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Abstract

Accurate and fast fusion and display of real-time images of anatomy and associated data is critical
for effective use in image guided procedures, including image guided cardiac catheter ablation.
We have developed a piecewise patch-to-model matching method, a modification of the
contractive projection point technique, for accurate and rapid matching between an intra-operative
cardiac surface patch and a pre-operative cardiac surface model. Our method addresses the
problems of fusing multimodality images and using non-rigid deformation between a surface
patch and a surface model. A projection lookup table, K-nearest neighborhood search, and a final
iteration of point-to-projection are used to reliably find the surface correspondence. Experimental
results demonstrate that the method is fast, accurate and robust for real-time matching of intra-
operative surface patches to pre-operative 3D surface models of the left atrium.
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1. Introduction

Catheter-based ablation for treatment of cardiac arrhythmias has increased dramatically over
the past decade [1-29]. In contrast to open chest surgical-based procedures, catheter-based
ablation has significantly lower morbidity and mortality [8,9]. Because of the lack of direct
visualization, the ablation procedure is accomplished via remote navigation of the catheter
guided by real-time imaging and magnetically tracked catheters. Previous papers have
reported using pre-operative image-based models of the left atrium to assist in guiding the
procedure [10,11]. Since the pre-operative models computed from MR or CT images tend to
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be high resolution, large field-of-view (FOV) datasets, they are obtained before the
procedure and, thus do not exactly represent the patient anatomy during the procedure. Real-
time 3D imaging technologies, such as intra-cardiac ultrasound and rotational angiography,
can be used to obtain volumetric datasets during an ablative procedure, but these datasets
usually cover only a small FOV and/or are obtained at a lower resolution. In our approach,
high-resolution pre-operative models are fused with real-time imaging datasets to enhance
ease of navigation and accuracy of targeting in the procedure [12].

During an image-guided cardiac ablation procedure, a 3D map of the endocardial surface of
the left atrium (LA) is created by sampling surface points from the LA using a magnetically
tracked catheter. The 3D map, called an electro-anatomical map (EAM), is generated from
60 to 120 sampled points. Because the EAM is a low-resolution representation of the LA,
several approaches have been developed to integrate a high-resolution pre-operative model
of the LA [13-29]. Unfortunately, after the creation of the EAM and registration to the high-
resolution model, the cardiologist will often return to x-ray fluoroscopy and/or intra-cardiac
echocardiography for guidance because both provide real-time feedback of the anatomy and
ablation catheter. In some cases, rotational angiography will also be used in obtaining a 3D
dataset of the LA.

In order to improve the guidance and targeting of cardiac ablation, it is desirable to fuse the
disparate datasets into a single representative model of the patient’s anatomy during the
procedure. The fusion process should provide the most “up-to-date” display of the patient’s
heart utilizing both the high-resolution pre-operative data and real-time image data. More
specifically, as real-time 3D data is obtained (e.g., either through 3D ultrasound or rotational
angiography), the data should be integrated into the high-resolution model to properly reflect
the changes in the patient’s cardiac anatomy during the procedure. Fusion of these datasets,
however, is not straightforward because the real-time data is lower-resolution than the pre-
operative data and is obtained over a smaller FOV than the pre-operative data. In our
approach, the intra-operative data (represented as a polygonal surface patch) is registered to
the pre-operative model, which is represented as a closed polygonal surface. The intra-
operative patch dynamically replaces the corresponding data in the high-resolution
polygonal model.

2. Methods

In order to fuse the pre-operative surface model with the intra-operative image data, we must
find the surface correspondence between them. Correspondence, in this case, requires both
global and local alignment. While global alignment orients one datasets into the space of a
second dataset, it does not provide the final mapping of one dataset to another due to local
tissue deformation. As such, both global and local transformations must be considered.
Global registration techniques have been previously validated and published. Global
alignment can be achieved using a standard registration technique such as software-based
registration [30] or landmark pair matching between pre-operative surface points [31,32]
and intra-operative locations sampled by magnetically tracked US catheters [33]. In this
work, we assume an initial global alignment has been computed using one of these standard
techniques and we instead focus on refinement of an initial global registration. Because of
the complex variation of the morphology of the LA during the cardiac cycle, the initial
alignment is not acceptable as the final registration of the real-time data to the pre-operative
model. However, with the surface patch coarsely aligned to the specific LA surface model,
the vertices on the patch can serve as control points for acceptable refinement of the
registration to the surface model.
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There are three approaches widely used for refinement of 3D surface matching following
initial alignment [34-37]: 1) point-to-point, e.g. iterative closest point (ICP) algorithm [38]
and its variations, 2) point-to-(tangent-)plane [39], and 3) point-to-projection [40].
Unfortunately, the heavy computational burden of searching for the closest point on the
destination surface negates the point-to-point and point-to-plane algorithms for real-time
applications. The point-to-projection method is quite fast for registration refinement as it
does not involve iterative searching steps to find the correspondence, but it is not as accurate
as the other two methods because of the tradeoff between speed and accuracy. The
contractive projection point (CPP) technique, developed by Park and Subbarao [34,41],
provides a fast and accurate registration by combining the fast searching capability of the
point-to-projection method and the most accurate performance of the point-to-plane method.

Although experimental results show that point-to-projection and CPP are promising
techniques for refinement of 3D surface matching, they do not address the important issues
of matching of multimodality, non-monotonic, and non-rigidly deformed surfaces with
different sampling densities. These issues are present in many applications of medical
imaging and other domains. Matching an intra-operative surface patch to a pre-operative
surface model of the LA is such an application.

2.1 Point-to-projection method

The point-to-projection method uses a projection ray to associate points on a source surface
and a destination surface. As shown in Fig. 1(a), the 3D point p, on the source surface is
back-projected to a 2D point p; on a certain image plane Ip according to the projection ray of
the destination surface, and then the 2D point p; is forward-projected to a 3D point p, on the
destination surface along the same projection ray. This method determines the point py, on
the destination surface as the corresponding point of point p, on the source surface.

2.2 CPP technique

To achieve surface correspondence, the CPP technique utilizes an iterative point-to-
projection approach to find the intersection on the destination surface corresponding to the
point on the source surface, as illustrated in Fig. 1(a). Specifically,

1. The point-to-projection method is used to find the 3D point py, on the destination
surface, which is corresponding to the 3D point p, on the source surface.

2. Instead of treating py, as the final point on the destination surface for surface
matching as the point-to-projection method does, pp, is projected to the normal
vector g, of py to get a new 3D point pp;.

3. The point-to-projection on py, is iterated on pp1, Pp2, and so on, and py, converges to
3D point ppn on the destination surface.

4. pp is projected again along the normal vector of pp, to the tangent plane at ppp, and
the intersection pp is the final matching point on the destination surface
corresponding to the source point pp,.

The point-to-projection and CPP techniques are limited for medical imaging applications for
several reasons. First, in computing point py, from point py, it is necessary to compute an
interpolated grid on the projection image plane, and forward-project it to the world
coordinate system. For traditional applications of point-to-projection and CPP (such as
surface scanning data), this approach is feasible because the data is paired views or multi-
views of a regularly sampled point cloud along a rectangular grid. It does not, however,
work for an irregularly sampled point cloud of variable density as in the case of tiled
medical imaging datasets. Second, the final matching point pp in the CPP technique is not
guaranteed to match identically to the surface model, because that point is on the tangent
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plane but not on the surface model. Third, the point-to-projection method usually isn’t
accurate enough for medical imaging applications. The proposed method addresses these
three problems by setting up a projection lookup table for the surface patch and surface
model separately, and projecting point py; to the surface model.

2.3 Proposed method

The proposed method determines the surface correspondence following initial alignment,
including vertex matching and region matching, by projecting the surface patch to the
surface model, as shown in Fig. 1(b). The detailed flow is as follows:

1.

The projection axis and projection image plane for the surface patch and surface
model are estimated according to the average patch normal and the center point of
the surface model. In addition, the view point is estimated according to the center
point of the surface patch, the projection axis and the projection image plane. With
the estimated view point, projection axis and a certain view angle, the initial
matching surface region can be defined in order to remove surface vertices and
triangular tiles that are located outside of the desired matching surface region.

Two projection lookup tables, which maintain the correspondence between the 2D
pixel on the projection image plane and the 3D vertex on the surface patch or
surface model, are constructed separately by projecting all the vertices of the
surface patch or the initial matching surface region to the projection image plane
along the projection axis.

The CPP technique is used to find the vertex on the surface model corresponding to
each vertex on the contour of the surface patch. The lookup table is used to find the
vertex correspondence during each projection, instead of the direct forward-
projection used in the original CPP technique.

The point pp, which is on the tangent plane of the convergent projection point ppp,
is projected once again to find the final vertex ppm on the surface model, which
corresponds to the vertex p, on the surface patch.

The projection pixels of all the vertices on the surface model, corresponding to
those on the contour of the surface patch, comprise a polygon on the image plane.
The matching vertex set is composed of all the vertices on the surface model,
whose projection pixels are located inside the polygon.

The entire matching region on the surface model is filled by the triangular tiles
whose vertices all belong to the matching vertex set.

In the case of a “C-shaped” or closed cylindrical surface, the patch is divided into
several sub-patches, and a piecewise matching method is used to obtain a complete
matching region by combining the match results of all subpatches.

In the method described above, the modification proposed in this paper is applied to the CPP
technique. By replacing the CPP technique with the point-to-projection method in step 3)
and skipping the step 4), it is also applicable to the point-to-projection method. We apply
our proposed madification to both the CPP and point-to-projection techniques and validate
both methods in this paper.
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3. Implementation

3.1 Estimation of projection axis and image plane

Unlike surface scanning data, the anatomic surface patch and surface model are derived
from an unstructured point cloud or volumetric dataset. Accordingly, the projection axis and
the projection image plane must be estimated before projecting the patch to the surface.

The projection axis iy is estimated to be the vector of the average normal vector of the
surface patch, as in equation 1 -

n-1
'ﬁp:Normu]i:e(Z/ﬁﬁ)
i=0 1)

where ri;j is the normal vector of the ith tile of the n triangular tiles of the surface patch, and
should always be the outward oriented normal.

The projection image plane is defined by a point on the plane and its normal vector, where
the point is the center point of the bounding box of the surface model, and its normal vector
is the vector of the projection axis. The view point py is estimated to be the projection point
on the projection image plane, where the source point is the center point of the bounding box
of the surface patch, as in equation 2 -

d=(pmo — ppo) ""\p
pr:ppo‘i'(mp 2)

where pry is the center point of the bounding box of the surface model, pp, is the center
point of the bounding box of the patch, and d is the signed, shortest distance from pp, to the
plane.

To remove surface vertices and triangular tiles that are located outside of the desired
matching surface region, the initial matching region on the surface model, vertex set Vy, is
determined from the view point, projection axis and a given angle. The angle is defined
between the vector of the projection axis and the vector from p, to a vertex on the surface
model, as in equation 3 -

{ (Pmi - Pv) ‘/ﬁp
= l"i| -

> cos(n/3),i=0,1,--- ,m— 1}
|(Pmi - P\N

M1
3)

Pmi is the ith vertex of the m vertices on the surface model, and #/3 is the predefined angle to
limit the initial matching region reasonably according to intra-operative surface patch.

3.2 Projection Lookup Table

The vertices on the surface patch and surface model are non-uniformly distributed and
sampled with different point densities, so it is essential to set up a projection lookup table to
maintain the correspondence between 3D vertices and 2D pixels on the image plane.
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The projection image plane is divided into a grid to which the projection pixels are assigned.
The pixel count in the projection contour of the initial matching region is determined by the
vertex count of the initial matching region. To simplify the calculation, the bounding
rectangle of the projection contour is used, and the vertex count, ny,, is scaled by 1.5
(empirically determined) to ensure a significant coverage area. The dimension size of the
projection rectangle on the image plane is given by equation 4 -

Nx=+/ 1~5nm\'/r\x}'

Ny=FxyNy 1)

where ryy is the ratio of height to width of the bounding rectangle, and ny and ny are the pixel
count along the row and column of the bounding rectangle. If available, the original voxel
size of the pre-operative volumetric dataset can alternatively be used to calculate ny and ny.
With all the vertices of the initial matching region projected to the image plane, the multi-
to—one mapping lookup table is established between the vertices of the initial matching
region and the pixels on the image plane. The lookup table for the surface patch is also
established with all the vertices of the surface patch projected to the projection image plane.
With the two lookup tables, it is possible to find the vertex on the surface model
corresponding to the vertex on the surface patch, which belongs to the same projection pixel
during point-to-projection.

Because the vertices on the surface patch and surface model are not regularly sampled and
distributed, it is not essential that the projection pixel, corresponding to the vertex on the
surface patch, be directly mapped to one or more vertices on the surface model. Rather, the
K-nearest neighborhood search method is used in the lookup table to find the nearest pixel,
which has corresponding vertex on the surface model mapped to the same projection pixel.
To ensure robust performance, the K value is iterated from 1, 8, 24, 48 to 80, and the search
is from top to bottom and from left to right during each iteration. The projection pixel is
rejected if a valid nearest pixel could not be found during the complete iteration.

3.3 Matching region filling

To decrease the dependence on the point cloud density of the patch and to meet the real-time
requirement, only vertices on the 3D contour of the surface patch are projected to the surface
model, and the matching region is filled according to the corresponding vertices on the
surface model.

The closed contour of the surface patch is extracted based on the connectivity information
from the triangle tiles. With all the vertices of the contour of the surface patch projected to
the image plane, the nearest pixels found in the lookup table can be connected in the same
order as the contour to form a polygon on the image plane. Due to the irregular geometry of
the anatomy, the polygon generally is complex because it is projected from a 3D contour to
a 2D image plane. The projected 2D polygon may have holes and isolated regions. To
address this, the complex polygon is converted to a simple form before filling the matching
region. All the vertices of the complex polygon are sorted radially around the center point of
the bounding rectangle of the polygon, and they are connected in the sorted order to form a
simple polygon.

Using the simple polygon and the lookup table, the set of vertices on the surface model can
be determined, with a projection pixel located on the polygon or inside the polygon. The
matching region is filled with all the triangle tiles of the surface model that belong to the
vertex set.

Comput Med Imaging Graph. Author manuscript; available in PMC 2012 June 1.
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3.4 Piecewise matching

4. Results

To estimate the projection axis, the average patch normal is used. However, the average
patch normal may not represent the projection axis when the patch is significantly curved,
for example, if the intra-operative patch for the LA is a C-shaped or closed cylindrical
surface. Therefore, the patch is divided into sub-patches to make the projection axis feasible.
In sub-dividing the patch, adjacent regions are padded to ensure overlap between sub-
patches. Each of the sub-patches is projected to the surface model to get the corresponding
matched sub-regions, and finally they are combined into a complete matching region.

A detailed validation protocol was designed to validate the capabilities of the proposed
method using a real patient LA surface model. The method was also evaluated with a
simulated surface model constructed from a physical phantom and two real LA surface
models, which were generated from a single patient obtained at different points in the
cardiac cycle.

4.1 Validation

The proposed modification was applied to both the point-to-projection and CPP techniques,
and the capabilities and accuracy of both the modified methods were evaluated. As
previously mentioned, the modified method using point-to-projection method has better time
performance because there is no iterative projection in finding matching points. However,
more accurate matching results are obtained by the modified method using CPP technique,
with a minimal increase in computation time.

The validation dataset consisted of a LA pre-operative CT volumetric dataset. A surface
model was extracted from the CT volumetric dataset, and the surface patch was simulated
from the surface model with a region growing method. The surface patch was grown from a
user-defined seed point on the surface model for 15 iterations, and the triangular tiles
connected to the current surface patch were merged into the patch during each iteration.
Therefore, the region on the surface model corresponding to the simulated surface patch is
the theoretic matched region, and the vertices on the contour of the surface patch and their
corresponding vertices on the surface model are two ground truth vertex sets, as illustrated
in Fig. 2.

The validation protocol was carried out by performing a transformation on the surface patch
to simulate the translation, rotation, expansion and contraction behavior of the intra-
operative LA. The surface patch and surface model were translated with pp,q translated to
the origin of the world coordinate system initially, then rotated with pno fixed at the origin
to make the vector i, to be the axis Z in the world coordinate system. The transform matrix
includes translation along Axis X, Y and Z, rotation with Axis X, Y and Z and scale, with
random combinations of these rigid transformations. Specifically, the validation protocol
was as follows:

1. The surface patch is translated along Axis X, Y, and Z from the initial position
between —5mm to 5mm with step of 0.1mm, separately.

2. The surface patch is rotated separately with Axis X, Y, and Z from the initial
position between —25° to 25° with step of 0.5°.

3. The surface patch is scaled from 80% to 120% with step of 0.4%, separately.

Comput Med Imaging Graph. Author manuscript; available in PMC 2012 June 1.
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4. The surface patch is transformed with random combinations of translation along
Axis X, Y, and Z between —2.5mm to 2.5mm, rotation with Axis X, Y, and Z
between —10° and 10°, and scale between 90% and 110%.

The validation results were sorted and compared based on the average distance Dgq between
the two ground truth vertex sets, as shown in equation 5 -

nye—1

Dyg=— Z ]P\‘ci - Pwnz“
e 355 5)

where n. is the vertex count on the contour of the surface patch; pyc; is the vector of the ith
vertex on the contour of the surface patch; and pyn; is the vector of vertex on the surface
model corresponding to pyg;.

The area matching ratio of the matched region Ry, is calculated based on the positive
matched area, Apm, the negative matched area, Agy, and the false positive matched area,
Aspm, Of the matched region, as shown in equation 6 -

Ram :Apm /(Atp +Aﬂ7m)
Alp:Apm +Afm 6)

where Ay is the area of the theoretic matched region, i.e., the area of the surface patch. Each
area is a summary of the area of the triangular tiles belonging to that region.

The average distance Dgm between the contour vertex of the matched region and the
theoretic matched region is also measured and compared, as in equation 7 -

nye—1

Daam=— Z | Pvmmi — Pwni‘
Y€ =0 7)

where pymmi is the vector of the mached vertex on the surface model corresponding to pyg;.

The matching results of translation along the x-axis are shown in Fig. 3. The results for
translation along the y-axis are similar to the x-axis data. The matching results using the
modified CPP technique and the modified point-to-projection method are very similar. The
modified CPP technique, however, has better performance in terms of a higher matching
ratio, a smaller average distance Daqm, and more stable results. The matching results of
translation along Axis Z are shown in Fig. 4. The test data is oriented largely along the z-
axis; therefore, the matching metrics of ratios and average distances are higher for
translations along the z-axis. The matching results of rotation around the z-axis are shown in
Fig. 5. The results for x- and y-axis are comparable. The modified CPP technique
demonstrates better performance than the modified point-to-projection method, most likely
due to the iterative convergent nature of CPP technique and the proposed final iteration of
point-to-projection. The matching results of scale are shown in Fig. 6. Both methods yield
comparable results.

The matching results for random transformations are shown in Fig. 7. The final matrix of
random transformations is a not a full affine transformation. Instead, it consists of 3

Comput Med Imaging Graph. Author manuscript; available in PMC 2012 June 1.
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translation, 3 rotations, and a single scale. The matching results show that the modified CPP
technique has better performance than the modified point-to-projection method. In order to
summarize the data, the absolute difference between Dy, and Dgq is computed. The mean
and standard deviation of absolute difference is —0.65 mm +/— 1.31 for the proposed method
using the modified CPP technique and —0.49 mm +/— 3.05 for the modified point-to-
projection method. This suggests that the modified CPP technique yields a more consistent
and stable result than the modified point-to-projection method.

All validation experiments were carried out using C/C++ software developed in our lab that
runs on Microsoft® Windows® XP with Service Pack 3. The PC’s configuration is Intel®
Pentium® 4 3.20 GHz core duo CPU with 2 GB RAM. The vertex count of the surface
model was 25,299 and the triangular tile count of the surface model was 50,840. The vertex
count of the surface patch was 1,149 and the triangular tile count of the surface patch was
1,925. The modified point-to-projection method required 60-90 ms to compute, and the
modified CPP method required 150-250 ms to compute. The modified point-to-projection
method is faster than the modified CPP method because the former has only one projection
and the latter has 6 projections during the matching process. The modified CPP technique,
however, is more accurate and robust while still performing very rapidly.

4.2 Evaluation

Given the results of the validation experiments, our proposed method using the CPP
technique provides better accuracy with acceptable real-time performance. Therefore, we
have adopted the modified CPP algorithm as our preferred patch-to-surface technique and
evaluated this proposed method in two image-guidance applications. The first experiment
utilizes a simulated surface model constructed from a physical phantom imaged with real-
time ultrasound. The second experiment utilizes two LA surface models generated from a
patient, multi-phase CT volumetric dataset at two points in the cardiac cycle. The physical
phantom is a simple 2-chamber phantom, as illustrated in Fig. 8(a). A 3D volumetric dataset
of the model was generated based on the measured orthogonal dimensions of the model. The
volumetric model was segmented and tiled. Fig. 8(b) and 8(c) show the epicardial and
endocardial surfaces, respectively.

To evaluate the process of matching the intra-operative surface patch to a pre-operative
surface model with the physical phantom, several intra-operative US images of the LA
components were collected (Fig. 9(a)). Using a standard image registration algorithm, a
single US image was registered to the synthetic volume data (Fig. 9(b)). The contour of the
LA section, Fig. 9(c), was segmented from the US images and duplicated 10 times to
generate synthetic 3D data. The 3D patch was tiled to generate the intra-operative surface
patch of the LA, Fig. 9(d). Due to small segmentation and registration error, there is some
space between the surface patch and surface model, as shown in Fig. 9(e). Using our
method, the surface patch was projected to the surface model. Fig. 9(f) shows the
correspondence between the surface patch (purple) and the matched region extracted from
the surface model (red), with part of the top-right region zoomed in the bottom-right area.
The matched region of the surface model was removed yielding a fused model and patch
(fig. 9(9)). Visual inspection confirms that the expected surface correspondence is achieved
by projecting the surface patch to the surface model using the new method.

In addition, the proposed method was also tested with a simulated pre-operative surface and
intra-operative patch. To generate the data used in this study, two datasets were taken from a
multi-phase CT scan of a single patient. As expected, due to the change of the LA through
the cardiac cycle the segmentations are similar although not exactly corresponding. The first
scan is polygonalized into a high-resolution surface model (Fig. 10(a)). The second scan is
also polygonalized to generate a surface patch representative of segmented intra-operative
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US data (Fig. 10(b)). The simulated intra-operative surface patch was projected to the pre-
operative surface model (Fig. 10(c)). Fig. 10(d) shows the final result with the original data
removed and replaced with the patch. In this case, the matching region represents the
simulation of elastic deformation of the surface patch. When the surface patch is
transformed to the outside of the surface model, the matching region contracts to a smaller
region than the theoretical matching region, which simulates the intra-operative expansion/
contraction of the LA.

5. Discussion

Our new algorithm successfully addresses several pitfalls encountered in previous methods.
Specifically, our method accommaodates real-time, dynamic geometry that may be somewhat
different from the pre-operative model. The piecewise patch-to-model method also allows
the two datasets to initially be marginally out of alignment while still achieving adequate
alignment. Moreover, the two datasets are not required to be sampled at the same resolution.
To ensure that the algorithm is robust, several simulation phantom studies were conducted
which verified that the method accurately matched the patch to the model, even with 5mm
disparity from the original orientation. In addition to being robust, the method must be fast
so that it can be utilized several times during an image-guidance procedure. Generally
speaking, intra-operative volumetric datasets are acquired over 10-60 seconds. Accordingly,
the time to fuse the intra-operative data into the model must meet this time constraint. The
proposed method is very efficient and meets this requirement. During the validation study,
the modified CPP technique was similar to the modified point-to-projection method with
regards to the performance metrics. This is not surprising as the dataset used in the
validation study contained both the surface model and the patch. Accordingly, the modified
point-to-projection method is well-suited to directly align the two surfaces. It is expected
that the modified CPP method will be very robust under realistic conditions and is therefore
our preferred patch-to-model method for image guidance applications.

In the context of cardiac ablation, there are two generally recognized intra-operative
volumetric imaging datasets which may be obtained. Intra-cardiac or trans-esophogeal echo
can be used to reconstruct a 3D US dataset [42,43] which in turn can be used to generate a
surface model of a portion of the left atrium. Rotational angiography can be used to obtain a
volumetric dataset spanning most of the anatomic extent of the heart during a procedure.
Image-guided cardiac ablation requires the fusion of these on-line datasets with high-
resolution, large FOV pre-operative datasets [6,11,44]. Pre-operative data is acquired 24-48
hours prior to the procedure and does not accurately represent the cardiac morphology at the
time of the procedure. Real-time processing algorithms must be used to fuse these datasets
during the procedure. As part of the fusion process, the pre-operative data must be replaced
with the intra-operative data while maintaining the integrity of the dynamic visualized
results. Our proposed piecewise patch-to-model algorithm accomplishes this task by
projecting the real-time data onto the pre-operative model and replacing the corresponding
patch in new real time.

Pre-operative CT to intra-operative US is one of the primary applications of this technology.
In order to validate our technique, we tested the approach using simulated and phantom
datasets. Specifically, selecting two time-points of a multi-phase CT ensured that we were
evaluating the local alignment problem rather than the global registration problem (see Fig.
9). We also believe that validation experiments using a phantom surface generated from
real-time US images and the surface generated from its associated CT volume data have
demonstrated the scientific validity of this technique and its potential for future clinical use
(as shown in Fig. 10).
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This approach may be utilized in other image guidance procedures. For example, in the case
of laparoscopic or endoscopic procedures, a pre-operative model can be generated from
high-resolution MR or CT and serve as the basis for image-guidance during the procedure.
As surface data is obtained from the laparoscope, it can be fused with the pre-operative
model. Another application would be to correctly represent the deformation of a pre-
operative MR brain dataset in neuro-surgery. In this case, either surface range data or intra-
operative US can be used to obtain real-time surface patches of data [45]. Future studies will
apply the patch-to-model algorithm to these other real-time procedures.
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Fig. 1.
Finding the matching point between two surfaces, (a) point-to-projection method and CPP
technique (adapted from [30]); (b) proposed patch-to-model method.
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Fig. 2.

Surface model and surface patch (colored in red) for validation. The surface model was
extracted from a CT volumetric data of a real patient, and the surface patch was simulated
from the surface model with a region growing method.
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Matching results of translation along Axis X between modified CPP (MCPP, pink line) and
modified point-to-projection (MP2P, blue line). (a) Matching ratio of matched region; (b)
Average distance of matched region.
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Matching results of translation along Axis Z between modified CPP (MCPP, pink line) and
modified point-to-projection (MP2P, blue line). (a) Matching ratio of matched region; (b)
Average distance of matched region.
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Matching results of rotation with Axis Z between modified CPP (MCPP, pink line) and
modified point-to-projection (MP2P, blue line). (a) Matching ratio of matched region; (b)
Average distance of matched region.
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(b)

Matching results of scale between modified CPP (MCPP, pink line) and modified point-to-
projection (MP2P, blue line). (a) Matching ratio of matched region; (b) Average distance of

matched region.
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Fig. 7.

Matching results of random transformation between modified CPP (MCPP, pink line) and
modified point-to-projection (MP2P, blue line). (a) Matching ratio of matched region; (b)
Average distance of matched region.
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(@) (b) ()

Fig8.
Physical phantom, (a) Photo view; (b) Epicardial surface view; (c) Endocardial surface
view.
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(a) (b) ()

(d) (e) () (9

Fig 9.

Patch and surface dataset of physical phantom, (a) Intra-operative US image of LA section;
(b) Image correlation between LA template and US image of LA section; (c) Endocardial
contour of LA section; (d) Endocardial patch of LA, (e) Initial registration of endocardial
patch and surface of LA, (f) Endocardial patch and matched region with part of the top-right
region zoomed in the bottom-right area; (g) Original endocardial patch and surface with
matched region removed.
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(a) (b) (c) (d)

Fig 10.

Mapping a LA surface patch to a LA surface model, (a) The high resolution pre-operative
surface model; (b) The surface model with the surface patch from simulated intra-operative
data; (c) The surface model with matching region projected from the surface patch; (d) The
surface model with all of the projected points removed from the model and the surface
patch.
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