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Abstract
The metric distance obtained from the Large Deformation Diffeomorphic Metric Mapping
(LDDMM) algorithm is used to quantize changes in morphometry of brain structures due to
neuropsychiatric diseases. For illustrative purposes we consider changes in hippocampal
morphometry (shape and size) due to very mild dementia of the Alzheimer type (DAT). LDDMM,
which was previously used to calculate dense one-to-one correspondence vector fields between
hippocampal shapes, measures the morphometric differences with respect to a template
hippocampus by assigning metric distances on the space of anatomical images thereby allowing
for direct comparison of morphometric differences. We characterize what information the metric
distances provide in terms of size and shape given the hippocampal, brain and intracranial
volumes. We demonstrate that metric distance is a measure of morphometry (i.e., shape and size)
but mostly a measure of shape, while volume is mostly a measure of size. Moreover, we show
how metric distances can be used in cross-sectional, longitudinal analysis, as well as left-right
asymmetry comparisons, and provide how the metric distances can serve as a discriminative tool
using logistic regression. Thus, we show that metric distances with respect to a template computed
via LDDMM can be a powerful tool in detecting differences in shape.
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1 Introduction
Methods developed in the field of Computational Anatomy (CA) that enable quantification
of brain structure volumes and shapes between and within groups of individuals with and
without various neurological diseases have emerged from several groups in recent years
[1-6]. Based on the mathematical principles of general pattern theory [4,7-10], these
methods combine image-based diffeomorphic maps between MR scans with representations
of brain structures as smooth manifolds. Because of their high repeatability and sensitivity to
changes in neuroanatomical shapes, they can be especially sensitive to abnormalities of
brain structures associated with a disease. Numerous post-mortem studies have shown that
hippocampus is implicated with dementia of the Alzheimer type (DAT) [11-17]. The
accumulation of neurofibrillary tangles and amyloid plaques characteristic of AD are
associated with neuronal damage and death [18]. Furthermore, macroscopic gray matter
losses from the accumulation of microscopic scale neuronal destruction are detectable in
living subjects using currently available magnetic resonance (MR) imaging. Specifically,
volume losses within the hippocampus [19-24] have recently been reported in subjects with
mild-to-moderate AD. Using image-based diffeomorphic maps, we previously demonstrated
that the combined assessment of hippocampal volume loss and shape deformity optimally
distinguished subjects with very mild DAT from both elder nondemented subjects and
younger healthy subjects [20]. These methods also allowed us to demonstrate that
hippocampal shape deformities associated with very mild DAT and nondemented aging
were distinct [25]. These methods were also extended to quantify changes in
neuroanatomical volumes and shapes within the same individuals over time [26]. Other
longitudinal neuroimaging analysis of hippocampal structures in individuals with AD have
also emerged [27-38].

An important task in CA is the study of neuroanatomical variability. The anatomic model is
a quadruple (Ω, G, I, P) consisting of Ω the template coordinate space (in R3), defined as the
union of 0, 1, 2, and 3-dimensional manifolds, G : Ω ↔ Ω a set of diffeomorphic
transformations on Ω, I the space of anatomies is the orbit of a template anatomy I0 under G,
and P the family of probability measures on G. In this framework, a geodesic ϕ: [0, 1] → G
is computed where each point ϕt = ϕ(t) ∈ G, t ∈ [0, 1] is a diffeomorphism in the domain Ω.
The evolution of the template image I0 along path is given by  such that the end
point of the geodesic connects the template I0 to the target I1 via . Thus,
anatomical variability in the target is encoded by these geodesic transformations when a
template is fixed. Furthermore, geodesic curves induce metric distances between the
template and the target shapes in the orbit as follows. The diffeomorphisms are constructed
as a flow of ordinary differential equations ϕt = υt(ϕt), t ∈ [0, 1] with ϕ0 = id the identity
map, and associated vector fields, υt, t ∈ [0, 1]. The optimal velocity vector field
parameterizing the geodesic path is found by solving

(1)
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where υt ∈ V, the Hilbert space of smooth vector fields with norm ∥·∥V defined through a
differential operator enforcing smoothness [26]. The length of the minimal length path
through the space of transformations connecting the given anatomical configurations in I0
and I1 defines a metric distance between anatomical shapes in I0 and I1 via

(2)

where υ̂t is the optimizer calculated from the Large Deformation Diffeomorphic Metric
Mapping (LDDMM) algorithm [39]. Here, the metric distance does not have any units. The
construction of such a metric space allows one to quantify similarities and differences
between anatomical shapes in the orbit. This is the vision laid out by D’Arcy W. Thompson
almost one hundred years ago. Figure 1 exemplifies the change in the metric distance during
the evolution of the diffeomorphic map from the template shape to the target shape.

The notion of mathematical biomarker in the form of metric distance can be used in different
ways. One is to generate metric distances of shapes relative to a template [39,40]. Another is
to generate metric distances between each shape within a collection [41]. The latter
approach allows for sophisticated pattern classification analysis; it is however
computationally expensive. We present an analysis based on the former approach which
could provide a powerful tool in analyzing subtle shape changes over time with considerably
less computational load. This approach may allow detecting the subtle morphometric
changes observed in the hippocampus in DAT subjects in particular for those previously
analyzed [26,42]. These studies compared rates of change in hippocampal volume and shape
in subjects with very mild DAT and matched (for age and gender) nondemented subjects.
The change in hippocampal shape over time was defined as a residual vector field resulting
from rigid-body motion registration, and changes in patterns along hippocampal surfaces
were visualized and analyzed via a statistical measure of individual and group change in
hippocampal shape over time and used to distinguish between the subject groups. Hence the
motivation to analyze LDDMM generated metric distances between binary hippocampus
images at baseline and at follow-up with respect to the same template hippocampus image.
That is, the template was compared again, and not propagated between time points. One
might wonder why we do not track changes within a subject directly, rather than via a
reference template, as it could give a more sensitive measure of shape change since the
small difference in shape would make finding correspondence more accurate. Although we
have considered doing this, the difficulty is that since the template (or origin) is different for
each longitudinal computation, how to correctly perform statistical comparison of group
change is not completely settled. This is actively being developed by using the concept of
“parallel transport” [43,44].

In this study, we compute and characterize what metric distance conveys and provide a
statistical methodology to analyze metric distances based on the data used in [26]. In fact,
[26] used a previous implementation of the present technology called large-deformation
high-dimensional brain mapping (or HDBM-LD). The method was also based on use of a
single template and large deformation diffeomorphic mappings. The difference between the
methodology of [26] and this article is the way in which the resulting deformation fields that
represent morphometric differences were analyzed. For the former was analyzed using
singular value decomposition (SVD) applied on each incremental deformation field; the
present is analyzed according to only its metric shape difference.

The morphometric differences are measured with respect to a template, so the differences in
morphometry are relative to this template. However, such differences might also imply the
correlation of morphometry with certain types of conditions. For example, a cross-sectional
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analysis of distances for different conditions or groups might suggest changes in
morphometry due to a disease. Longitudinal analysis of distances might provide how the
morphometry changes over time and whether the change is different between the groups.
Under certain restrictions, even left-right anatomical asymmetry may be measured and
analyzed for different groups. Moreover, metric distances (together with some other
measures such as volume) might also be used for discriminative purposes; i.e., they can be
used as biomarkers to distinguish healthy tissues from diseased ones.

We briefly describe computation of metric distances via LDDMM in Section 2.1, the
hippocampal data set in Section 2.2, statistical methods we employ in Section 2.3.
Furthermore, we provide the analysis on metric distances and volumes in Section 3, compare
volumes and metric distances in Section 3.8, and analyze annual percentage rate of change
in volumes and distances in Section 4. In the final section, we discuss the use of metric
distances for baseline-followup studies, group comparisons, and discrimination analysis.

2 Methods
2.1 Computing Metric Distance via Large Deformation Diffeomorphic Metric Mapping

Metric distances between the binary images and the template image are obtained by
computing diffeomorphisms between the images. Computation and analysis of these
diffeomorphic mappings have been previously described [45]. Diffeomorphisms are
estimated via the variational problem that, in the space of smooth velocity vector fields V on
domain Ω, takes the form [39]:

(3)

The optimizer of this cost generates the optimal change of coordinates  upon

integration , ϕ0 = id, where the subscript υ in ϕυ is used to explicitly denote
the dependence of ϕ on the associated velocity field υ. Enforcing a sufficient amount of
smoothness on the elements of the space V of allowable velocity vector fields ensures that
the solution to the differential equation ϕ̇t = υt(ϕt), t ∈ [0, 1], υt ∈ V is in the space of
diffeomorphisms [46,47]. The required smoothness is enforced by defining the norm on the
space V of smooth velocity vector fields through a differential operator L of the type L =
(−αΔ + γ)αIn×n where α > 1.5 in 3-dimensional space such that ∥f∥V = ∥Lf∥L2 and ∥·∥L2 is the
standard L2 norm for square integrable functions defined on Ω. The gradient of this cost is
given by

(4)

where  and , |Dg| is the determinant of the Jacobian matrix for g and K
is a compact self-adjoint operator K : L2 (Ω, Rd) → V uniquely defined by < a, b > L2=< K a,
b >V such that for any smooth vector field f ∈ V, K (L†L)f = f holds. The metric distance is
then calculated via Equation (2).

2.2 Subjects and Data Acquisition
Detailed description of subjects can be found in [26] where 18 very mild DAT subjects
(Clinical Dementia Rating Scale, CDR0.5) and 26 age-matched nondemented controls
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(CDR0) were each scanned approximately two years apart. Clinical Dementia Rating (CDR)
scale assessments which detect the severity of dementia symptoms were performed annually
in all subjects by experienced clinicians without reference to neuropsychological tests or in-
vivo neuroimaging data. The experienced clinician conducted semi-structured interviews
with an informant and the subject to assess the subject’s cognitive and functional
performance; a neurological examination was also obtained. The clinician determined the
presence or absence of dementia and, when present, its severity with the CDR. Overall CDR
scores of 0 indicate no dementia, while CDR scores of 0.5, 1, 2, and 3 indicate very mild,
mild, moderate and severe dementia, respectively [48]. CDR assessments have been shown
to have an inter-rater reliability of κ = 0.74 (weighted kappa coefficient [49] κ of 0.87) [50],
and this high degree of inter-rater reliability has been confirmed in multi-center dementia
studies [51]. Elderly subjects with no clinical evidence of dementia (i.e., CDR0 subject)
have been confirmed with normal brains at autopsy with 80% accuracy; i.e., approximately
20% of such individuals show evidence of AD [52]. CDR0.5 subjects have subtle cognitive
impairment, and 93% of them progress to more severe stages of illness (i.e., CDR > 0.5) and
show neuropathological signs of AD at autopsy [52-54]. Although elsewhere the CDR0.5
individuals in our sample may be considered to have MCI [55], they fulfill our diagnostic
criteria for very mild DAT and at autopsy overwhelmingly have neuropathologic AD [56].
A summary of subject information is listed in Table 1.

The scans were obtained using a Magnetom SP-4000 1.5 Tesla imaging system, a standard
head coil, and a magnetization prepared rapid gradient echo (MPRAGE) sequence. The
MPRAGE sequence (TR/TE - 10/4, ACQ - 1, Matrix - 256 × 256, Scanning time - 11.0 min)
produced 3D data with a 1 mm × 1 mm in-plane resolution and 1 mm slice thickness across
the entire cranium.

A neuroanatomical template was produced using an MR image from an additional elder
control (i.e., CDR0 or non-demented) subject (male, age = 69). The choice and a detailed
description of the template is provided in [45]. The subject selected to produce this template
was obtained from the same source as the other subjects in the study, but was not otherwise
included in the data analysis. Data used are the left and right hippocampal surfaces in the
template scan created from expert-produced manual outlines using methods previously
described [25,57], and the left and right hippocampal surfaces of each subject generated at
baseline and follow-up. These surfaces were converted to binary hippocampus volumetric
images by flood filling the inside of the surface and giving it label 1, and the outside of the
surface was labeled as 0, or background. Each individual hippocampal surface was aligned
with the template surface via a rigid-body rotation and translation before converting to
volumetric binary images. In [57] we showed that mapping accuracy could be enhanced at
higher resolution because of smaller voxels – voxels at the periphery of the structure (i.e.,
surface) account for much more of the structural volume at 1 mm3 voxel resolution versus
0.5 mm3. Since then we have adapted this as part of the standard mapping procedure. These
surfaces were then converted into binarized image of dimension 64 × 112 × 64 with voxel
resolutions of 0.5 × 0.5 × 0.5 mm3, followed by smoothing by a Gaussian filter of 9 × 9 × 9-
voxel window and one voxel standard deviation to smooth out the edges for LDDMM,
which was then applied to each template-subject pair to compute metric distances,

, in each hemisphere at baseline (b) and at follow-up (f) as illustrated in
Figure 2. Segmentation of hippocampal MRI shapes across subjects, especially in diseased
states, is a challenging problem. However the accuracy of the segmentation is not the point
of this paper and has been demonstrated before [20,45,57].

In addition to the metric distances, our data set also consists of the following variables:
gender, age, education in years (these variables are used for controlling the confounding
affects of these factors on hippocampus morphometry). Furthermore, we have brain and
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intracranial volumes at baseline and followup, and hippocampus volumes for left and right
hippocampi at baseline and follow-up. For the left data, hippocampi at baseline for CDR0.5
subjects are labeled as LB-CDR0.5, at follow-up they are labeled as LF-CDR0.5. CDR0
hippocampi are labeled as LB-CDR0 and LF-CDR0 accordingly. Similar labeling is done
for the right metric distances.

2.3 Statistical Methods
First, we investigate what metric distance measures and how it is related to hippocampal,
brain, and intracranial volumes. That is, as a compound measure of morphometry, how
much of the metric distance is related to shape and volume. Along this line, we provide the
correlation between volume and metric distance measures by the pairs plots at baseline and
follow-up of left and right hippocampi. Furthermore, we perform a principal component
analysis (PCA) on metric distance and volumes to characterize the major traits these
quantities measure [58,59]. Since the metric distance between two images is just a single
number, the PCA involves only the relationships among metric distance, volume, follow-up
interval, and functional measurements.

We also provide a statistical methodology for the analysis of metric distances. We apply
repeated-measures analysis of variance (ANOVA) on metric distances with diagnosis group
as the main effect factor and side×timepoint as the repeated factor, since there is within-
subject dependence of metric distances for left and right hemispheres and at baseline and
follow-up. With this set-up we can both perform cross-sectional and longitudinal
comparisons with metric distances. We apply four possible competing models each
assuming a different variance-covariance structure to obtain the model that best fit to our
data set. The first model assumes compound symmetry, in which the diagonals (i.e., the
variances) are equal, and so are the off diagonals (i.e., the covariances). The other three
models assume unstructured, autoregressive (AR), and autoregressive heterogeneous
variances, respectively. In the unstructured model, each variance and covariance term is
different, in the AR model, the variances are assumed to be equal but the covariances change
by time, and in the ARH model, the variances are also different and the covariances change
by time [60-62]. We use various model selection criteria (such as Akaike Information
Criterion (AIC), Bayesian Information Criterion (BIC), Log-likelihood) to compare
competing models to see which model best fits our data [63].

For post-hoc comparison of the metric distances for baseline left, baseline right, and follow-
up left, follow-up right hippocampi, we use Wilcoxon test and Brown and Forsythe’s (B-F)
test (i.e., Levene’s test with absolute deviations from the median) for homogeneity of the
variances [64]. The metric distances of the same person’s hippocampus at baseline and
follow-up are dependent, hence we use Wilcoxon signed rank test to compare them.
Likewise, the distances for the left and right hippocampi of the same person are also
dependent. We estimate the empirical cumulative distribution functions (cdf) of the metric
distances and compare them by Kolmogorov-Smirnov (K-S) test.

We apply logistic discrimination with metric distances and other variables, since the
diagnosis have only two levels, namely CDR0 and CDR0.5. We use logistic regression to
estimate or predict the risk or probability of having DAT using metric distances, together
with side (i.e., hemisphere) and timepoint (baseline vs follow-up) factors. In other words, we
model the probability that the subject is CDR0.5 given the metric distance of the subject for
left or right hippocampus at baseline or follow-up. In standard logistic regression the model-
parameters are obtained via maximum likelihood estimators. For more on logistic regression
and logistic discrimination, see [65] and [58], respectively. First we model with one
predictor variable at a time from side, timepoint, and metric distance, etc., if the variable is
not significant at .05 level, we omit that variable from further consideration. We consider the
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full logistic model with the response logit p = log [p/(1 − p)] where p = P(Y = 1) (i.e., the
probability that the subject is diagnosed with CDR0.5) with one predictor variable at a time
from side, timepoint, and metric distance, etc., if the variable is not significant at .05 level,
we omit that variable from further consideration. The remaining variables with all possible
interactions among them as the predictor variables constitute the full model. On this full
model, we choose a reduced model by AIC in a stepwise algorithm and then use stepwise
backward elimination procedure on the resulting model [63]. We stop the elimination
procedure when all the remaining variables are significant at α = 0.05 level. Based on the
final model with significant predictors, we apply logistic discrimination. In general, if the
estimated probability is larger than a prespecified probability πo, the subject is classified as
CDR0.5, otherwise the subject is classified as CDR0 (i.e., healthy). This means our decision
function reduces to

(5)

where πo is usually taken to be 0.5. This threshold probability πo can also be optimized with
respect to a cost function which incorporates correct classification rates, sensitivity, and/or
specificity [66].

We also investigate the sensitivity and specificity of the classification procedures. Sensitivity
is the proportion of subjects that are classified to be CDR0.5 (i.e., positive) of all CDR0.5
subjects. That is, sensitivity is defined as Psens = (TCDR0.5/NCDR0.5) × 100% where TCDR0.5
is the number of correctly classified CDR0.5 subjects and NCDR0.5 is the total number of
CDR0.5 subjects in the data set (in our data set NCDR0.5 = 18). Notice that the higher the
sensitivity, the fewer real cases of DAT go undetected. Specificity is the proportion of
subjects that are classified CDR0 (i.e., negative, control, or healthy) of all CDR0 subjects;
that is Pspec = (TCDR0/NCDR0) × 100% where TCDR0 is the number of correctly classified
CDR0 subjects and NCDR0 is the total number of CDR0 subjects in the data set (in our data
set NCDR0 = 26). Notice that the higher the specificity, the fewer healthy individuals are
labeled as diseased.

We apply the same analysis procedure on hippocampal volumes to compare the results with
metric distances. Furthermore, we find the differential volume loss and metric distance
change by using the annual percentage rate of change (APC) in volume and metric distance
(see [66] for APC in volume for entorhinal cortex). We also consider the logistic
discrimination models that incorporate volume and metric distance together and APC in
volumes and metric distances together.

In [26], volume change from baseline to follow-up (not the raw volumes) are analyzed with
repeated-measures ANOVA. The shape change vector fields which are obtained using the
LDDMM algorithm are analyzed by the SVD on the covariance structure where the
eigenfunctions that explain at least 75 % of the total variance are selected. Then multivariate
ANOVA (MANOVA) is applied on these eigenfunctions to test for group differences. If
significant group differences were found, then logistic regression was performed to model
the change due to aging versus change due to dementia. On the other hand, in [67], voxel-
wise statistical tests are performed between the Jacobian maps in each group using the
spatially normalized Jacobian maps. These maps encode longitudinal brain changes and are
compared using both spatial average of Jacobian values within specific regions and voxel-
wise tests controlled for multiple testing. The two-sample t-test with unequal variances is
employed in the voxel-wise testing. The cdfs of these t-tests are used to compare the effect
sizes of group differences and effects of covariates in the diagnostic groups. Correlations of
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Jacobian values (i.e., brain differences) with clinical measurements (such as CDR scores)
and biomarkers are also measured.

3 Analysis of Metric Distances and Volumes of Hippocampi
3.1 Preliminary Analysis of Metric Distances and Other Variables

The summary measures for the variables are provided in Table 1. Observe that the subjects
are evenly distributed in terms of gender, years of education, scan intervals, and age between
the diagnostic groups so that these variables are accounted for as covariates. The brain and
intracranial volumes are much larger in scale than the hippocampal volumes which are
larger than the metric distances. Notice that brain and hippocampal volumes all decrease by
time and are smaller in CDR0.5 subjects compared to CDR0 subjects compared to CDR0
subjects. On the other hand, the metric distances tend to increase by time and are larger for
the CDR0.5 subjects. Also presented in Table 1 are the p-values for Lilliefor’s test of
normality (pL) and Wilcoxon rank sum test for differences between the diagnostic groups
(pW). Notice that most variables can be assumed to follow a Gaussian distribution, but since
a few of the variables are non-Gaussian, we apply the Wilcoxon rank sum test instead of
Welch’s t-test. The diagnostic groups do not significantly differ in age, education, brain and
intracranial volumes. Furthermore, among the metric distances, we see that only right
follow-up metric distances are significantly different between the diagnostic groups.

We present the pairs plot (scatter plot of each pair) of continuous variables in Figure 3 and
calculate the correlation coefficients between each pair of the variables (not presented). We
observe that age and education are not significantly correlated with any of the other
variables. Hence we discard them in our prospective analysis (except for logistic
discrimination). We observe significant correlation between each pair of hippocampal
volumes, and between each pair of brain and intracranial volumes. The metric distances are
only moderately correlated with each other. Hippocampal volumes are mildly correlated
with brain and intracranial volumes. The same holds for the metric distances but to a lesser
extent.

See Figure 4 for the (jittered) scatter plots of the metric distances by group, where the
crosses are centered at the mean distances and the points are jittered (scattered) along the
horizontal axis in order to avoid frequent point concurrence and tight clustering of points,
thereby making the plot better for visualization. Observe that CDR0 distances are smaller
than CDR0.5 distances at baseline and at follow-up for both left and right hippocampi. This
suggests that the morphometric differences of CDR0 hippocampi with respect to the
template hippocampus are smaller than those of CDR0.5 hippocampi. This is not surprising,
considering the template hippocampus being one of the CDR0 hippocampi. Furthermore, the
standard deviations of the distances for CDR0 subjects tend to be smaller than those of
CDR0.5 subjects. That is, the morphometric variability of CDR0 hippocampi with respect to
the template hippocampus is smaller than that of CDR0.5 hippocampi. The statistical
significance of these results will be provided in the following sections.

3.2 Principal Component Analysis of the Volumes and Metric Distances
The volumes and metric distances measure different but related aspects of morphometry, so
some of the variables are highly correlated with each other (see Figure 3). We perform
principal component analysis (PCA) to obtain a set of uncorrelated variables that hopefully
represent some identifiable aspect of the morphometry [58,59]. In [26], a PCA in the form of
singular value decomposition (SVD) was applied to the matrix of change in the vector fields
(i.e., matrix of voxel displacements as a function of original coordinates), which is also
obtained from the LDDMM algorithm. However, in this article, we perform the PCA
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procedure on hippocampal volume, metric distance, brain volume, and intracranial volume
measures. When PCA (with eigenvalues based on the covariance matrix) on metric distances
and volumes of left hippocampi at baseline is performed, we observe that the first principal
component (PC1) accounts for almost all the variation (see Table 2). Considering the
variable loadings, PC1 seems to be the head size component, PC2 is the contrast between
brain and intracranial volumes, PC3 is the hippocampus size, and PC4 is the metric distance
component. However, the volumes are in mm3 and metric distances are unitless, hence the
data are not to scale. In particular, the brain and intracranial volumes have the largest
variation in the data set, hence dominate the PCs. To remove the influence of the scale (or
unit), we apply PCA with eigenvalues based on the correlation matrix (i.e., PCA on the
standardized variables). The importance scores of principal components and variable
loadings from the PCA of metric distances and volumes of left hippocampi at baseline with
eigenvalues based on the correlation matrix are presented in Table 3. Notice that with the
correlation matrix, the first three PCs account for almost all the variation in the variables.
Comparing the variable loadings, PC1 seems to be the head size component, PC2 is the
hippocampus shape, PC3 is the hippocampus size and the contrast between hippocampus
and head size, and PC4 is the contrast between brain and intracranial volume. The PCA on
variables for left hippocampi at followup and right hippocampi at baseline and followup
yields similar results (see [68]).

The variable loadings for the variables suggest that brain and intracranial volumes are
mostly measures of head size, metric distance is mostly a measure of hippocampus shape
and partly related to head and hippocampus sizes, and hippocampus volume is mostly a
measure of hippocampus size and partly related to hippocampus shape and head size. Hence,
one should use volume and metric distance in morphometric analysis of brain tissues as they
provide complementary information.

3.3 Repeated-Measures Analysis of Metric Distances and Hippocampal Volumes
Due to within-subject dependence of metric distances for left and right hemispheres and for
baseline and follow-up measures, we apply repeated-measures analysis with group or side as
main effects and timepoint as the repeated factor (see [68]), and group as main effect and
side×timepoint as the repeated factor (see below). We have four measurements for each
subject, namely left metric distance at baseline, left metric distance at followup, right metric
distance at baseline, and right metric distance at followup, so repeated-measures analysis
can be performed on our data set.

We model the Var-Cov structure for the repeated-measures for each subject. We have four
correlated measures per subject, namely LDB, LDF, RDB, and RDF. We try compound
symmetry, unstructured, autoregressive (AR), and autoregressive heterogeneous (ARH) Var-
Cov structures. The variances (in the diagonal) suggest homogeneity, but covariances seem
to differ. See [68] for the comparison of models. We choose the model with AR Var-Cov
structure based on AIC and BIC. The corresponding model is

(6)

where dijkl is the distance for subject l for side i (1 for left; 2 for right) with diagnosis j (j = 1
for CDR0; 2 for CDR0.5) at timepoint k (k = 1 for baseline; 2 for follow-up), μ is the overall

mean,  is the effect of side level i,  is the effect of diagnosis level j,  is the effect of

timepoint level k,  is the side×diagnosis interaction,  is the side×timepoint interaction,

 is the diagnosis×timepoint interaction,  is the side×diagnosis×timepoint interaction,
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and εijkl is the error term. The Var-Cov structure for the error term (for the four measures per
subject) is

The three way interaction of side×group×timepoint is not significant (F = 0.50, df = 1, 168,
p = 0.4823), and neither are the two way side×group (F = 0.76, df = 1, 168, p = 0.3860), and
side×timepoint interactions (F = 2.25, df = 1, 168, p = 0.1359). On the other hand, the
group×timepoint interaction is significant (F = 8.47, df = 1, 168, p = 0.0041). The main
effects of side, group, and timepoint are all significant (F = 6.12, df = 1, 168, p = 0.0143; F
= 4.05, df = 1, 168, p = 0.0457; and F = 19.52, df = 1, 168, p < 0.0001, respectively), but due
to interaction, the groups should be compared at each time point instead of an overall
comparison of group means. So the resulting model with significant terms at α = .05 level is

The interaction plots of diagnosis levels over the time-points for left and right hippocampi
are presented in Figure 5, where we observe that the lines are not parallel for the diagnosis
which agrees with the significant group×timepoint interaction. But, the main effects of
timepoint and side being significant is interpretable between baseline and follow-up.

For modeling hippocampal volumes using the repeated-measures ANOVA with group as
main effect and compound symmetry in Var-Cov structure and volume measurements
repeated over time for each subject, and for modeling volumes using the repeated measures
ANOVA with side as main effect and compound symmetry in Var-Cov structure and
volume measurements repeated over time, see [68]. Volume measurements were also
presented in detail in [26]. For the model that includes the diagnosis, side, and
diagnosis×side interaction, we find that the most promising model based on likelihood ratio
test, BIC, and AIC is the one with unstructured Var-Cov matrix. The corresponding model
with significant terms at α = .05 level is

(7)

where Vijklm is the volume for subject m for side i with diagnosis j at timepoint k with gender

l (1 for female, 2 for male), μ is the overall mean,  is the effect of side level i,  is the
effect of diagnosis level j,  is the effect of timepoint level k = 1, 3,  is the

side×timepoint interaction,  is the diagnosis×timepoint interaction,  is the effect of
gender level l, and εijklm is the error term. The (unstructured) Var-Cov structure for the error
term is
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The main effects of side, group, and timepoint are all significant (F = 120.10, df = 1, 170, p
< .0001; F = 25.25, df = 1, 170, p < .0001; and F = 89.53, df = 1, 170, p < 0.0001,
respectively). But due to interaction, the main effect for diagnosis (i.e., group) is close to
clinically meaningless, i.e., the group means should be compared at each time point or
hemisphere instead of comparing the overall means of the groups.

In [26], a similar repeated-measures ANOVA was performed for volumes only, and
hemisphere (i.e., side), gender, and hemisphere×side interactions were not considered. In
this article, we consider repeated-measures ANOVA on metric distances and volumes with
more variables, and perform a model selection procedure which captures the most
significant variables. Our findings of significant time×diagnosis group interaction for
volumes agree with results of [26], but we also discover a significant side×time interaction
for volumes. On the other hand, for metric distances we only find a significant group×time
interaction. Due to interaction, we compare groups in terms of metric distances and volumes
at each time point and hemisphere in the following section. Such a post-hoc comparison is
not presented in [26], instead a detailed morphometric change analysis is performed based
on the eigenfunctions obtained from SVD of vector field changes.

3.4 Post-Hoc Comparison of Volumes and Metric Distances in CDR0.5 and CDR0 Groups
For the p-values regarding the comparison of independent groups, see Table 4. The distance
distribution of each group can be assumed to come from a Gaussian distribution (all p-
values greater than 0.10). Moreover, LB-CDR0.5 and LB-CDR0 distances can be assumed
to have equal variances (p = 0.2948), and so can RB-CDR0.5 and RB-CDR0 (p = 0.2273).
But, the variance of LF-CDR0 distances is significantly smaller than that of LF-CDR0.5
distances (p = 0.0294), and similarly for RF-CDR0 versus RF-CDR0.5 (p = 0.0262). So for
consistency in our results we will only present the Wilcoxon rank sum tests [69] in this
article. The p-values from the t-tests [70] are presented in [68].

RF-CDR0.5 mean distances are significantly larger than RF-CDR0 mean distances at .05
level (p = 0.0106), and LF-CDR0.5 distances are almost significantly larger than LF-CDR0
distances (p = 0.0813). On the other hand, LB-CDR0.5 and LB-CDR0 distances are not
significantly different (p = 0.5362), and likewise for RB-CDR0.5 and RB-CDR0 distances
(p = 0.8176). This implies that at baseline, the morphometric differences of CDR0.5 and
CDR0 hippocampi with respect to the template hippocampus are about same, which might
indicate no significant shape differences in the left and right hippocampi due to dementia.
However, since the metric distances do not necessarily provide direction in either shape or
size, this is not a decisive implication. At follow-up, the morphometric differences of left
and right hippocampi of CDR0.5 subjects from the template are significantly larger than
those of CDR0 subjects. Moreover, right hippocampi of CDR0.5 subjects tend to undergo
more alteration in morphometry compared to right hippocampi of CDR0 subjects over time.

In the post hoc comparison of hippocampal volumes, we find that the variances of volumes
are not significantly different for (LB-CDR0.5, LB-CDR0), (RB-CDR0.5, RB-CDR0), and
(RF-CDR0.5, RF-CDR0) groups, but volumes of LF-CDR0 hippocampi are significantly
larger than volumes of LF-CDR0.5 hippocampi (p = .0268). The CDR0.5 volumes are
significantly smaller than CDR0 volumes in left hippocampi at baseline (p = .0001) and
follow-up (p < .0001), and for right hippocampi at baseline (p = .0071) and follow-up (p = .
0001).

For the cdf comparisons, the samples (groups) should be independent for these tests to be
valid, so we only compare CDR0.5 vs CDR0 groups. The results are provided in detail in
[68] and for more on cdf comparisons, see [71,72]. The cdf of RF-CDR0.5 distances is
significantly smaller than the cdf of RF-CDR0 distances (p = 0.0259 for K-S test). That is,
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RF-CDR0.5 metric distances are stochastically larger than RF-CDR0 right metric distances.
In other words, RF-CDR0.5 hippocampus shapes are more likely to be different than the
template hippocampus compared to RF-CDR0 hippocampus shapes. Furthermore, the cdf of
LF-CDR0.5 distances is almost significantly smaller than the cdf of LF-CDR0 distances (p =
0.0604). Observe that these results are in agreement with the ones in Table 4. The CDR0.5
volumes are stochastically smaller than CDR0 volumes for left hippocampi at baseline (p = .
0007) and follow-up (p = .0003), and for right hippocampi at baseline (p = .0064) and
follow-up (p = .0028).

Remark 3.1—Although volume is a measure of size and metric distance is a measure of
overall morphometric difference from a template, the repeated measure analysis and post-
hoc analysis of volumes and metric distances provide similar results. The main difference is
that volumes tend to decrease, while metric distances tend to increase by time.

3.5 Comparison of Baseline and Follow-up Metric Distances and Hippocampal Volumes
For the comparison of dependent groups by paired difference method, see Table 4. Observe
that LB-CDR0.5 metric distances are significantly smaller than LF-CDR0.5 distances at α
= .05 (p = 0.0259). The same holds for RB-CDR0.5 vs RF-CDR0.5 distances (p = 0.0002).
That is, CDR0.5 hippocampi tend to become more different in morphometry from the
template, which implies that for both left and right distances there is significant change in
morphometry (perhaps reduction in size) of CDR0.5 hippocampi over time. In fact,
significant volume reduction over time is detected [26]. The morphometric changes in
CDR0.5 right hippocampi from baseline to follow-up is barely significantly larger than those
of CDR0.5 left hippocampi (p = 0.0445). The associated p-value here is obtained by testing
the difference sets (LB-CDR0.5)-(LF-CDR0.5) versus (RB-CDR0)-(RF-CDR0.5) using the
usual paired t-test. On the other hand, only RB-CDR0 is almost significantly less than RF-
CDR0 (p = 0.0621), which implies there is some weak evidence for mild change in right
hippocampi as a result of aging. Furthermore, the morphometric changes in CDR0 right
hippocampi from baseline to follow-up are not significantly different from those of CDR0
left hippocampi (p = 0.3817).

The morphometric changes in CDR0.5 left hippocampi from baseline to follow-up are not
significantly different from those of CDR0 left hippocampi (p = 0.1337), while the
morphometric changes in CDR0.5 right hippocampi from baseline to follow-up are
significantly larger from those of CDR0 right hippocampi (p = 0.0074). Therefore, over
time, DAT influences the morphometry of right hippocampi more compared to left
hippocampi.

The volumes decrease significantly by time in CDR0 group for both left and right
hippocampi (p < .0001 for both); the same holds for CDR0.5 group also (p = .0001 for
both). The volumetric reduction is significantly larger in CDR0.5 right hippocampi
compared to CDR0.5 left hippocampi (p = .0407); but the same holds only barely in CDR0
group (p = .0524). On the other hand, the volumetric reduction is significantly larger in
CDR0.5 left hippocampi compared to CDR0 left hippocampi (p = .0108); the same holds for
right hippocampi also (p = .0418).

Such a baseline versus follow-up comparison is not performed in [26] neither in volumes
nor in metric distances. The morphometric change in the subjects over time is analyzed
based on the eigenfunctions obtained from the SVD procedure.
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3.6 Comparison of Left and Right Hippocampi
We also compare the presence of left-right morphometric asymmetry in hippocampi of
healthy and diseased subjects. Such an asymmetry comparison is not performed in [26]. The
left versus right comparisons are also presented in Table 4, where we see that LB-CDR0.5
and RB-CDR0.5 distances are not significantly different from each other (p = 0.3046), LF-
CDR0.5 distances are significantly smaller than RF-CDR0.5 distances at .05 level (p =
0.0179), the same holds for LB-CDR0 vs RB-CDR0.5 (p = 0.0215) and LF-CDR0 vs RF-
CDR0 (p = 0.0021) comparisons. This implies that at baseline morphometric differences of
CDR0.5 left hippocampi from the left template are about the same as those of CDR0.5 right
hippocampi from the right template. On the other hand at follow-up, morphometric
differences of CDR0.5 left hippocampi are smaller than those of CDR0.5 right hippocampi.
At baseline and follow-up, morphometric differences of CDR0 left hippocampi from the left
template are smaller than those of CDR0 right hippocampi. That is, CDR0 left hippocampi
are more similar in morphometry to the left template when compared to CDR0 right
hippocampi to the right template. These distance comparisons for left versus right
hippocampi would imply left-right morphometric asymmetry, only if the left and right
hippocampi of the template subject were same (up to a reflection). Otherwise, these
comparisons are only suggestive of morphometric differences from the respective
hemisphere (side) of the hippocampi.

The left hippocampus volumes are significantly smaller than the right hippocampus volumes
at both baseline and follow-up years (i.e., there is significant volumetric left-right
asymmetry in hippocampi); baseline volumes are larger than follow-up volumes for both left
and right hippocampi (i.e., there is significant reduction in volume by time) (p < .0001 for
each comparison). We observe the same trend in the overall comparison for each group also.
However, left-right volumetric asymmetry significantly reduces by time in CDR0.5 group (p
= .0407); but the same holds only barely in CDR0 group (p = .0524). The level of left-right
volumetric asymmetry is about the same in both CDR0 and CDR0.5 groups at baseline (p = .
3495) and follow-up (p = .4853).

Remark 3.2—Correlation between Metric Distances of Dependent Hippocampi:
Correlation coefficients between metric distances for baseline and follow-up (overall and by
group) and for the left and right hippocampi are provided in [68]. Except for the CDR0 right
hippocampi, the baseline and follow-up metric distances are significantly correlated for each
group. That is, except for CDR0 right hippocampi, the distances tend to increase at baseline
together with distances at follow-up. That is, as the morphometric differences from the
template hippocampus increase at baseline, so do the differences from the template at
follow-up (except for CDR0 right hippocampi). From the correlation analysis of left and
right distances, we observe there is mild correlation between left and right metric distances.
That is, as the morphometric differences of left hippocampi from the left template increase,
differences of right hippocampi from the right template tend to increase slightly.

3.7 Logistic Discrimination with Metric Distances and Volumes
First we consider the full logistic model (designated as MI(D)) with side, timepoint, and
distance with all possible interactions being the predictor variables. In this model, each
hippocampus MRI is treated as a distinct subject, hence we have 44 × 4 = 176 values for
each variable. When the stepwise model selection procedure is applied, the resulting model
is logit pk = β0 + β1 dijk where pk is the probability of subject k having DAT and dijk the
distance for subject k with diagnosis i (i = 1 for CDR0 and 2 for CDR0.5) at timepoint j (j =
1 for baseline and 2 for follow-up), β0 is the intercept and β1 is the slope of the fitted line.
However, the graph of the proportions of CDR0.5 subjects for grouped metric distances in
Figure 6 suggests that the relationship is a quadratic one (in fact, we found that the higher
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order distance terms are not significant). That is, the analysis of deviance table indicates that
only the linear and quadratic terms are significant (p = 0.001 and p = 0.010). So the resulting
model is

(8)

where β2 is the coefficient of the quadratic term. In the logistic discrimination procedure, we
can treat each hippo-campus from left, right, baseline or follow-up hippocampi as a distinct
subject. However, from a clinical point of view, each subject has four hippocampus MRIs in
this study, and one MRI classified as CDR0.5 would suffice to classify the subject as
CDR0.5, while all four MRIs should be classified as CDR0 for the subject to be classified as
CDR0.

Due to significant group×timepoint interaction, we need to consider diagnosis groups at each
time point. When we use baseline and followup distances one at a time in a logistic model,
we will have 44 × 2 = 88 values for each variable and we see that only the model

(9)

has significant coefficients for the distance terms. Again, labeling one of left or right
hippocampi as CDR0.5 is sufficient to label the subject as CDR0.5 while both left and right
MRIs should be classified as CDR0 for the subject to be classified as CDR0. Moreover,
when we use baseline left, baseline right, follow-up left, and follow-up right distances (i.e.,

, and ) one at a time in a logistic model, we will only have 44 values for each
variable and we see that only the model

(10)

has a significant coefficient for the distance term.

We apply the similar logistic discrimination methods on hippocampal volumes also. First we
consider the full logistic model (designated as MI (V)) with side, timepoint, and volume with
all possible interactions being the predictor variables. After a stepwise elimination procedure
we get the following reduced model:

(11)

where pl is the probability of subject l having DAT and Vijkl the volume for subject l with
diagnosis i ( i = 1 for CDR0 and 2 for CDR0.5) at timepoint j (j = 1 for baseline and 2 for
follow-up) with side k (k = 1 for left and 2 for right), β0 is the overall intercept,  is the
effect of side level k, and β1 is the slope of the fitted line. When we use baseline and
followup volumes (i.e.,  and ) one at a time in a logistic model, we see that the model

(12)
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has the most significant coefficients for the volume terms. Moreover, when we use baseline
left, baseline right, follow-up left, and follow-up right volumes (i.e., , and )
one at a time in a logistic model, we see that the following model has the best fit.

(13)

We could change the threshold probability in Equation (5). The correct classification rates,
sensitivity, and specificity percentages with πo ∈ {1/2, 18/44} are presented in Table 5.
Observe that with πo = 1/2 the best classifier among models MI (D) − MIV (D) is based on
MIII (D) and with πo = 18/44 the best classifier is based on MIV (D). Setting πo = 18/44 (the
proportion of CDR0.5 subjects in the data set) we get higher sensitivity rates than those with
πo = 1/2. Among models MI (V) − MIV (V), with πo = 1/2 the best classifier is based on
model MIII(V) and with πo = 18/44 the best classifier is based on model MIV (V). However,
as πo decreases, the correct classification rate and specificity tend to decrease.

One can optimize the threshold value of πo in Equation (5) to maximize the correct
classification rates and minimize the misclassification rates using an appropriately chosen
cost function. For example one can consider the cost function

(14)

where w1 ≤ w2 are positive odd numbers, FCDR0 is the number of CDR0.5 subjects
classified (falsely) as CDR0 and FCDR0.5 is the number of CDR0 subjects classified (falsely)
as CDR0.5. Minimizing this cost function will maximize the correct classification rates and
minimize the misclassification rates. Alternatively we can maximize the sensitivity and
specificity rates by minimizing the following cost function

(15)

where η1, η2 ≥ 0 and η1 + η2 = 1. Notice that as either of sensitivity or specificity increases,
the cost function C2(πo, η1, η2) decreases. If equal weight is put on the sensitivity and
specificity, we can choose w1 = w2 = 1 in C1(πo,w1, w2) and η1 = η2 = 0.5 in C2(πo, η1, η2).

Using w1 = w2 = 1, optimal threshold values are πo = 0.5 for model MII (D) in Equation (9),
πo = 0.45 for model MIII (D) in Equation (10), and optimal πo = 0.38 for model MIV (D) in
Equation (11). The specificity rates are 69%, 73%, and 69%, respectively. The sensitivity
rates are 56%, 67%, and 72%, respectively. Obviously, from a clinical point of view,
misclassifying a CDR0.5 subject as CDR0 (i.e., classifying a diseased subject as healthy)
might be less desirable, since a subject labeled as CDR0.5 will undergo further screening but
a subject labeled as CDR0 will be released. So the parameters w1 and w2 could be modified
to reflect such practical concerns and then a different set of threshold πo values could be
found. For example, we set w1 = 1 and w2 = 3 which favors correct classification of CDR0.5
subjects more than that of CDR0 subjects (i.e., favors higher sensitivity). Observe that with
w1 = w2 = 1 the best classifier is based on model MIV (D) and with w1 = 1 and w2 = 3 the
best classifier is based on model MIII (D). With η1 = η2 = 0.5 the best classifier is based on
model MIV (D) and with η1 = .3, η2 = 0.7 the best classifier is based on model MIII(D).
Observe that from η1 = η2 = 0.5 to η1 = .3, η2 = 0.7, sensitivity increases, correct
classification rate and specificity tend to decrease.
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The classification rates based on the logistic discrimination with hippocampal volumes are
presented in Table 6. Observe that with πo = 1/2 the best classifier is based on model MIII(V)
and with πo = 18/44 the best classifier is based on model MIV (V). Furthermore, as πo
decreases from 1/2, sensitivity increases but the correct classification rate and specificity
decreases. We use the cost function C1(πo,w1, w2) with w1 = w2 = 1 and with w1 = 1 and w2
= 3 to calculate the optimal πo values for each of the models MI(V) − MIV(V). Observe that
with w1 = w2 = 1 the best classifier is based on model MIV (V) and with w1 = 1 and w2 = 3
the best classifier is based on model MIII(V). We find the optimal πo values based on the cost
function C2(πo, η1, η2) with η1 = η2 = 0.5 and with η1 = .3, η2 = 0.7 for each of models MI
(V) − MIV (V). With η1 = η2 = 0.5 the best classifier is based on model MIV (V) and with η1
= .3, η2 = 0.7 the best classifier is based on model MI (V). Observe that from η1 = η2 = 0.5 to
η1 = .3, η2 = 0.7, sensitivity increases, correct classification rate and specificity tend to
decrease.

3.8 Comparison of Logistic Discrimination Procedures with Hippocampal Volumes and
Metric Distances

Although volume is a measure of size and metric distance is a measure of overall
morphometric difference from a template, the repeated measure analysis and post-hoc
analysis of volumes and metric distances provide similar results. The main difference is that
volumes tend to decrease, while metric distances tend to increase by time. The logistic
discrimination models are similar, except model MIV (D) for metric distances contains right
follow-up distances, while model MIV (V) for volumes contains left follow-up volumes. The
classification performances with πo = 1/2 and πo = 18/44 suggest that volume models have
better performance than the metric distance models (see Tables 5 and 6). Using the optimal
πo values with the cost functions C1(πo,w1,w2) and C2(πo, η1, η2), the classification
performances are significantly different for models MI (V) − MIV (V) of volumes and MI (D)
−MIV (D) metric distances. Comparing Tables 5 and 6, we see that logistic discrimination
with volumes has better performance.

We apply the logistic discrimination using both volume and metric distance as predictors.
The models we consider are the full logistic model (designated as model MI (V, D)) with
side, timepoint, volume, and metric distances with all possible interactions being predictor
variables. We apply the same stepwise elimination procedure as in Section 3.7 and get

where pl is the probability of subject l having DAT and Vijkl the volume and dijkl the distance
for subject l with diagnosis i (i = 1 for CDR0 and 2 for CDR0.5) at timepoint j (j = 1 for
baseline and 2 for follow-up) with side k (k = 1 for left and 2 for right), β0 is the overall
intercept,  is the effect of side level k, β1 is the coefficient for volume, β2 is the coefficient
for ninth power of the distance, β3 is the coefficient for the interaction between volume and
distance. When we use baseline or follow-up measures one at a time in a logistic model, we
see that the model

has the most significant coefficients. When we use side×timepoint combinations one at a
time in a logistic model, we see that the following model has the best fit:
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The corresponding classification rates are presented in Table 7. Observe that considering
metric distance and volume together in the logistic discrimination procedure with the cost
functions C1(πo,w1, w2) and C2(πo, η1, η2), we get better classification rates compared to
logistic models with only one of metric distance or volume being the predictors.

In [26], logistic discrimination procedure is applied with either on the first 12 eigenfunctions
obtained from the SVD of vector field changes, or on these eigenfunctions together with the
hippocampal volume changes. In this article, we perform logistic discrimination on volumes
(hippocampal, brain and intracranial) and metric distances together with a model selection
procedure. In the above logistic models, we consider the volumes only not the volume
changes.

4 Annual Percentage Rates of Change in Hippocampal Volumes and in
Metric Distances

Our volume and metric distance comparisons are cross-sectional or longitudinal by
construction. However these measures might need to be adjusted for anatomic variability,
since intersubject variability might add substantial amount of noise to volume or distance
measurements at baseline or follow-up. There is no simple way to correct for this noise in
practice. Differential volume loss or distance change over time might be self-correcting for
such variability. For example, entorhinal cortex volume loss over time was shown to be a
better indicator for DAT than cross-sectional measurements [66].

The hippocampal volume change over time can be written as the following annual
percentage rate of change (APC) [66]:

(16)

where T is the interscan interval in years (T ≈ 2 in our data).

For modeling annual percentage rate of change in volume V APC using the repeated-
measures ANOVA with group as main effect and compound symmetry in Var-Cov structure
and V APC measures repeated over side for each subject, the model is

(17)

where  is the APC in volume for side j of subject k with diagnosis i, μ is the overall

mean,  is the effect of diagnosis level i (i = 1 for CDR0; 2 for CDR0.5),  is the effect of

side level j (j = 1 for left and 2 for right),  is the diagnosis×side interaction, and εijk is the
error term. The diagnosis main effect is significant (F = 18.62, df = 1, 84, p < .0001) but
neither side main effect (F = 0.72, df = 1, 84, p = .3754) nor diagnosis×side interaction is
significant (F = 0.11, df = 1, 84, p = 0.7384). Consequently, we conclude that the lines that
join the mean V APC values in the interaction plot are parallel and far apart, the main effect
of diagnosis comparison is meaningful, and about the same at each hemisphere. The post
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hoc comparison of V APC values indicate that the APC in CDR0.5 volumes are significantly
larger than APC in CDR0 volumes (p = .0001).

The hippocampal metric distance change over time can be written as the following annual
percentage rate of change:

(18)

Notice that to make APC in metric distance positive, we take the difference  as
opposed to the order in the APC in volume definition. However, since volume has a unit but
metric distance is unitless, the same correction for anatomic variability might not work well
for both measures. For metric distances, we recommend the measurement of the distance
between follow-up and baseline hippocampi instead. In fact, the repeated-measures analysis
of APC in metric distances do not perform better than the distances or APC in volumes [68].

4.1 Logistic Discrimination Based on Annual Percentage Rates
We also apply the logistic discrimination methods of Section 3.7 on APC in hippocampal
volumes. First we consider the full logistic model (designated as MI (V APC) with side and
APC in volume with all possible interactions being the predictor variables. We apply the
same stepwise elimination procedure as in Section 3.7 and get

(19)

where pk is the probability of subject k having DAT.

Furthermore, when we use  and  as predictors in a logistic model, we see that
the following model has the best fit.

(20)

The classification rates with πo = 1/2 and πo = 18/44 and optimal πo values with respect to
the cost functions are presented in Table 8. Observe that the classifier using the cost function
C2(πo, η1, η2) with η1 = .3, η2 = 0.7 in model MI (V APC) has the best performance.
Comparing Tables 6 and 7, we observe that correct classification rates, sensitivity, and
specificity percentages with the classifiers based on APC in volume are about the same as
those with volume only. Unlike the findings of [66] hippocampal volume loss over time is
not a better indicator for DAT than cross-sectional measurements. On the other hand, the
classifier based on volume and distance together performs better compared to models based
on only one of volume, distance, or APC in volume values.

We apply the logistic discrimination methods of Section 3.7 on APC in hippocampal metric
distances also in [68] where we demonstrate that hippocampal metric distance change over
time is a poor indicator for DAT.

We apply the logistic discrimination based on both the distance and APC in volumes. First
we consider the full logistic model (designated as MI (V APC, D)) with side and APC in
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volume, and distances with all possible interactions being the predictor variables. We apply
the same stepwise elimination procedure as in Section 3.7 and get

(21)

Furthermore, when we use and left and right measures as predictors in a logistic model, we
see that the following model has the best fit.

(22)

The classification rates with πo = 1/2 and πo = 18/44 and optimal πo values with respect to
the cost functions are presented in Table 10. With the cost function C1(πo,w1 = 1,w2 = 1), the
best classifier is based on MIII (V APC,D) for which the optimal threshold value is πo ≈ .37,
the correct classification rate is 80%, sensitivity is 78%, and specificity is 81%. Likewise,
with the cost function C1(πo,w1 = 1,w2 = 3), the best classifier is based on MI (V APC, D) for
which the optimal threshold value is πo = .56, the correct classification rate is 80%,
sensitivity is 78%, and specificity is 81%. On the other hand, with cost function C2(πo, η1 = .
5, η2 = .5) the best classifier is based on  (V,D) for which the optimal threshold value is
πo = .64, the correct classification rate is 84%, sensitivity is 72%, and specificity is 92%.
With cost function C2(πo, η1 = .3, η2 = .7), the best classifier is again based on  (V,D)
for which the optimal threshold value is πo = .56, the correct classification rate is 80%,
sensitivity is 78%, and specificity is 81%. Comparing Tables 7 and 10, we observe that the
classifiers based on metric distance and volume usually perform better compared to the
classifiers based on metric distance and APC in volume. Comparing Table 8 and 10, we
observe that adding the metric distance to the logistic model with APC in volume improves
the classification performance. Hence the model with hippocampal volume loss over time
and metric distance is a better indicator for DAT compared to either variable used separately
in logistic discrimination.

We also apply the logistic discrimination based on volume, distance, and APC in volumes.
First we consider the full logistic model (designated as MI (V, V APC, D)) with side, volume,
and APC in volume, and distances with all possible interactions being the predictor
variables. We apply the same stepwise elimination procedure as in Section 3.7 and get

(23)

Furthermore, when we use and left and right measures as predictors in a logistic model, we
see that the following model has the best fit.

(24)

The classification rates the optimal πo values with respect to the cost functions are presented
in Table 10. With the cost function C1 (πo, w1 = 1, w2 = 1), the best classifier is based on
MIII (V, V APC, D). Comparing Table 10 with Tables 5, 6, 8, 9, and 7, we observe that the
classifiers based on metric distance, volume, and APC in volumes usually perform better
compared to the classifiers based on other models. Hence the model with volume,

Ceyhan et al. Page 19

Comput Med Imaging Graph. Author manuscript; available in PMC 2012 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



hippocampal volume loss over time, and metric distance is a better indicator for DAT
compared to other models based on subsets of these variables.

The hippocampal volume change (together with the first 12 eigenfunctions) was used in [26]
for logistic discrimination, but in this section, we use not the volume change but a function
of it (namely annual percentage change) in logistic discrimination. Moreover, we also
consider annual percentage change in metric distances in logistic discrimination.

5 Discussion and Conclusions
In this study, we consider the use and analysis of metric distances between brain tissues that
are computed from the vector fields generated by Large Deformation Diffeomorphic Metric
Mappings (LDDMM) with respect to an anatomical template. In particular, we use
hippocampi in groups of subjects with and without Dementia of Alzheimer type (DAT) in its
mild form (labeled as CDR0.5 and CDR0 patients, respectively) at baseline and follow-up as
examples. The subjects in this paper have been previously analyzed using related but
different tools. More specifically, the data was analyzed using the “greedy algorithm
implementation of the diffeomorphic mapping and comparing displacement vector fields”
[26]. [39] showed that this approach or the small deformation one used in many mapping
methods do not generate true metric distances. Furthermore, in [26], as a single scalar
measure, volumes were used for diagnosis group comparisons at baseline and follow-up and
in [45] displacement momentum vector fields based on LDDMM were used for
discrimination. At the same time [45] showed that statistical analysis of (momentum) vector
fields generated by LDDMM was consistent with those generated by HDBM in [26]. But the
metric distances computed from LDDMM has not hitherto been used in diagnosis group
analysis. The metric distance gives a single number reflecting the global morphometry (i.e.,
the size and shape) while volume measurements mostly provide information on size. So
metric distances provide additional morphometric information not conveyed by volume
whereas momentum vector fields also provide local information on shape changes. Further,
the morphometric information conveyed by the metric distance depends on the choice of the
template, while the morphometric information conveyed by momentum vector fields is
independent of the template chosen. That is, although the vector fields change when the
template changes, the morphometric information they convey is the same. However, the
vector field data is highly multidimensional and harder to interpret compared to the metric
distances.

There have been other methods for hippocampus morphometry ([67,73-78] to name a few of
the recent studies). Compared to these methods, the advantage of the current approach is that
it enjoys all three of the following properties whereas the other methods only satisfy one or
two of them. That is, the metric distance (1) provides a single global measure of shape and
size, (2) can be used for group and discrimination analysis, and (3) indicates relative
distance between subjects. For example, in [67], hippocampus was included as part of the
temporal lobe and the tensor-based morphometry analysis was done using Jacobian maps
created with a LDDMM type registration algorithm [79] but does not use the induced metric.
Although the Jacobian maps calculated with LDDMM can be used for tensor-based
morphometry analysis and can be compared with [67], it is beyond the scope of this work.

The metric distances may be used for cross-sectional comparisons of the morphometry of
diagnostic groups. For example, in our example data set, metric distances did not detect any
significant difference in morphometry at baseline (see Table 4), but follow-up metric
distances for the right hippocampus in CDR0.5 (i.e., mildly demented) subjects are found to
be significantly larger than those in CDR0 (i.e., non-demented) subjects (see Table 4). Wang
et al. also analyzed the velocity vector fields for the baseline hippocampi of the same data
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set and found that the left hippocampus in the DAT group shows significant shape
abnormality and the right hippocampus shows similar pattern of abnormality [45]. The
reason for the metric failing to detect such abnormality in the baseline hippocampi is that
metric distance is a compound and oversummarizing measure of global morphometry.

The metric distances might also be used in longitudinal analysis in order to see how
morphometry (with respect to the template) changes over time. For example, from baseline
to follow-up, metric distances for CDR0.5 subjects significantly increase while those in
CDR0 subjects do not (see Table 4). That is, the morphometry (shape and size) of
hippocampus in CDR0.5 subjects changes significantly over time, but not in CDR0 subjects.
Atrophy - over two years - might occur with aging, and this is captured by metric distances
(see Table 4). However the increase in the metric distances in CDR0 subjects is not found to
be statistically significant. Differences and changes (over time) in morphometry can also be
used for diagnostic discrimination of subjects in non-demented or demented groups. Many
discrimination techniques such as Fisher’s linear discriminant functions, support vector
machines, and logistic discrimination can be applied to the metric distances, together with
other qualitative variables. In this study we applied logistic discrimination based on metric
distances, as logistic regression not only provides a means for classification, but also yields
a probability estimate for having DAT. Furthermore, one can optimize the threshold
probability for a particular cost function for the entire training data set, or by a cross-
validation technique. The correct classification rate of the hippocampi was about 70% in our
logistic regression analysis. In [45] PCA of the initial momentum of the same data set led to
correct classification of 12 out of 18 (i.e., 67% of the) demented subjects and 22 out of 26
(i.e., 85% of the) control subjects. Metric distances can be used to distinguish AD from
normal aging quantitatively; however, to be able to use it for diagnostic purposes, the
method should be improved to a greater extent.

The atrophy in the temporal lobe was also observed by [67], where hippocampus was
included as a part of the temporal lobe (as opposed to our study where only hippocampus
atrophy is analyzed). In [67], it has been shown that brain atrophy rates are greater in DAT
and MCI (mild cognitively impaired) patients, compared to healthy subjects. Moreover,
MCI subjects who converted to DAT exhibited faster atrophy rates than the ones who did
not convert, and slower rates compared to DAT subjects. This is somewhat in agreement
with our findings that the rate of change in morphometry is larger in DAT subjects
compared to healthy ones. However, volume (as a measure of tissue size) is not analyzed in
this article. Furthermore, compared to the vector field changes, Jacobian changes are used in
the analysis of morphometric changes.

We perform a principal component analysis on metric distances and hippocampus, brain,
and intracranial volumes. Considering the variable loadings, we conclude that volumes are
mostly measures of size and partly related to shape, while the metric distance is mostly a
measure of shape and partly related to size.

We also compare the cross-sectional, longitudinal, and discrimination results of metric
distances with those of volumes. We observe that cross-sectional and longitudinal analysis
give similar results, although metric distances increase and volumes decrease by time. The
metric distance, being an extremely condensed summary measure gives very similar results
as the hippocampal volume. Furthermore, the differential volume and distance changes are
measured by annual percentage rate of change (APC) for the two year period in the study.
Similar to the results of [66], we found that APC in volumes may be a good indicator for
early stage of DAT. However, APC in metric distances do not provide a good performance
in classification of CDR0 versus CCDR0.5 hippocampi. The best classifiers in our logistic
discrimination procedure are the ones which use hippocampal volume, metric distance, and
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annual percentage change in volumes (see Table 10). Notice that the best performer models
(marked with *) have correct classification rates of 91%, sensitivity rate of 94%, and
specificity rate of 88%. On the other hand, in [26], the logistic discrimination with the first
12 eigenfunctions based on SVD yields a correct classification rate of 84.0%, sensitivity rate
of 83.3%, and specificity rate of 84.6%; and the logistic discrimination with the first 12
eigenfunctions together with hippocampal volume changes yields a correct classification
rate of 86.0%, sensitivity rate of 72.2%, and specificity rate of 92.6%. Therefore, in
classification of healthy versus diseased hippocampi, our model (with volume, metric
distance, and annual percentage change in volume) seems to perform better compared to the
classification models of [26] in the classification rates. Hence these measures may constitute
a reliable biomarker when used together.

The clinical implications of the findings are deferred to [68]. We have presented detailed
statistical analysis of metric distances computed with LDDMM and show that this is
potentially a powerful tool in detecting morphometric changes between diagnosis groups or
changes in morphometry over time. Metric distances depend on the choice of template
anatomy used. However, in this article we do not address the issue of template selection for
optimal differentiation between hippocampus morphometry. As a compound but brief
measure of morphometry, metric distances can thus serve as a first step to identify the
morphometric differences, and can be used as a pointer to which direction a clinician or data
analyst could go. The metric distance results agree with the volume comparisons of [26],
hence volume (i.e., scale) might be highly dominating the morphometric changes in the
hippocampi. In other words, the significant volume reduction in left and right hippocampi
might dominate the change in shape, when morphometry is measured by metric distances.
To remove the size influence so as to measure the shapes only, one can perform scaling on
the hippocampi and then apply LDDMM to normalize the size differences.
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Figure 1.
Change in metric distance during diffeomorphic flow from template (I0) to target
( ). The numbers are the metric distance estimates at the three intermediate
stages and the final stage of the LDDMM algorithm.
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Figure 2.

Generation of metric distances  for subjects k = 1, … , 44 at baseline (b) and at follow-
up (f).
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Figure 3.
Pairs plots of the continuous variables for the hippocampi at baseline and follow-up. HLV:
volume of left hippocampus; HRV: volume of right hippocampus; HLM: metric distance for
left hippocampus; HRM: metric distance for right hippocampus; BV: brain volume; ICV:
intracranial volume. The numbers 1 and 3 stand for year 1 (i.e., baseline) and year 3 (i.e.,
follow-up), respectively.
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Figure 4.
Scatter plots of the metric distances for the left and right distances at baseline and follow-up.
The metric distances are jittered for better visualization and the crosses represent the mean
distance values.
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Figure 5.
Interaction plots for diagnosis levels over the timepoint levels for left and right metric
distances demonstrating that the slopes are different between diagnostic groups (with slope
differences in the right being larger).
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Figure 6.
Fitted probability for having mild dementia (CDR0.5) and observed proportion in metric
distances with model (9) (top-left); model (10) (top-right); and model (11) (bottom),
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Table 1

Summary information of subjects (I); means and SDs of brain and intracranial volumes by diagnosis group
(III); means and SDs of hippocampal volumes by diagnosis group (IV); and means and SDs of metric
distances by diagnosis group (V).

I- Summary Information of Subjects

Gender (M/F) Age (years) (mean ± SD) Scan interval (years) ([Min-Max]) Education (years) (mean ± SD)

CDR0 12/14 75.2±7.0 2.2 [1.4-4.1] 14.8± 2.7

CDR0.5 11/7 75.7±4.4 2.0 [1.0-2.6] 13.7± 2.8

overall 23/21 75.4±6.1 2.1 [1.0-4.1] 14.3± 2.8

pL NA 0.4224 NA 0.0001

pW NA 0.8202 NA 0.2101

III- Mean ± SD Values of Brain and Intracranial Volumes

BV1 BV3 ICV1 ICV3

CDR0 1006892± 104214.0 1003319.4± 101129.0 1407972 ± 156067.1 1464494± 177496.0

CDR0.5 1003850± 92293.4 993380.8 ± 95425.0 1408507± 134912.6 1454966± 138931.2

overall 1005647± 98408.2 999253.6 ± 97828.6 1408191± 146140.3 1460596± 161152.7

pL 0.2302 0.0079 0.0503 0.1070

pW 0.5192 0.3277 0.7929 0.8299

IV- Mean ± SD of Hippocampal Volumes

LB LF RB RF

CDR0 2081.4 ± 354.8 2081.4 ± 354.8 2081.4 ± 354.8 2081.4 ± 354.8

CDR0.5 1717.6 ± 224.8 1717.6 ± 224.8 1717.6 ± 224.8 1717.6 ± 224.8

overall 1932.6 ± 354.8 1932.6 ± 354.8 1932.6 ± 354.8 1932.6 ± 354.8

pL 0.3528 0.0268 0.2001 0.2359

pW 0.0003 < 0.0001 0.0149 0.0004

V- Mean ± SD of Metric Distances

LB LF RB RF

CDR0 3.34 ± 0.62 3.41 ± 0.54 3.63 ± 0.57 3.83 ± 0.47

CDR0.5 3.48 ± 0.76 3.82 ± 0.98 3.68 ± 0.81 4.37 ± 0.78

Overall 3.40 ± 0.68 3.57 ± 0.77 3.65 ± 0.67 4.05 ± 0.67

pL 0.0498 0.4718 0.2891 0.1084

pW 0.5994 0.1590 0.9145 0.02058

pL: p-value based on Lilliefor’s test of normality, pW: p-value based on Wilcoxon rank sum test. NA: not applicable; BV1 (BV3): brain volume at
baseline (followup); ICV1(ICV3): intracranial volume at baseline (followup); LB: left baseline; LF: left followup; RB: right baseline; and RF: right
followup.
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Table 2

The importance of principal components and variable loadings from the principal component analysis of
metric distances and volumes of left hippocampi at baseline with eigenvalues based on the covariance matrix.

Importance of Components

PC1 PC2 PC3 PC4

Prop. Var .9877 .0123 ~ 0.0 ~ 0.0

Cum. Prop .9877 ~ 1.0 ~ 1.0 1.0

Variable Loadings

PC1 PC2 PC3 PC4

HLV1 ~ 0.0 ~ 0.0 1.00 ~ 0.0

HLM1 ~ 0.0 ~ 0.0 ~ 0.0 1.00

BV1 .55 -.83 ~ 0.0 ~ 0.0

ICV1 .83 .55 ~ 0.0 ~ 0.0

PCi stands for principal component i for i = 1, 2, 3, 4; Prop.Var: proportion of variance explained by the principal components; Cum.Prop:
cumulative proportion of the variance explained by the particular principal component; HLV1: volume of left hippocampus at baseline; HLM1:
metric distance of left hippocampus at baseline; BV1: brain volume at baseline; ICV1: intracranial volume at baseline.
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