boundary between liver and surround, the umbilical cord, etc.,
not possible with (B) alone.
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Fig. 12.
Multi-resolution data access from color cryo-imaging data of the adult mouse. A low
resolution volume rendering of the whole mouse is initially produced. The user then
specifies a smaller sub-volume of interest (bounding box with blue markers), which in this
example is the left lung. A full resolution rendering is created within this region, co-
registered and fused with original volume.
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