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Abstract

We designed a generic method for segmenting therisngal sac of an abdominal aortic aneurysm
(AAA) both from multi-slice MR and CT-scan examiiwats. It is a semi-automatic method requiring
little human intervention and based on graph cebity is proposed to segment lumen interface and
aortic wall of AAAs. Our segmentation method womdependently on MRI and CT-scan volumes
and has been tested on a 44 patient dataset asgniltetic images. Segmentation and maximum
diameter estimation were compared to manual traftmg 4 experts. An inter-observer study was
performed in order to measure the variability ranfja human observer. Based on three metrics (the
maximum aortic diameter, the volume overlap and Haeisdorff distance) the variability of the
results obtained by our method is shown to be ambd that of a human operator, both for the lumen
interface and the aortic wall. As will be showrg thverage distance obtained with our method is less
than one standard deviation away from each expeth for healthy subjects and for patients with
AAA. Our semi-automatic method provides reliabtstours of the abdominal aorta from CT-scan
or MR, allowing rapid and reproducible evaluatiaishAAA.
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1.0 Introduction

The incidence of Abdominal Aortic Aneurysms (AAA)creases with age. The gravity of this
disease is due to the growth of the aorta withmg@krisk of rupture causing a fatal retroperitahe
hemorrhage. In this way, accurate and reproduci@surement of the AAA is a key issue in
cardio-vascular surgery. Although abdominal uttresgraphy is perhaps the most practical way to
screen for aneurysms, contrast-enhanced Computetbgraphy (CT) scanning is the preferred
imaging modalities in clinical practice. CT-scanages are well adapted to define aortic anatomy,
and accurately detect and size aortic aneurysmAdJfor MRI (Magnetic Resonance Imaging), it
offers a non-invasive and yet reliable method f@asuring the abdominal aorta. The use of Steady
State Free Precession (SSFP) sequence provideslacgotrast between the blood, the thrombus (if
present) and the aortic wall.

The criteria used for taking the decision to tr@atAAA are the maximum diameter (50-55 mm),
the volume, and the evolution in time of the aneory2-5]. But measuring the size of a windy aorta
based on 2D images only is error prone. A moreigpeeway of doing so is by measuring the
aneurysm on a 3D version of the aorta. Unfortupatee 3D reconstruction of the lumen and the
wall still needs to be done by hand, a time-consgnprocedure infeasible in clinical practice. The
use of an automatic or semi-automatic segmentatiocedure is thus the only valid option.

Aortic segmentation calls fdocal segmentation methodse. segmentation methods that can isolate
an organ from the rest of the body. On that ma#tetive contour methods, often callguikes, are
certainly the first solutions one might consider9]6 One of the main advantages of active contour
methods is that it allows for picking out a desigect in an image containing a collection of
objects with similar attributes. Unfortunately, kea are often cumbersome to implement,
computationally demanding [10], and can lead tdainidity (especially those relying on Euler-
Lagrange equations [11]).

Other segmentation methods are conceivable sudlbad-fill [12], graph-cut-based methods
[12-14], grow cut [15], and watershed [16] to naankew. Unfortunately, as shown in figure 2, these
methods often leak when the aorta is pressed dgaingrgan whose grayscale is similar. This can
be explained by the fact that these segmentatidhads are generic and not well adapted to aortic
segmentation. Also, these methods are tone-basddhais assume that the grayscale is uniform
inside and outside the contour which is not theeacagh aortic images. Although similar methods
have been used for blood-vessel segmentation [],7A2dst of time they were validated on well-
defined blood vessels void of a thrombus and fdy eme modality (MRI or CT-scan). A simple
solution to leaking is to initialize the method ke trimap [22-24]. A trimap is a 3-class labeldi
which forces the segmentation to stay within atighiarea. However, having to enter a trimap on
each image of the volume is time consuming. Algigwone could only initialize a subset of images
(as is the case for our method), most of the metleod up leaking in the non-initialized images. The
inaccurate segmentation results reported in figuege typical of what happens in images void of a
trimap initialization.

Another classical solution to leaking is shape ngtioShape priors are used to restrict the end
segmentation to some pre-defined shape. A huget éfés been put in adding shape priors to level
sets methods [25-30]. Most of these works impleénaeocombination of two functionals: one about
the segmentation (it includes image and curve)a@relabout the shape difference. The segmenting
curve then evolves according to two competing ferdg the force of the image, and 2) the force
exerted by the estimated shape. In general, thesieods use either a geodesic edge-based approach
[25,31] or a region-based approach [26-28]. Alijio impressive results are reported in level-set
papers, level-set methods with shape priors areymdtof drawbacks. They are often slow, do not
always generalize well to 3D, and are difficult i@implement. Furthermore, several level-set
methods [6,27,28] have to register the shape modt the image which is a challenging and
computationally expensive task.



Recently, several graph cut methods with shaper grave been proposed [32-38]. These
publications suggest that graph-cut methods atterfand more prone to reach the global minima
than level-sets [38]. However, as is the caserfost level-set methods, shape-constrained graph-cut
methods are somewhat restrictive on the shape3Bthds leading to underfitting as shown in figure
2. Other methods [33,34,38] propose a genericeslpaior which do not impose the shape of a
specific object class. Our experiments revealtthege types of methods are somehow well adapted
to aortic segmentation (cf the two right-most inmge figure 2). However, these methods are not
perfect and often over estimate the aortic wall.

Recently, a graph-cut method [39] has been pexpts segment the aorta’s wall provided that
the lumen has been pre-segmented. Unfortunatedymethod has been designed to work only on
CT-Scan volumes with a small slice thickness (ks® 1mm). It is thus unclear how the method
behaves on MRIs and on volumes with a large shimness (up to 6 mm).

Segmenting diseased aortas (that is the lumenhenddartic wall) on MRI and CT-scan images is
a challenging task on many aspects. The three giashg problems one has to deal with are the
following:

1) By their very nature, MRI and CT-scan picture oganth different grayscales. As shown in
figure 1, the lumen appears in bright white in @i&-scan but in midtones in the MRI with
SSFP sequence. Also, since the thrombus appearsdiones, the gradient between the
lumen and the thrombus is significantly differentthese images. The background is also
different in both modalities: dark in the CT-scardamid gray in the MRI. As a result, the
aortic wall is only visible in MR Images. Moreovéhe images obtained with a black blood
MRI sequence (such as T1 spin echo sequence) prowvistable signals through the image.
For these reasons, a generic method working indkgpegly on MRI and CT-scans volumes
cannot rely on tones to differentiate the lumere thrombus, the aortic wall, and the
background.

2) The aorta is often located next to another organselgrayscale is the same. As shown in
figure 1, the thrombus in the first CT-scan is pegsagainst the vena cava whose greyscales
are identical. In a similar way, the aortic wallthe MRI touches the black spinal column
and thus looks as if they were connected. As @atressnumber of methods end up leaking in
the surrounding organs.

3) The shape and the position of an aorta (be ituheeh or the thrombus) varies greatly from
one patient to another. As shown in figure 1,Itimen is elliptic in the MRI but has a peanut
shape in the CT-scans (this often happens whenwots aorta is pictured in axial images).
Eccentric lumens and thromboses are common duetwindy shape of some aortas and the
turbulences of the blood flow. Furthermore, thaalality between AAA makes the problem
even more difficult as the shape and position efaheurysm is unpredictable.

In this paper, we propose a 3D aortic segmentatiethod which requires little human intervention
and works independently on MRI (with SSFP sequeac®) CT-scan volumes. Our method (1)
works on edges, (2) does not leak, and (3) recavasrsooth 3D surface without a shape prior. Our
solution is thus robust to the three problems jusintioned while requiring little (but intuitive)
human intervention. Our method also allows for @eantouch-ups in pathological areas. We
compared our method to 4 imaging experts who mansagmented the lumen and the aortic wall of
10 synthetic images, 20 axial series of MR, and@#rast-enhanced CT image series.



2.0 Material and Methods
2.1 Study Population and I mage acquisition

Our database contains 35 patients with an AAA (AAA&Rd 9 patients without an AAA (AAA-).
The table 1 summarizes the study population andntiage acquisition parameters. The choice of
various image resolutions was intended in ordezv@uate our method on a maximum number of
plausible set-ups. The MR images were acquiredgusifree breathing ECG-gated SSFP sequence
providing white blood images in an axial orientatidcevery image volume covers the abdominal
aorta from the renal arteries down to the iliaeres. The study was conducted in accordance with
the ethical standards of the World Medical Assaoaratand with the recommendations of the local
ethics committee and the French Ministry of Headth¢ informed consent was obtained from each
patient.

2.2 Metrics

Methods such as ours are usually validated witpeetsto ground truths provided by a human
observer [17,18]. However, hand-selected resudty rom one expert to another, thus leading to
biased error estimations. In this paper, we lednéer-observer study to measure the variability
between experts. The goal is to show that our oagkefitoduces results within the human variability
range,i.e. that our method is statistically as accurate as)xgert can be. Our study involves four
human operators, all medical imaging experts. Tledioal experts involved in this study are people
working every day with abdominal tomographic imagé&sis study is based on three metrics used to
measure the distance between segmented a@tas

1- The volume overlap (VO) [40];
2- The Hausdorff distance (HD) [41];
3- The maximum diameter distance (MDD).

Considering that a segmented volume contains vatassified as being “inside” or “outside” the
contour, VO takes the number of voxels labelleba@isg “inside” in both volumes divided by the
total number of voxels labelled as being “insiddRoughly speaking, VO measures how much two
volumes overlap in percentage. This metric is &lsown as the Jaccard index. As for the HD, it is
the maximum distance of a segmented volume to dagest point in the other segmented volume
[41]. According to HD, two segmented volumes A &dre close if every point inside the contour
A is close to some point inside the contour B. K&n be seen as the maximum deviation in
millimetres between two segmented volumes. Thelthetric takes the difference between two
maximum diameters. For each patient, the maximiameter is manually entered by the experts but
automatically computed by our method based on Ehslape it estimated.

2.3 Synthetic images

Our method has also been validated on synthetigesia One image contains a typical MR image
with more or less Rician noise [42]. The otherrespnts a typical CT image with more or less
Gaussian noise (figure 3). The grayscale ratiovéen the different regions in these images is
similar to that of real MR and CT images. Botlagas contain a central zone corresponding to the
lumen surrounded by a disc representing the thremlmthe MRI, the thrombus is surrounded by a
thin layer corresponding to the aortic wall. A weharea is also added representing the vena cava in
the MRI. In both images, a blob has been addeowb#ie aorta to picture the back muscle. Note
that the small white grey areas at the peripherythaf thrombus in the CT image represent



calcifications. The reason for using synthetic iemg to compare (with the help of a ground truth)
contours provided by our method to those obtaingdmanual tracing. Manual tracing was
performed independently by an experienced obsenveach image.

2.4 Segmentation Method

2.4.1 Graph Cut
Our segmentation method is inspired by Boykov awity’d work [13] which we modified to meet
the needs of aortic segmentation. Graph-cut methusg a weighted grap® ={I',A} made of

nodesl” interconnected by undirected edgesEach edgee[1A connects two nodes, bl and is
assigned a capacity, =0. A capacity w,indicates the amount of information (Bow) that can

circulate betweea andb. The graph also contains 2 terminal nodes c#éiledources and the sink
[43].

A concept pivotal to graph cut is the notion of t°cu By nature, graph-cut is a two-class
segmentation method which divides (or cuts) thelgia two sets of nodes. Given a grdpha cut
c=(ST,U) separates the node detinto two subsets, namefyandT. To be validSandT need to
satisfy the following conditionsSNT = @ SUT =TI, andsOStOT. As forU, it contains every

edgeel]A that had been cut to split into SandT. The capacity of a cut is the sum of all edges
contained inJ, i.e.

E(c)=) W, (1)
The goal of graph cut is to find ti@nimum cut, i.e. the cut whose capacity is minimal
¢ =argmin,_ E(c). 2

In our application, the nodes fare those sitting inside the segmented area awk timT outside

the segmentation. Finding the minimum cut of ggrs a known optimization problem for which a
number of solutions have been proposed [44,45)higpaper, an alpha-expansion approach is used
[46]. For more details on graph cut, please ref¢i3,43,46].

2.4.2 Our Method
Building the Graph

The to-be-segmented volume (be it a CTscan or arl Mume) is made oL images each
containingNxM pixels. The volume is made of voxels whose posifi,j,|) indicates their spatial
location (,j) in the ™ image. When building the graph, each node is #socto a voxel in the
volume. In this way, the graph contaihsk NxM nodes plus a source and a sink. Each node (read
voxel) at positior(i,j,I) in the volume is connected to its 6 neighboues(i+1,j,1), (i-1,j,1), (i,j+1,1),
@,j-1,h), (i,j,1+1), and(i,j,I-1). Note that the source and the sink are not asgokctata voxel as they
are terminal nodes (see figure 4a). The nodes hiwhws andt are connected depend on the
initialization entered by the user.

I nitialization

As shown in figure 4b, the user is required to fdygelect an area of interest. The area can ée th
lumen or the aortic wall depending on the expeatesult. We empirically measured that an



initialization at every 2 cm is enough to obtaircwate results (that is one contour every 8 to 20
images for a CT-Scan volume and one every 3 todgés for an MRI volume).

Once every contour has been drawn, the volumevidadi into 3 regions: the “inside” region
(in blue), the “neutral” region (in red and in in@gwith no initialization), and the “outside” regio
(in green). The nodes (read voxels) within theebdections are connected to the source with an
infinite capacity and those in the green area édtain with an infinite capacity In this way, the
nodes in the blue and in the green areas will ibenaatically labelled as being “inside” and “outside
the segmented area (i.e. in ti# and “T” classes). This is a fundamental property of method as
it prevents the results from leaking outside tlteaentour.

Edge Capacity

The nodes in the blue and the green regions beitayetically clustered in theS* and “T” classes
their edge capacity has no effect on the end resultthus are assigned a constant value. As éor th
nodes in the neutral region, there edge capacagsgned the following value given tlesandb are

neighbours:
o, . -1,
we:ex;{— ablzaaz blj )3

wherel is the image volume (MRI or CT-scan) ahgl, stand for the grayscale at voxehlndb.
This equation also takes into account the gradieettion using a bina@y,, function. As will be
shown later,0,, prevents the method from snapping on the edgkeohéighbouring organs. Let us
also mention that due to the fact that an aortadifésrent grayscales in CT and MR images,

contains gradient information instead of intensgifyprmation. This is a key element that makes our
method suited to both MR and CT imag&scording to equation (3), the capacity gets lonenéver
the inter-voxel gradienfl,—1,| is large. In this way, the method ends up cuttimg volume in

areas of strong gradiente. on the nearest edges. A “camera noise” paran®@tés incorporated
which gives more or less influence to the interelgyradient [13].

One common problem arises when the aortic wallletha very low contrast (see the MRI
lumen in figure 1). In that case, the method oftens through a uniform region and thus
underestimates the volume. As a solution, we addpdrametey whose value sharpens the image
gradient. This parameter can be seen as gradasedlgamma correction.

Another common problem with generic graph-cut sohdg occurs when the aorta is located
next to an organ whose edges have a larger grathantthat of the aorta. In that case, the method
shaps on the edge of a neighbouring organ (seéngtapand grow-cut results in figure 2). To
reduce this effect, we incorporated a notion oatfient direction” in the edge capacity. As shown i
figure 1, the lumen in the CT-scan and the MRI lanighter than their immediate neighbourhood.
The situation is similar for the thrombus in the-8&%&n. In these cases, when starting from the
center of the aorta, the gradient goes from “atlayka” to a “dark areaf,e. |1, > |, whena s closer

thanb to the aorta’s center. However, the situatioooipletely different with the aortic wall in the
MRI as |, <1,. Consequently, a binarg, function is incorporated whose goal is to seléet t

gradients pointing in the right direction:

! The nodes in the neutral region are not conneotéite source or the drain.



1if (d,<d, &l,>1 or (d,>d &1, <I
5ab — ( a b a b) - ( a b a b) (4)
0 otherwise
when segmenting the lumen or the wall in the CTisead
1 if (d,<d, &l <I,) or (d,>d, &I, >1
5ab - ( a b a b) . ( a b a b) (5)
0 otherwise

when segmenting the wall in the MRI volume. Inltbaquations,d,(andd,) stands for the
Euclidean distance betwear{fandb) and the center of the aorta. The influence efd function is

illustrated in figure 5. Given a user selectidme £nd contour will snap of the lumen or the aortic
wall depending on whether equation (4) or (5) isdus

Touch Ups

Once the graph is built, the minimum cut optimigelaunched. The resulting cut corresponds to the
best 3D volume according to the graph’s configorati Although the result is usually good, it is not
void of errors, especially in pathological are&srtunately, the user can correct local deviatioits

a simple touch up tool which changes the regiomxnof badly segmented nodes. This tool forces
the selected nodes to be part of the inside, ait®d neutral regions. This locally modifies the
graph’s configuration. Our experiments reveal tiato 5 images usually need to be touched up for a
patient. Given that retouching one image requikés seconds, the average touch up time for a
patient does not exceed 20 seconds. The optimaeritlteen be re-launched to generate a new 3D
volume (cf figure 6).

3.0 Results

3.1 Inter-operator Study

Our method (and the experts) returns a segmentatagnas well as an estimation of the maximum
diameter for each patient. Based on these datayaal is to show that our method is as precisa as
human observer can be. In that perspective, tlegage distance (and standard deviation) is
computed between the results returned by an opeftagoit our method or the experts) to the ones
returned by the other four operators. In this whgur method is as good as a human operaton, tha
its average distance should be similar to thahefdther operators. On the other hand, if our atkth
is consistently worse than the experts, its avedigi&nce should be systematically larger. Such
strategy for detecting outliers is called “distath@sed outlier detection” [47]. The average distanc
that we compute for each operafpris the following:

5

dist(0) :%zj:m(%zpmetric(ap, ij)j (6)

whereN is the total number of patient®”, R’ the result returned b@, and O, on patienp, and

“metric” is either VO, HD or MDD. The standard dation is computed in a similar fashion. Note
that to make our evaluation robust to outliers,camputed drimmed average (and standard
deviation) by removing the 10% outlying patient8][4

We first processed the results obtained on theades subjects. As can be seen in tables 2, 3
and 4, the average distance of our method is alwétysn one standard deviation away from each
expert. One should note that the largest distéet@een our method and an observer according to



the HD and MDD metrics is below 1 millimetre. Givehat the spatial resolution of our CT-scan and
MR images is between 0.47 to 0.98 mm and 1.12 46 inm respectively, this corresponds to a
maximum average error of less than 1 pixel foril and 2 pixels for the CT-Scan. Such error is
barely noticeable by a human eye as can be sdegures 3 and 7.

Tables 5, 6 and 7 display the results obtainedeaithy volunteers. A similar conclusion can
be drawn as the results from our method are statilst close to those produced by the four experts.
Here again, our method is within one standard diewisaway from every expert. The VO distance
for our method ranges between 81% and 89% whi@psoximately what we got for the human
experts. As for the Hausdorff and the maximum digandistances, our method is always less than
1mm away from the experts.

In order to validate the fact that there is noistigal difference between the experts and our
method, we performed an analysis of variance (ANQWAh the Levene's test of homogeneity of
variance. It is commonly accepted that the nufidtliesis is verified when the p-value of the test i
above 5%. For the volume overlap, the Hausdodtatice and the maximum diameter distance
(tables 2 to 7), we created 5 lists containinguaieles returned for each patient by our method and
the four experts. For these data, the p-valuesvalely above 5% which clearly indicate that thisre
no significant difference between our method arellitbhman experts (the p-value for the maximum
diameter distance is equal to 79%). We did thosts teith a commercial software (SYSTAT for
Windows).

For the maximum diameter distance, we also usedlded-Altman plot to further evaluate
the robustness of our method [49]. We took for gaatient (be it healthy or diseased) the average
maximum diameter entered by the experts and cordparne the results returned by our method.
This led to the scatter plot in figure 8 in whicich dot corresponds to atgent. The X and Y axis
correspond respectively to the average and difteréetween the experts and our method. The error
values (Y axis) being clearly smaller than the ager value (X axis), this indicates a good
concordance between our method and the four huparmramrs.

3.2 Synthetic Images

The results obtained on synthetic images are showables 8, 9 and 10. These tables contain the
volume overlapthe Hausdorff distance and the maximum diamatgace for three different noise
level o. Overall, our method is very close to the human oleseespecially when the noise level is
low. In the worst cases, our method is respegtided?é and 2.47mrhaway from the expert. As
for the maximum diameter error, our method is atsim®9 mm away from the expert which
corresponds roughly to a 1-pixel error. As showrfigure 5, these results are both accurate and
similar.

3.3 Performances

We executed our program on a 2.0 GHz Intel core@ abmputer with 3Gb of RAM. In order to
reduce the processing time and save memory, oalyethion of interest located around the red initial
contour is processed. The size of that region saretween 120120 and 358350 square pixels.
Overall, the graph-cut optimizer takes between (a88 2.25 seconds on the MRI volumes and
between 0.96 and 8 seconds on the CT-Scan voluis. hand selection of the initial contours
takes between 10 to 40 seconds depending on théearuof slices in the volume. The overall
procedure including initialization, segmentatiordaouch up takes roughly less than one minute.
This is fairly small compared to manual segmentatis a rule of thumb, our experts took between

2 |n table 8, 99.51% for expert 1 and 94,91% for method.
% In table 9, 2.0mm for expert 1 and 4.47mm for method.



4 and 8 minutes to segment a 20-slice MRI voluneel@tween 7 and 12 minutes for a 40-slice CT-
scan volume.

4.0 Discussion

It is well documented that the rupture of an AAAuiscommon when the aneurysm’s diameter is
below 5.5 cm and expanding slowly [2-5]. For thedson, the aneurysm size has always been a key
parameter in cardio-vascular surgery. Due to tharaaof most AAAs, the correct measurement of
the aneurysm calls for a full imaging examinati@m that matter, CT scans and MRI have always
been the preferred modalities, ultrasounds beiagphcable to correctly determine the size and the
extent of the aneurysm. Angiographic techniquewide accurate definition of lumen area, but are
ineffective in the localization of the aortic walgstricting the thrombus evaluation. The strergjth
the multiplanar reformation (MRP) CT scan and thRINomes from the richness of their data: a
volume made of between 20 and 200 axial tomograph@ges. Although hand selecting the
maximum diameter is fairly straight forward, manyaletermining the size of the aneurysm (useful
in surgical repair planning) remains tedious imickal practice. This is especially true when thié fu
reconstruction of the lumen and the aortic watkiguired.

As a solution, we proposed a semi-automatic grajpls@gmentation method to rebuild in 3D
the aortic wall and the lumen interface from theatearteries down to the iliacs. Our method is
effective on CT scan images as well as white blgiitlimages. As we mentioned, basic graph-cut
methods such as Boykov and Jolly’s [13] are nol sited to the aortic segmentation problem. We
thus proposed a cost function that allows (1) tal dath low-contrast edges caused by the windy
nature of the aorta and (2) differentiate the lurfrem the aortic wall. Furthermore, our method
does not leak when the aorta is pressed againghexnorgan which is a known problem with
numerous techniques.

Our method is user-friendly and useful in clinigabkctice as it measures the maximum
diameter of the aneurysm as well as the volumeitippsand eccentricity of the thrombus. It has
been validated on data acquired from 44 subjeotsgshaving an AAA and others not. In order to
cover different types of acquisitions, various GBrs and MRI settings have been accounted for.
Our database has a variety of images with diffespattial resolution and slice thickness. Despite
these various settings and the fundamental diftereibetween CT scan and MR images, we showed
that our method is on the average as precise agxperts. The comparison with four experts
underlined the fact that the average distance letwoeir method and manual drawings is similar to
the inter-observer variation. Considering the maximdiameter evaluation, the Bland-Altman plot
shows that there is a good concordance betweehuiman experts and our method. The slight 3.2
mm overestimation in the graph is due to the mamage of the aortic wall by some human
operators. Indeed, some operators selected the smotion of the wall while others selected the
outer section of the wall. Since our method alwases the outer section of the wall, this led tayhtl
shift in the graph.

Also, although our method relies on a user inigtion, this procedure is rapid (a few
seconds) and intuitive. Since our method is nad wb draw-backs, it sometimes overestimates the
aortic wall in the vicinity of the collateral artes. As a solution, we developed a simple touch up
tool allowing for manual interventions in pathologii areas. Further improvements of the user
interface should reduce user intervention.

Our method is still subject to future methodologicaprovements that hopefully would lead
to a complete automatic procedure. We are alskimgrto extend our method to other MRI
protocols than the SSFP sequence. More specyficaél would like to make it work on black blood
MR sequences such as T1 spin echo sequences.



As a conclusion, we proposed a semi-automatic ndetbhGsegment the lumen and the aortic
wall from a stack of axial images covering the ahdw@l aorta from the renal arteries down to the
iliacs. Our solution is generic and allows the ngemaent of patient examinations taken from CT or
MR imagers. A comparison with manual tracing denvass that our automatic segmentation is as
precise as an expert. The deployment of our appriwmaclinical practice would provide cardiologists
with key parameters allowing the follow up of patewith AAA.
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Figure 1 Typlcal diseased aortas taken from thegiempts. The first and third i |mages are CT-scan
images and the second is an MR image. As candrge 8& shape, the size and the grayscale of the
lumen and the thrombus vary significantly from patito another. These images show diseased
aortas with and without a thrombus and with andhauit the vena cava pressed against the aortic
wall. The reader shall notice that the aorta dagsalways have an ellipsoid shape.

Flgure 2. Different segmentatlon results obtalnedaoCT and an MR image. These results are
typical of the type of issues one has to deal witfirst row) Results obtained with a snake with an
ovoid shape prior [9], graph-cut [13], grow cut [1§raph cut with star shape prior [38] (second)row
flood fill [12], iterative graph cut, level set [7and graph cut with star shape prior [38]. Let us
mention that the initialization step is similar fdt of these methods.



Figure 3. Synthetic version of an MR image (fesd third column) and a CT-scan image (second
and fourth column). The MR image contains Riciamse with standard deviation of 15 while the
CT-scan image contains Gaussian noise with standiewhtion of 20. The four left most images

were hand segmented by an expert while the folnt ngost images have been segmented with our
method.

-

Sink
Figure 4. (left) Schematic representation andﬁ()lgnapshot of an |n|t|al contour entered by the
user. Pixels inside the blue area are connectdteteource with an infinite capacity and thoséhm
green area are also connected to the sink witmfamite capacity. The pixels located in the red
section are connected to their 6 neighbours (hensame image, 1 in the image above, and 1 in the

image below). The weight, of these 6 edges is determined by equation 3.

Input image User selection lumen segmentation Wall segmentation
Figure 5. Given an input image and a user selectize last two images illustrate the effect of
equation (4) and (5).




Figure 6. On the left, 3D result of an aortic walhtained after segmenting a CT-Scan volume made
of 129 images. On the right, result obtained witin method for the lumen and the wall in a CT-scan
and an MRI. The last two images illustrate thectoup tool.



Our Method

Expert 1

CT-scan

IRM

Figure 7. Typical results produced by an ekpedhrynbur method on CT-scan and MRI data. The
difference is barely noticeable by an human eype@ally for the CT-scan. The green line
corresponds to the maximum diameter.
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Figure 8 : Comparison between automatic and mamoakssing for the evaluation of the maximum
diameter with a Bland-Altman plot (mean = 3.2 mtanslard deviation (SD) = 2 mm)



Table 1 Acquisition parameters and study petpn

MRI CT
System 3T whole body Imager (10 patients) Spiral CT scanner with intravenou
(Trio TIM. Siemens Medical Solution, injection of contrast material
Erlangen, Germany) (LightSpeed Ultra,

GE Medical Systems, USA)
1.5 T whole body imager
(4 patients and 6 healthy subjects
(Avanto TIM. Siemens Medical
Solution, Erlangen, Germany)

Patients with 14 (13 men, 1 woman) 21 men
AAA 70 £ 10 years 70 £ 11 years
Patients without 6 (4 men, 2 women) 3 (2 men, 1 woman)
AAA 63 *+ 14 years 70 + 2 years
Image size 256 x 176 512 x 512
Spatial resolution 1.12 mm to 1.40 mm per pixel 0.47 mm to 0.98 mm per pixel
according to the subject according to the subject
Slice thickness 5mm 1 mm to 8 mm per pixel accwydo
the subject

Table 2 Volume overlap (%) for diseased aortas
Expert 1 Expert 2 Expert 3 Expert 4 Our method
1l c il c il c il c il c

Lumen, MRI 86.26| 4.44| 85.85| 5.35| 85.83| 5.16| 83.86| 5.78| 83.07| 5.25
Wall, MRI 88.57|5.67| 87.93| 6.13| 88.25| 5.61| 83.72| 5.75| 85.24| 6.09
Lumen, CTscan| 90.47| 4.83| 90.83| 4.43| 90.32| 4.86| 87.01| 6.73| 87.69| 6.83
Wall, CTscan | 92.89|3.35|91.29|4.01| 92.60| 3.36| 92.23| 3.55| 90.93| 4.90

Table 3 Hausdorff distance (mm) for diseased aortas

Expert 1 Expert 2 Expert 3 Expert4  Our method
n c n c n c n c n c

Lumen, MRI 2.43|10.95| 2.64 | 1.16| 2.541.05|2.79(1.15( 2.92| 1.10
Wwall, MRI 2.84(1.24| 2.97 | 1.53| 2.841.30|3.34(1.17| 3.52| 1.50
Lumen, CTscan | 2.13/0.92( 2.17 | 1.05| 2.371.10|2.61|1.17| 2.68| 1.25
Wall, CTscan 2.33[1.17] 2.70 | 1.39| 2.511.36|2.57|1.54| 3.09| 1.81

Table 4 Maximum diameter distance (mm) for diseas®ths

Expert 1 Expert 2 Expert 3 Expert 4 Our method
n c n c n c n c n c
MRI 255 1.70| 2.26| 150 271 1.83.16(2.03|3.39|2.08
CTscan| 204 | 1.76| 2.01| 147 212 1.42.96|2.35|2.86|1.77




Table 5 Volume overlap (%) for healthy aortas

Expert 1 Expert 2 Expert 3 Expert 4 Our method

i c il c il c i c il c
Lumen, MRl | 89.70|5.61| 89.90| 6.86| 89.50| 5.69| 88.13| 6.41| 86.60| 5.95
Wall, MRI 88.94| 7.01| 88.64| 7.50| 88.67| 5.35( 82.68| 7.42| 81.64| 7.03
Lumen, CTscan 88.84| 4.25| 89.23| 4.99| 88.45| 4.94| 84.85| 6.13| 86.52| 6.37
Wall, CTscan | 89.40|4.53| 86.56| 6.03| 88.63| 4.88| 88.65| 4.97| 83.85| 6.13
Table 6 Hausdorff distance (mm) for heakiloytas

Expert 1 Expert 2 Expert 3 Expert 4 Our method

i o i o i o i o w o
Lumen, MRI 1.87|2.04|1.97|2.39(1.90| 1.91| 2.41| 3.00| 2.25( 1.95
Wall, MRI 2.27] 1.46] 2.36| 1.90| 2.42| 1.60| 3.21| 2.31| 3.45| 1.59
Lumen, CTsca11.41 0.38] 1.39| 0.42| 1.49( 0.43( 1.70| 0.39| 1.61| 0.52
Wall, CTscan | 1.69| 0.56| 2.00| 0.69| 1.82| 0.62| 1.83| 0.62| 2.31| 0.74

Table 7 Maximum diameter distance (mm) for healtbgtas

Expert 1 Expert 2 Expert 3 Expert 4 Our mettod

il c il c il c il c il c
MRI 2.65| 1.63| 2.61| 2.25| 2.58| 2.05| 2.64| 2.67| 4.86| 2.01
CTscan 193|140 1.35/1.12|1.53|0.91| 3.05| 1.24| 1.96| 1.54

Table 8 Volume overlap (%) for s

ynthetic images

Expert 1 Our Method
NoiseLevel | 0=1 | 0=10| 0=15| 0=1 | 0=10| 0=15
Lumen, MRI 97.82/96.74/95.37| 100 | 92.05 91.55
Wall, MRI 96.51| 96.94| 95.83| 96.46| 95.37| 93.26
NoiseLevel | 0=1 | 0=10| 0=20| 0=1 | 0=10| 0=20
Lumen, CTscan | 99.16| 99.51| 98.74| 99.16| 94.91| 95.62
Wall, CTscan 98.47| 98.64{98.67| 96.03| 95.69| 96.44

Table 9 Hausdorff distance (mm) for synthetic insage

Expert 1 Our Method
NoiseLevel| 0=1 | 0=10| 0=15 | 0=1| 0=10| 0=15
Lumen, MRI 1.00| 1.00{ 1.00, 1.002.83| 2.24
Wall, MRI 141 1.41| 2.00] 2.002.83| 2.24
NoiseLevel| 0=1 | 0=10| 0=20 | 0=1| 0=10 | 0=20
Lumen, CTscan | 1.00| 1.00| 1.00, 1.002.24| 1.41
Wall, CTscan 2.00| 2.00| 1.41| 4.474.00| 3.00




Table 10 Maximum diameter distance (mm) for synthetages

Expert 1 Our Method
NoiseLevel | 0=1|0=10| 0=15 |0=1|0=10|0=15
MRI 1.00| 1.38| 1.67 | 1.011.03| 1.59
Noise Level | 0=1|0=10| 0=20 |o0=1|0=10|0=20
CTscan 1.23] 0.39 0.55 0.840.84| 1.45
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