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Abstract
Establishing the correspondences of brain anatomy with function is important for understanding
neuroimaging data. Regional delineations on morphological surfaces define anatomical landmarks
and help to visualize and interpret both functional data and morphological measures mapped onto
the cortical surface. We present an efficient algorithm that accurately delineates the morphological
surface of the cerebral cortex in real time during generation of the surface using information from
parcellated 3D data. With this accurate region delineation, we then develop methods for boundary-
preserved simplification and smoothing, as well as procedures for the automated correction of
small, misclassified regions to improve the quality of the delineated surface. We demonstrate that
our delineation algorithm, together with a new method for double-snapshot visualization of
cortical regions, can be used to establish a clear correspondence between brain anatomy and
mapped quantities, such as morphological measures, across groups of subjects.
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1. INTRODUCTION
The primary goals of human brain mapping are to integrate brain anatomy with measures of
brain function and behavior and to establish correspondences between them. Sulci and gyri
on the surface of the cerebrum, for example, are anatomical landmarks that help to define
the locations of major functional areas. Labeling and, ultimately, parcellation of geometric
features of the cortical surface is thus important for analyzing and visualizing both
functional and structural neuroimaging data. Mapping of functional activations or
morphological measures onto parcellated cerebral cortex across ages, for example, can
improve understanding of brain development.

Individual variability in the folding patterns of each individual cortex makes the automated
identification and labeling of cortical structures challenging. Various techniques have been
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developed to address this difficulty, especially the automated delineation of sulci. They can
be categorized broadly as either a surface-based [1–8], graph-based [9,10], or volumetric-
region-based approach [11]. One algorithm, for example, warps a pre-labeled brain atlas
onto the surface model of each participant's brain to establish the correspondences between
them that permit labeling of each voxel as a particular tissue class and a specific region of
interest (ROI) [2]. Another algorithm models the sulci as vertices and the relation between
sulci as arcs, and then assigns labels to the identified sulci using a manually generated
training set [10]. Still another applies a watershed algorithm on the cortical surface and then
manually labels identified sulci [5].

The automatic labeling of tissues and parcellation of the brain, however, requires
quantitative knowledge of the geometric variation in brain anatomy, as well as its critical
functional interfaces. A manual parcellation of the cortex by an experienced neuroanatomist
can take advantage of much additional information, such as cytoarchitectonic labeling
properties and knowledge of structure-function relationships. The inclusion of such prior
information is critically important for the success of any algorithm for cortical parcellation
[6].

Anatomical correspondence is especially important at functional interfaces and
cytoarchitectonic boundaries [1,12]. A parcellated cortical surface that has a clear
delineation of regional boundaries can be used for mapping onto the cortex and regionally
delineating functional imaging data and measures for morphological differences, thus
revealing the correspondences and spatial relationships between brain structure and function.
The general approaches to this problem, however, focus on the parcellation itself, rather than
on generating and manipulating the boundaries of the regional delineation of the cortical
surface that the parcellation produces. These approaches generally aim to associate a label to
each surface element (e.g. a triangle or quadruple) on an existing surface without adjusting
the surface geometry. The region delineations thus generated, though satisfactory for many
purposes, can be imprecise because the assumption may not always be true that the actual
regional boundary coincides with the existing discrete surface geometry. Moreover, these
approaches make difficult the control of precision for further processing of the delineated
surface, such as smoothing of a regional boundary and surface simplification.

We propose an efficient algorithm for the delineation of cortical surfaces using manually
parcellation volumes generated previously by experienced neuroanatomists. Our program
takes as input two 3D volumetric data -- one that is a scanned intensity volume, and the
other that is a parcellated categorical volume coinciding spatially with the first and that
encodes all the expert knowledge of the parcellation. Our algorithm integrates surface
delineation with surface generation and guarantees precise coincidence of regional
boundaries with surface geometry. We extend the marching-cubes algorithm [13] and
generate the cortical surface while simultaneously delineating cortical regions by adaptively
subdividing surface triangles that are located on regional boundaries. We then develop
various automatic algorithms for surface processing, such as boundary-preserved surface
simplification and smoothing of regional boundaries under user-specified error estimates. In
addition, we design a new visualization algorithm that displays regional boundaries clearly,
even when portions of the curves that define the region are buried inside sulci and are not
visible from a particular viewing perspective.

2. METHODS
Parcellation of a surface requires the accurate partitioning of that surface into disjoint
regions according to the anatomical or functional sub-structures that each of the regions
represents, and with computationally efficient visualization of the regions that are thus
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generated. A surface is normally represented graphically as a mesh of triangles. Region
delineation thus partitions the triangular mesh into a set of disjoint sub-meshes. This
partition then can be visualized by assigning different colors to different sub-meshes or by
superimposing onto the mesh curves that mark the boundaries between regions.

2.1 Partition of a Surface into Regions
A surface is defined in a 3D volumetric data space V by specifying the conditions that points
on the surface must satisfy. For example, the cortical surface of a brain can be generated
from the iso-value contour of gray matter that has been defined on an MR image. The
surface thus generated is called the iso-surface.

Let V be a continuous 3D space, S(a) be an iso-surface having the iso-value a, x be a point
in V, and the volumetric data defined continuously over V be intensity I(V), then S(a) is the
collection of points that have the intensity value a:

An intensity volume such as I(V) is usually defined by a set of continuous values that have
not been classified previously into different sub-volumes or subregions. This classification
can be performed using a wide range of procedures, such as the manual or automatic,
mathematically based segmentation of I(V). Let C(V) be another volumetric data space
defined in the same space V that partitions V categorically into the collection of disjoint sub-
spaces V1, V2, … Vn, such that the points in each sub-space Vi have the same categorical
value Ci. The delineation of a surface S(a) according to C(V) maps each point x on the
surface to a categorical value Ci. This process defines the segmentation of V.

The assignment of categorical values to a surface is straightforward if volumetric data I(V)
and C(V), as well as the surface S, are continuous. One needs only to determine in which
sub-space Vi each point x on S belongs. If either one or both of I(V) (and thus C(V)) and S
are discretely sampled, however, and if they produce a discontinuity of the sampled points
on S with the sampled points on V, then the mapping of Ci to x will not be obvious and will
need to be more precisely defined. Here we assume that the set of values of I(V) and C(V)
are given at the same discrete locations in the space where they overlap. This is the case
when C(V) is the segmented version of I(V), which is the consequence of manual or
automatic segmentation approaches. If C(V) is generated by a different procedure than is
I(V), however, as when C(V) is defined by cytoarchitectonic maps of one subject and I(V) is
defined on a T1-weighted MR image, then these two volumes must be coregistered into the
same space, where they will be discontinuous with one another. The points in the region
where these volumes overlap must be sampled before a segmented surface S(a) of I(V) can
be delineated by C(V).

2.1.1 Extension of the Marching-Cubes Algorithm—To delineate a surface S(a) that
is represented as a collection of triangles, we must map each triangle within S(a) to a
categorical region Ci. Assigning categorical regions to a triangle's three vertices is relatively
easy if we map those vertices to the categorical label of the nearest voxel, as defined by
volume C(V). A triangle T, however, can have vertices that belong to differing categories --
i.e., that have differing values of Ci. In that instance, the segmentation of T cannot be
determined from this simple mapping. Moreover, even if all three vertices of T do belong to
a single category, a portion of T still could belong to another category.

A voxel in a discretely sampled space represents a unit volume of that space. The shape of
this unit volume depends on the method used to sample the space. With a homogeneous
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orthogonal sampling, the space is divided evenly into unit cubic volumes. We assign
sampled values at each unit volume to its center and call it a voxel. Thus a voxel of C(V)
having a categorical label Ci represents a unit volume of space (Figure 1a) that belongs to
subspace Vi, and all voxels of C(V) together impose upon the space a discrete partition. To
identify the category to which a triangle belongs, one needs only to query the voxels of C(V)
that enclose the triangle. If the triangle is fully enclosed by one or more voxels having the
same value Ci, the triangle simply is assigned this single categorical label Ci. If a portion of
the triangle crosses voxels of differing Ci (Figure 1b), however, then we cannot assign its
category unambiguously, and so we will need to subdivide this triangle into smaller ones
until each of them lies entirely in a single subspace.

Marching-cubes is a popular algorithm used to generate an iso-surface S(a) from a
rectangular sampled volume I(V), in which each sampled point is called a voxel. The
algorithm is computationally efficient, employing a divide-and-conquer approach in treating
separately each unit rectangular cube that composes the volume and that is defined by eight
neighboring voxels positioned at its corners. The algorithm assesses whether the sampled
value in each cube matches the iso-value of the surface to determine whether the cube
intersects the iso-surface. The algorithm has an efficient linear O(N) complexity, where N is
the number of voxels in the data volume. One advantage of using the marching-cubes
algorithm for delineation of a surface is that each triangle is guaranteed to lie in the cubic
space enclosed by the eight voxels at the corners of the cube (Figure 1b). Thus, we need
only to identify the labels Ci at these eight voxels to determine the label at the triangle. For
surfaces generated using other algorithms, even though our method remains applicable,
more voxels may need to be assessed, the consequence being a longer computational time.

The eight voxels at the corners of the unit cubic volume of the marching-cubes algorithm
inherently divides the cubic volume into eight subregions, each of which belongs to the
corresponding voxel (Figure 2). The division occurs at the boundaries of the unit volume
that is represented by these voxels, which are three orthogonal planes positioned midway
between the voxels, dividing the space into eight equally sized portions. If the labels differ
across these eight voxels, then these three planes can be used to subdivide a triangle into
several smaller triangles, each belonging to a single voxel and thus being assigned a single
segmentation label.

We extend the marching-cubes algorithm by incorporating surface delineation through
dynamically labeled triangles. Our extension and other contributions in this report can be
briefly summarized as follows:

(1) Dynamic assignment of labels to surface triangles using triangular subdivisions,
if required, during surface generation

(2) Simplification of the surface thus generated so as to reduce the number of
triangles while preserving a valid regional interface

(3) Smoothing of the regional interface using B-spline curves under user-controlled
error thresholding and smoothing

(4) Redistributing vertices during the smoothing of the regional interface

In addition, we develop a double-snapshot algorithm for visualizing the labeled surfaces
with other information superimposed. Our algorithm is implemented in C++, and
visualization is realized using OpenGL.

An iso-value triangle generated from a unit cubic volume in I(V) is used to identify the label
Ci for each of the eight voxels that define the corresponding cubic space in C(V). As noted
above, if all eight voxels belong to the same category, we need no further processing and
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simply assign this categorical value to the triangle. If, on the other hand, these labels are not
all the same, then the triangle is on the regional boundary and must be subdivided. We
subdivide a triangle on a boundary by identifying how it intersects the three planes that
equally divide the unit cubic volume enclosing the triangle. Each possible intersection splits
the triangle into one or more smaller triangles (Figure 3). Then we assign the corresponding
labels at the eight voxels to the subdivided triangles.

A non-boundary triangle may need to be re-tessellated if it lies adjacent to one or more
boundary triangles that have been subdivided (Figure 4). The re-tessellation of these non-
boundary triangles depends on how many edges they share with boundary triangles and how
those shared edges are subdivided.

Our adaptation of the marching-cubes algorithm uses the same divide-and-conquer approach
as the original algorithm. It therefore has a similar linear O(N) complexity in terms of the
number of voxels, adding only a constant factor to that efficiency associated with
subdividing boundary triangles and re-tessellating triangles that are adjacent to subdivided
boundary triangles. As an algorithm that needs to scan all its input to determine which
operation to perform on its input will require a running time no better than a linear function
of N, as each input has to be at least read once. Our algorithm has a worst-case running time
that is a linear function of its input size (the number of voxels), thus is computationally
efficient, and requires no more than a few seconds of CPU time. The memory requirements
of our adapted algorithm, however, are higher than those of the original. Additional memory
is needed for the load-in of the volume data C(V), whereas the original algorithm requires
the loading of I(V) alone.

2.1.2 Simplification of the Boundary-Preserved Surface—The surface generated by
our adapted marching-cubes algorithm will have many new vertices and new triangles
compared with the surface generated by the original marching-cubes algorithm. The
increased number of triangles slows the speed of surface rendering, which may be
undesirable for applications that require user interaction in real time. To improve
interactivity of the algorithm during display, we must reduce the overall number of vertices,
and thus also the number of representational triangles, to the number present if no regional
subdivisions were required. It is preferable if this number can be reduced further without
sacrificing the quality of visualization.

Simplification of the graphical representation of a surface has been studied extensively by
researchers in interactive graphics [14]. Surfaces are generally simplified by reducing the
number of representational triangles, which requires reducing the number of vertices using
methods such as edge collapse (Figure 5). The number of triangles is reduced while
preserving the quality of surface display according to criteria such as the retention of overall
shape and curvature of the surface. An additional important criterion for our purposes is to
preserve the regional boundaries that were generated from the adapted marching-cubes
algorithm.

Our algorithm for surface simplification is based on edge collapse using quadric error
metrics (QEM) [15]. QEM compute the area-weighted sum of squared distances of a new
vertex position to a set of planes neighboring the edge that is collapsed. Simplification of an
algorithm using QEM can produce high quality approximations while retaining the overall
shape and curvature of the original surface, as the quadric error relates directly to surface
curvature [16].

To preserve the regional boundaries, we enforce the following two rules during the
simplification process:
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(1) Only non-boundary vertices can be merged into a boundary vertex, but not vice
versa.

(2) A boundary vertex P may be merged into another boundary vertex, provided that
the merge will not change the local shape of the regional boundary involving P.
As an example, if Pa, Pb, and Pc are three consecutive vertices on a boundary
that separates two regions, and if they are collinear, then vertex Pb can be
merged into either vertex Pa or Pc.

One can easily see that rule (1) does not change boundary vertices at all, whereas rule (2)
removes boundary vertices without affecting the shape of the boundary. In this way we
maintain a high resolution mesh around the regional boundary while lowering resolution of
the mesh in regions where the quality of visualization is affected little by the simplification.

2.1.3 Perturbation of the Vertex Location for the Smoothing of Regional
Boundaries—A regional boundary is a curve that separates regions belonging to differing
segmentation categories. This boundary will be a smooth curve if the surface is continuous.
For discrete surface that are represented as a collection of triangles, however, a regional
boundary is defined as a series of line segments, each of which is an edge shared by two
triangles belonging to differing segmentation categories. The regional boundaries thus
defined are usually zigzag in contour rather than smooth (Figure 6), a direct consequence of
the discrete sampling of C(V). We can improve the smoothness of these regional boundaries,
however, through a perturbation of the locations of vertices on the boundary that is based on
the overall curvature of the line segments that compose the boundary. With the accurate
region boundaries defined in section 2.1.1, our smoothing algorithm can provide a user
complete and precise control over the smoothed curves.

The smoothing procedure consists of two steps. First, we construct a smooth, curvilinear
approximation of the boundary to be smoothed. Second, we locally perturb the vertices of
the boundary and then move them toward this approximation curve.

We have elected to use one kind of cubic polynomial—a uniform, non-rational B-spline
[17], to approximate the boundary curve. Cubic polynomial representations of curves offer
tangent continuity (i.e., curves at the joint point share the same tangents, or identical first
parametric derivatives) and flexibility in controlling the shape of the representation. In
addition to tangent continuity, B-splines provide continuity of curvature (i.e., identical
second parametric derivatives) at the joint point and thus are inherently smoother than
general cubic polynomial curves.

Another important property of B-splines is the local control that they provide, in that B-
splines are curvilinear segments whose polynomial coefficients depend on just a few local
control points, so that moving a control point affects only a small portion of the curve. This
local control property greatly reduces the time required to compute the polynomial
coefficients. More importantly, this local control provides better constraints on the error
induced during smoothing of the curve. Because each segment of a B-spline curve is
governed by four control points, their blending functions sum to one and are everywhere
nonnegative; thus the curve segment is constrained to the convex hull of its four control
points.

Following the construction of B-spline curves using the vertices on the boundary as control
points, we then perturb the location of each vertex on the boundary toward this curve by
moving each vertex onto the curve (Figure 7a&b). With the local control property, we need
only test against the curve segments that have this vertex as a control point for moving a
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particular vertex, and then we ensure that this movement will not flip the orientation of any
triangles thus involved, so that local topology will not be altered.

We estimate the smoothness of a curve using the turning angles at vertices along the curve
(i.e., the angle formed between the left and right tangent lines). The turning angle will equal
zero for a continuous curve with tangent continuity, as these two lines will always coincide.
For a discrete curve consisting of line segments, the left tangent line is approximated by the
line that connects the vertex to the vertex's predecessor along the boundary curve, and the
right tangent line is approximated by the line connecting the vertex to its successor (Figure
8). The angle will then be nonzero, and its value will indicate the local smoothness of the
boundary curve at the measured vertex.

Multiple iterations of the B-spline smoothing algorithm provide progressively improved
smoothing of regional boundary curves. Nevertheless, the overall smoothness of a boundary
curve might still be less than ideal at locations where the curve takes sharp turns, regardless
of the number of iterations of the algorithm, because the desirable movement of vertices at
these locations for ideal smoothing might flip the orientation of neighboring triangles
(Figure 9).

One solution to this flipping difficulty is to adjust the position of neighboring vertices of a
boundary vertex during the smoothing process. For example, one can treat each vertex as a
positive point charge. The movement of a boundary vertex will then produce newly
unbalanced repulsion forces among neighboring vertices and produce a redistribution of
their positions. This redistribution creates room for further movement of the boundary vertex
during the next iteration of smoothing. The redistribution, however, is also constrained in
that it will not change the position of a boundary vertex -- i.e., movement of a boundary
curve will redistribute its neighboring non-boundary vertices, but not the vertices on the
curve itself, nor vertices on other boundary curves. Thus the redistribution is a local property
of our algorithm. Our implementation of redistribution in this report has adopted a Laplacian
operator [18], which will redistribute an affected vertex to the barycentric position of all its
neighboring vertices.

To enable complete and precise control over the smoothing procedure, we assess at each
iteration of the perturbation the distance of the perturbed vertex to the vertex's nearest
regional boundary plane, as defined in section 2.1.1. Our algorithm stops perturbing a vertex
when the error induced at the vertex approaches a user-defined, preset threshold. The preset
threshold is determined by the precision required by each particular application and usually
governed by the sizes of interesting areas or regions. Our program takes the size of half
voxel as the default threshold if no value is provided by the user. This default threshold
guarantees that the boundary curve lies between voxels belonging to different categories,
instead of cutting space of voxels belonging to the same category.

The total number of iterations for smoothing is thus determined by the balance between the
smoothness of the boundary (in terms of its average turning angle) and the increase in error
that is induced by the perturbation of the positions of the boundary vertex. Both of these
criteria are pre-established by the user. For example, in our first sample of smoothing of the
cortical surface shown in Section 3, we stipulated the maximum error to be less than 0.5mm
(half the width of a voxel) and the desired smoothness to be 15 degrees (approximately 0.27
radians). These pre-established thresholds yielded a termination of the smoothing algorithm
after 50 iterations.

The final output of our algorithm for representing a surface parcellation thus consists of a
mesh of triangles on that surface, each of which is assigned a unique segmentation label,
with smooth regional boundaries represented by lists of edges.
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2.1.4 Automated Correction of Small, Misclassified Regions—Human error in the
manual parcellation of a brain is unavoidable. The brain is a highly complicated structure,
and the signal-to-noise ratios of imaging data are usually not ideal. To make the parcellation
task even more error-prone, the 3D viewing angle provided by interactive editing tools to
neuroanatomists for manual parcellation is usually limited to only a few directions. Errors in
parcellation produce a misclassification of small regions on the parcellated surface that
range from several to tens of voxels in size.

We have included in our algorithm an automatic procedure to correct these small
misclassified surface areas. From the constructed curves of regional boundaries, we identify
those curves that are self-closed. The curve lengths are then compared against a pre-
established threshold, below which the curve-enclosed area is labeled as misclassified and
its categorical value is changed to the same value as the area outside of the curve. This
threshold must be designated on an ad hoc basis by a knowledgeable user. For example, in
the thalamic surface shown in Section 3, a threshold of 10mm was used to remove small,
misclassified regions, assuming that no functional sub-regions have sizes smaller than 3mm
in diameter. Another decision of a user is the number of delineated regions to require. The
algorithm will rank the regions according to their surface area and remove the excessive
number of small, self-looped regions with ranks below the user-defined number.

2.2 Visualizing the Parcellated Surface
To visualize the final parcellation, different colors can be assigned to regions defined by
differing segmentation labels (Figure 15). The colored surface thus represented will have a
clear delineation of the parcellation units [6] if the colors between each pair of neighboring
regions have discernable contrast. This method is simple and effective if displaying only the
final parcellation. When used together with the display of other measures on the
morphological surface, however, as when representing functional activations or other
statistical parameters using color encoding, this colored regional display will likely confuse
the visual interpretation of those measures. In this case, an alternative is needed to display
the parcellated surface. One option is to display the regional boundaries using a color that is
located outside of the color gamut used for display of the statistical parameters and that also
contrasts well with the representation of the background surface.

The explicit display of the regional boundaries can create another problem, however. A
boundary curve usually is not visible in its entirety, even though the two regions that it
delineates are clearly visible, because a portion of the boundary curve might in some 3D
viewing perspectives be located behind one of the regions that it delineates. This is
especially true for boundary curves on the cortical surface that are located deep within sulci.
Surface flattening provides one solution to this problem of boundary visualization [19].
Flattening procedures, however, are computationally complex, and interpretation of the
flattened surfaces is non-intuitive. An alternative solution for surfaces that have not been
flattened is sometimes desirable.

We have developed a double-snapshot display algorithm that combines the advantages of a
colored display of surface regions with the display of boundary curves to represent
parcellation units. A colored regional display uses different colors to provide an implicit
definition of boundary curves. We make this boundary explicit by tracing the implicit
boundary curves and superimposing them onto a uniformly colored surface to provide a
complete delineation of the parcellated surface. The algorithm works as follows:

For every possible viewing perspective,
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(1) Generate a 2D snapshot of the surface in which each triangle is displayed with a
uniform intensity that is proportional to its label value. No lighting is yet applied to
the surface representation.

(2) Obtain the explicit boundary curves from the 2D snapshot by tracing out the
individual segments of the implicit curve that delineates two adjacent regions
having different intensity values.

(3) Generate another lighted 2D snapshot of the surface in which the other quantitative
measures (in our example, statistical parameters) are mapped onto the surface as
colored regions.

(4) Superimpose the boundary curves from step (2) onto the snapshot from step (3),
replacing the values of pixels on the boundary with a new, pre-selected color value
to mark the boundary.

(5) Display the superimposed snapshots from step (4).

Display of the parcellated surface using this double-snapshot algorithm requires
approximately twice the computational time as a conventional display, as the same surface is
displayed twice, in steps (1) and (3). Steps (2) and (4), however, require very little
computational time.

2.3 Performance on a Simulated Dataset
Application of our algorithm to a simulated dataset provides a known ground truth to
evaluate its performance and to justify the choice of its operational parameters, such as the
number of smoothing iterations to employ. Moreover, we sample the simulated dataset at
various resolutions and investigate the effects of partial volume averaging on the
performance of our algorithm.

We generate an ellipsoid of size comparable to a human brain:

where the surface is defined by the equal sign of the equation. The portion of the ellipsoid
inside a half cone is classified as region one and the portion that is outside of the cone is
classified as region two. The cone is given by:

The boundary curve on the ellipsoid surface separates region one and region two. Essentially
it is the intersection of the ellipsoid surface with the cone surface (Figure 10). Its curvature
varies continuously from 7.13m−1 to 47.30m−1.

Volume I(V) is generated at resolutions of 1, 2, 3, 4, 6, and 8mm, respectively. Each voxel
of the volume is assigned an intensity value that measures the distance from the ellipsoid
surface, with a value of zero defining the surface of the ellipsoid. The classification volume
C(V), generated at the same resolution as I(V), coincides with I(V). A voxel of C(V) inside
the ellipsoid (with an intensity value less than or equal to zero) is assigned a classification
value based on whether or not more than half of the volume of the voxel is inside the cone.
Voxels of C(V) outside of the ellipsoid are assigned a classification value of zero.
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Given I(V) and C(V) as inputs, our algorithm generates the surface of a regionally delineated
ellipsoid. We measure for each point on our generated regional boundary the distance to the
true regional boundary as defined by the intersection of the surfaces of the ellipsoid and
cone. We then evaluate the performance of our algorithm under differing values of its
operational parameters.

3. RESULTS AND DISCUSSION
Computer Simulations

For volumes at a resolution of 1mm, performance of our algorithm that redistributed
neighboring vertices during smoothing iterations, compared with performance of our
algorithm without redistribution, was superior on all categories tested: average distance of
smoothed boundary to the true boundary, average turning angle, maximum distance of the
smoothed boundary to the true boundary, maximum turning angle (Figure 11). With an
increasing number of smoothing iterations, the average turning angle and average distance
of the smoothed boundary to the true boundary decreased monotonically. Moreover, the
boundaries that were generated using a redistribution of neighboring vertices during
smoothing converged to lower values than did the boundaries generated without
redistribution (average turning angles of 0.018 vs. 0.055 radians, and an average distance of
the smoothed boundary from the true boundary of 0.092mm vs. 0.107mm, respectively). The
maximum distance of the smoothed boundary from the true boundary generated using the
redistribution approach decreased as iterations increased, up to a value of approximately 50
iterations, and thereafter remained constant. Both the maximum turning angle and the
maximum distance from the true boundary generated without redistribution of voxels
decreased for the first few iterations and thereafter remained constant. As noted earlier, ideal
smoothing cannot be achieved at some sharp turning points without flipping the orientation
of their neighboring triangles, unless neighboring vertices are redistributed. Thus these
simulation findings suggest that the redistribution schema is useful for smoothing curve
segments that take sharp turns and that an iteration count of approximately 50 provides
optimal performance.

We also note that the simulation suggests that performance of our algorithm does not depend
on the boundary's curvature (Figure 12).

Based on our findings using the simulated dataset at a resolution of 1mm, we assessed the
performance of our algorithm on simulated datasets at varying spatial resolutions using the
redistribution of neighboring voxels during smoothing of the boundaries and an iteration
count of 50 (Figure 13 and Table 1). Both the average and maximum distances of the
smoothed boundary from the true boundary increased nearly linearly with decreasing
resolution, as expected. However, the distances at a resolution of 4mm approximated those
generated using the original marching-cubes algorithm at a resolution of 1mm. Moreover,
both the average and maximum turning angle generated by our algorithm at a resolution of
8mm are much smoother than the boundaries generated by the original marching cube at a
1mm resolution (Figure 14 and Table 1). One unexpected finding is that the maximum
turning angle decreased as resolution increased from 1 to 8mm (Figure 13b). This finding
can be visualized by noting that with increasing voxel size, the surface has fewer vertices
and each of those vertices has more unoccupied adjacent space to adjust their positioning
during boundary smoothing. Similarly, the misclassified surface area generated by our
algorithm at a resolution of 4mm approximated those generated using the original marching-
cubes algorithm at a resolution of 1mm (Table 1).
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Real-World MRI Datasets
We next show the output of our algorithm on a single subject template brain with its
associated demarcated parcellation labels from the International Consortium for Brain
Mapping (ICBM) [20]. This template is the average of 27 high resolution, T1-weighted MRI
acquisitions from a single subject, aligned within the stereotaxic space of the ICBM average
template. The 3D parcellation of cortical gyri, subcortical nuclei, and cerebellum was
defined manually by an expert neuroanatomist.

Approximately 611,000 triangles were needed to completely represent the cortical surface
using the original marching-cubes algorithm, with roughly 1/5 of those triangles (i.e.,
135,466) located at regional boundaries. In contrast, approximately 1,440,376 triangles were
required using our adapted marching-cubes approach that subdivides triangles along
regional boundaries, a 140% increase over the number required using the original algorithm.
We then applied our algorithm for the boundary-preserved simplification of the newly
generated mesh, and a standard simplification algorithm to the original mesh, so that the
both meshes had equal number of triangles following application of the algorithms, which
was approximately half of the count from the original marching-cubes algorithm. In
addition, we applied the B-spline smoothing of the regional boundary curves and corrected
small misclassified regions. Less than one minute was required to generate, delineate,
simplify, and smooth the parcellated surface when running on an Intel Xeon 3.0GHz PC
with 2GB RAM.

The regional delineation using our algorithm is clearly more accurate than are approaches
that simply assign labels to a previously generated surface mesh without an adaptive
subdivision of that mesh (Figure 15). The report on average turning angle over all boundary
vertices, as well as the maximum and average distance over all boundary vertices to their
nearest region boundary plane as defined in section 2.1.1 confirms the advantage of our
algorithm (Table 2). The average turning angle is reduced from 1.636 radians to 0.908
radians using our accurate region delineation method, and further down to 0.271 radians
after smoothing. It represents a factor of six improvements. In addition, both the maximum
and average distances are improved by a factor of approximately two.

Moreover, our double-snapshot algorithm achieved a clear display of the improved regional
parcellations. Regional boundary curves generated by the first snapshot (Figure 16a) clearly
demarcate the parcellation units (Figure 16b&c). The transfer of the boundary curves back
to the second lighted snapshot (Figure 16d) gives a final clear visualization of the
parcellation units (Figure 16e), contrasts well with the results generated by a regular
visualization method (Figure 16f).

Our algorithm achieved similar improvements on right thalamus (Figure 17). Thalamus
surface was delineated using volumetric parcellated histological maps [21]. As before, the
average turning angle is largely reduced (a factor of 12), accompanied by the decrease in the
maximum, as well as the average distance deviated from the actual boundaries (Table 3).

We applied our complete algorithm for region delineation and visualization to the display of
results from a previous morphological study [22]. At each point on the cerebral surface, the
statistical significance (probability values) of differences in cortical thickness across groups
(high vs. low risk in major depressive disorder) in participants from 2nd and 3rd generations
are color coded and displayed with and without overlay of the delineation of regional
boundaries (Figure 18). The statistical models accounted for the degree of familial
relatedness, as well as for the age and sex, of all participants. The p-values were thresholded
at p<0.05 after correction for multiple comparisons using the theory of Gaussian Random
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Fields on a two-dimensional manifold [23]. The images that display the regional delineation
provide exquisite anatomical localization of group differences.

We have presented results for the delineation and visualization of parcellation units on the
cortical surface and thalamus surface. Our algorithm, however, can be applied to the
representation of a parcellation scheme on any surface, as long as that parcellation has been
previously defined. Our algorithm can also be applied to the representation of surfaces
generated by means other than the marching-cubes algorithm, as our algorithms for region
definition and visualization are independent of the particular methods for graphical
representation that is used to generate the surface display.

Our delineation algorithm, however, requires that a 3D volume parcellation is previously
defined over the same space where the surface is to be generated. If the parcellation exists in
another space, then it has to be transformed into the space of surface definition and
transformation errors might be induced and degrade the accuracy of the delineation results.

Our paper assumes an accurate parcellation of the volumetric space where the surface is
generated. The assumption could be a limitation of our algorithm. In addition to the
deterministic atlases our algorithm is designed for, there exist probabilistic atlases that
assign each voxel some probability values to specify the chances of the voxel belonging to
each category. For such data, the optimum separation of regions will not be at the middle
plane separating voxels. Moreover, the optimum separation will not even be a plane at all.
To extend our algorithm for these atlases, a curved surface cutting schema will be required
at the surface generation stage. Moreover, to accurately estimate the error will be more
difficult during the simplification and smoothing stages as a collinearity of points along the
boundary curve is no longer a quality guarantee. We plan to explore the problem in the
future. In addition, different expert neuroanatomists might parcellate data slightly different
and render the surface regions thus defined not identical. We would also like to investigate
the reproducibility of surface delineation limited by the volumetric-parcellation
reproducibility in the future.

4. CONCLUSION
We have presented an algorithm for the improved delineation of parcellation units on a 3D
morphological surface. Our algorithm is both accurate and computationally efficient.
Moreover, our new algorithm for visualization of regional boundaries using a double-
snapshot technique helps to display clearly and unambiguously both the parcellation units
and other quantitative measures of interest, while avoiding the computational demands and
interpretive difficulties associated with surface flattening algorithms. Our algorithms can be
applied easily to the representation of parcellation schemes across a wide variety of
morphological surfaces to aid the representation and interpretation of data.
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FIGURE 1. Voxel Representation and Triangle Labeling
(a) a voxel P1 represents the unit volume centered at P1 (its boundary is marked by blue
lines); (b) a triangle with corner points at (Pa, Pb, Pc) is categorically labeled according to
the categorical values at voxels P1, P2, …, P8 enclosing the space where the triangle locates.
Here P1, P4, and P5 belong to category C1, while the other five voxels belong to category C2.
We show later that this triangle needs to be sub-divided in order to unambiguously
determine its categorical label.
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FIGURE 2. Subdivision of Unit Cubic Space
A unit cubic space enclosed by eight adjacent voxel centers is divided into eight disjoint
sub-volumes. The division happens at three planes perpendicular to each other and each cuts
the cubic space into two equal-sized halves.
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FIGURE 3. Subdivision of a boundary Triangle
A triangle is subdivided according to its intersections with the three planes that subdivide
the cubic space containing the triangle. (a) a plane subdivides triangle (Pa, Pb, Pc) into three
smaller triangles: (Pa, Pb, Pbc), (Pa, Pbc, Pac), and (Pc, Pac, Pbc); (b) a plane subdivides
triangle (Pa, Pb, Pc) into two smaller ones: (Pa, Pb, Pbc) and (Pa, Pbc, Pc) since vertex Pa
coincides with the intersecting plane.
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FIGURE 4. Re-tessellation of a non-boundary Triangle
Triangle (Pb, Pc, Pd), though enclosed by voxels (P1, P2, …, P8) having the same categorical
value C1, has to be splitted into triangles (Pc, Pbc, Pd) and (Pd, Pbc, Pb) since it is adjacent to
a boundary triangle (Pa, Pb, Pc) and the common edge between them, (Pb, Pc) has been
subdivided.

Hao et al. Page 18

Comput Med Imaging Graph. Author manuscript; available in PMC 2012 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



FIGURE 5. Surface Simplification through Edge Collapse
An edge (Pe, Pf) is removed where vertex Pe is merged with vertex Pf that results in the
removal of vertex Pe and the removal of two triangles (colored in dark blue) sharing the
edge (Pe, Pf).
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FIGURE 6. Region Boundary
A region boundary is a series of joint line segments, each being an edge shared by two
triangles that belong to different categories. Here the red line segments represent the
boundary between two regions marked by blue and green respectively. The boundary has a
zigzag appearance due to the discrete nature of surface, and thus discrete curve
representation.

Hao et al. Page 20

Comput Med Imaging Graph. Author manuscript; available in PMC 2012 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



FIGURE 7. Perturbation of Boundary Vertices' Positions
Vertices are moved toward the B-spline fitted curve of a regional boundary. (a) B-spline
fitting (curve in dark blue) of the boundary line segments (in red) and boundary vertices are
moved toward (yellow arrows) the B-spline curve; (b) Boundary vertices are now on the B-
spline curve and the boundary (in red) is much smoother after the perturbation.
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FIGURE 8. Turning angle at a Boundary Vertex
Boundary vertices Pa, Pb, and Pc are consecutive end points along a boundary line segments
(in green) that discretely sample a smooth boundary curve (in blue). The turning angle φ at
vertex Pb is the angle between left tangent line (PaPb) and right tangent line (PbPc, both lines
in red).

Hao et al. Page 22

Comput Med Imaging Graph. Author manuscript; available in PMC 2012 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



FIGURE 9. Adjustment of non-boundary Vertex Position
After perturbation of a boundary vertex, its neighboring non-boundary vertices' positions get
adjusted to improve smoothing results in the next smoothing iteration. Two different regions
are shown in blue color and green color respectively. Red line segments mark the regional
boundary. (a) Before perturbation of vertex Pa. (b) After the perturbation, Pa is close to a
non-boundary vertex Pb and cannot move further without flipping the orientation of any
triangle. (c) The repulsion of Pb away from Pa makes room for further movement of Pa. (d)
After another iteration of smoothing, Pa moves closer to its desirable location, and the
boundary curve (in red) is much smoother than the curve in (b).
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FIGURE 10. Simulated Dataset
An ellipsoid is generated for algorithm evaluation. The top half of the ellipsoid is outside the
cone and is classified as region one. The bottom half of the ellipsoid is inside the cone and
classified as region two. A boundary curve that defines different regions is thus delineated
on the surface of the ellipsoid.
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FIGURE 11. Parcellations on the Simulated Dataset at 1mm Resolution
Different measures are compared between approaches of smoothing with and without
adjusting neighborhood vertices, as functions of smoothing iterations: (a) Average turning
angles (in radian); (b) Maximum turning angle (in radian); (c) Average distance of the
smoothed boundary from the true boundary (in mm); (d) Maximum distance of the
smoothed boundary from the true boundary (in mm).
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FIGURE 12. Curvature-Related Parcellation on the Simulated Dataset at 1mm Resolution
The results are generated using smoothing with neighborhood adjustment with 50 iterations.
(a) Average distance from true boundary is displayed as a function of curvature; (b) Average
turning angle is displayed as a function of curvature.
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FIGURE 13. Comparing Parcellations on the Simulated Dataset at Varying Resolutions
Different measures are compared as functions of volume resolutions. The results are
generated using smoothing with neighborhood adjustment with 50 iterations. (a) Average
turning angles (in radian); (b) Maximum turning angle (in radian); (c) Average distance of
the smoothed boundary from the true boundary (in mm); (d) Maximum distance of the
smoothed boundary from the true boundary (in mm).
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FIGURE 14. Comparing Regional Boundaries Generated by Different Methods at Varying
Resolutions
Top row: boundary generated by original marching-cubes algorithm; middle row: boundary
generated by adapted marching-cubes algorithm without smoothing; bottom row: boundary
generated by adapted marching-cubes algorithm with smoothing. (a) 1mm resolution; (b)
2mm resolution; (c) 3mm resolution; (d) 4mm resolution; (e) 6mm resolution; (f) 8mm
resolution; (g) Ellipsoid with selected region whose enlarged view shown in (a)–(f) marked.

Hao et al. Page 28

Comput Med Imaging Graph. Author manuscript; available in PMC 2012 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



FIGURE 15. Comparing Parcellations on a Cortical Surface
The cortical surface is displayed as colored regions. (a) Surface generated by original
marching-cubes algorithm with label assigned to each triangle from the voxel that contains
the largest portion of the triangle; (b) Surface generated using our adaptive subdivision with
boundary-preserved simplification and B-spline smoothing. Both surfaces have equal
number of triangles. On the top left side of each image is an enlarged fragment of the view.
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FIGURE 16. Delineation Display using Double-Snapshot Method
(a) the first snapshot generates an image from labeled markers of triangles without lighting;
(b) region boundaries (in red) are traced from the above image by pixels that are on the
boundary of regions with different intensity values; (c) region boundaries alone; (d) second
snapshot of the lighted surface, at the same viewing angle as in (a); (e) region boundaries
from (c) are super-imposed onto image from (d) to give the final visualization of delineation
results; (f) result of traditional display, in which some of the boundary curves are buried
inside sulci and invisible.
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FIGURE 17. Comparing Parcellations of the Right Thalamus
The surface of right thalamus is displayed as colored regions. (a) Surface generated by
original marching-cubes algorithm with label assigned to each triangle from the voxel that
contains the largest portion of the triangle. White circle marks a misclassified region; (b)
Surface generated using our adaptive subdivision with boundary-preserved simplification
and B-spline smoothing. Both surfaces have equal number of triangles.
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FIGURE 18. Maps of Group Differences in Cortical Thickness
Statistical significance of differences in cortical thickness of right hemisphere across groups
(high vs. low risk in major depressive disorder) in participants from 2nd and 3rd generations
are color coded, with warm colors (yellow, orange, and red) representing significantly
thicker cortices in the high risk group and cooler colors (blue and purple) representing
thinner cortices in that group. The color bar indicates the color-coding of p-values for testing
of statistical significance at each point in the brain. Upper panel: results displayed without
region boundaries. Lower panel: results shown with region boundaries. Lateral views: (a, c).
Medial views: (b, d).
AC: anterior cingulate
IOG: inferior occipital gyrus
IP: inferior parietal lobule
LG: lingual gyrus
MFG: middle frontal gyrus
MOG: middle occipital gyrus
MTG: middle temporal gyrus
OF: orbitofrontal cortex
PC: posterior cingulate
PoG: post-central gyrus
PreCu: precuneus
PrG: pre-central gyrus
SG: subgenual cortex
STG: superior temporal gyrus
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Table 1

Comparison of results on simulated dataset at various resolutions using our adapted marching-cubes algorithm
with those obtained by original marching-cubes algorithm, in terms of average distance from true boundary,
maximum distance from true boundary, average turning angle along the boundary curves, maximum turning
angle along the boundary curves, and percentage of misclassified area.

Resolution Measurement Original marching-cubes
Adapted marching-cubes

Non-smoothed Smoothed

1 mm

Average distance from true boundary (mm) 0.389 0.181 0.096

Maximum distance from true boundary (mm) 0.994 0.499 0.316

Average angle (radian) 1.616 0.243 0.028

Maximum angle (radian) 2.995 2.417 0.352

Percentage of misclassified area 0.206% 0.103% 0.056%

2mm

Average distance from true boundary (mm) 0.801 0.368 0.187

Maximum distance from true boundary (mm) 1.957 0.997 0.594

Average angle (radian) 1.618 0.321 0.029

Maximum angle (radian) 3.005 2.629 0.338

Percentage of misclassified area 0.388% 0.209% 0.099%

3 mm

Average distance from true boundary (mm) 1.184 0.567 0.304

Maximum distance from true boundary (mm) 2.889 1.497 0.833

Average angle (radian) 1.723 0.292 0.030

Maximum angle (radian) 3.131 2.407 0.318

Percentage of misclassified area 0.527% 0.318% 0.123%

4mm

Average distance from true boundary (mm) 1.449 0.696 0.405

Maximum distance from true boundary (mm) 3.844 1.984 0.921

Average angle (radian) 1.601 0.379 0.031

Maximum angle (radian) 2.967 2.272 0.283

Percentage of misclassified area 0.689% 0.363% 0.194%

6mm

Average distance from true boundary (mm) 2.291 1.065 0.696

Maximum distance from true boundary (mm) 5.633 2.975 1.721

Average angle (radian) 1.708 0.373 0.038

Maximum angle (radian) 3.059 2.287 0.276

Percentage of misclassified area 0.944% 0.564% 0.268%

8 mm

Average distance from true boundary (mm) 2.911 1.476 1.055

Maximum distance from true boundary (mm) 7.211 3.916 2.664

Average angle (radian) 1.638 0.306 0.044

Maximum angle (radian) 3.079 1.603 0.237

Percentage of misclassified area 1.08% 0.793% 0.387%
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