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Abstract  
 
We designed a generic method for segmenting the aneurismal sac of an abdominal aortic aneurysm 
(AAA) both from multi-slice MR and CT-scan examinations. It is a semi-automatic method requiring 
little human intervention and based on graph cut theory is proposed to segment lumen interface and 
aortic wall of AAAs. Our segmentation method works independently on MRI and CT-scan volumes 
and has been tested on a 44 patient dataset and 10 synthetic images. Segmentation and maximum 
diameter estimation were compared to manual tracing from 4 experts. An inter-observer study was 
performed in order to measure the variability range of a human observer. Based on three metrics (the 
maximum aortic diameter, the volume overlap and the Hausdorff distance) the variability of the 
results obtained by our method is shown to be similar to that of a human operator, both for the lumen 
interface and the aortic wall. As will be shown, the average distance obtained with our method is less 
than one standard deviation away from each expert, both for healthy subjects and for patients with 
AAA. Our  semi-automatic method provides reliable contours of the abdominal aorta from CT-scan 
or MRI, allowing rapid and reproducible evaluations of AAA. 
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1.0 Introduction 
 
The incidence of Abdominal Aortic Aneurysms (AAA) increases with age. The gravity of this 
disease is due to the growth of the aorta with potential risk of rupture causing a fatal retroperitoneal 
hemorrhage.  In this way, accurate and reproducible measurement of the AAA is a key issue in 
cardio-vascular surgery.  Although abdominal ultrasonography is perhaps the most practical way to 
screen for aneurysms, contrast-enhanced Computed Tomography (CT) scanning is the preferred 
imaging modalities in clinical practice.  CT-scan images are well adapted to define aortic anatomy, 
and accurately detect and size aortic aneurysm [1]. As for MRI (Magnetic Resonance Imaging), it 
offers a non-invasive and yet reliable method for measuring the abdominal aorta. The use of Steady 
State Free Precession (SSFP) sequence provides a good contrast between the blood, the thrombus (if 
present) and the aortic wall.   

The criteria used for taking the decision to treat an AAA are the maximum diameter (50-55 mm), 
the volume, and the evolution in time of the aneurysm [2-5].  But measuring the size of a windy aorta 
based on 2D images only is error prone. A more precise way of doing so is by measuring the 
aneurysm on a 3D version of the aorta.  Unfortunately, the 3D reconstruction of the lumen and the 
wall still needs to be done by hand, a time-consuming procedure infeasible in clinical practice.  The 
use of an automatic or semi-automatic segmentation procedure is thus the only valid option. 
Aortic segmentation calls for local segmentation methods, i.e. segmentation methods that can isolate 
an organ from the rest of the body. On that matter, active contour methods, often called snakes, are 
certainly the first solutions one might consider [6-9].  One of the main advantages of active contour 
methods is that it allows for picking out a desired object in an image containing a collection of 
objects with similar attributes. Unfortunately, snakes are often cumbersome to implement, 
computationally demanding [10], and can lead to instability (especially those relying on Euler-
Lagrange equations [11]). 

Other segmentation methods are conceivable such as flood-fill [12], graph-cut-based methods 
[12-14], grow cut [15], and watershed [16] to name a few. Unfortunately, as shown in figure 2, these 
methods often leak when the aorta is pressed against an organ whose grayscale is similar.  This can 
be explained by the fact that these segmentation methods are generic and not well adapted to aortic 
segmentation.  Also, these methods are tone-based and thus assume that the grayscale is uniform 
inside and outside the contour which is not the case with aortic images.  Although similar methods 
have been used for blood-vessel segmentation [17-21], most of time they were validated on well-
defined blood vessels void of a thrombus and for only one modality (MRI or CT-scan).  A simple 
solution to leaking is to initialize the method with a trimap [22-24].  A trimap is a 3-class label field 
which forces the segmentation to stay within a limited area.   However, having to enter a trimap on 
each image of the volume is time consuming.  Although, one could only initialize a subset of images 
(as is the case for our method), most of the methods end up leaking in the non-initialized images. The 
inaccurate segmentation results reported in figure 2 are typical of what happens in images void of a 
trimap initialization.   

Another classical solution to leaking is shape priors.  Shape priors are used to restrict the end 
segmentation to some pre-defined shape. A huge effort has been put in adding shape priors to level 
sets methods [25-30].  Most of these works implement a combination of two functionals: one about 
the segmentation (it includes image and curve) and one about the shape difference. The segmenting 
curve then evolves according to two competing forces: 1) the force of the image, and 2) the force 
exerted by the estimated shape.  In general, these methods use either a geodesic edge-based approach 
[25,31] or a region-based approach [26-28].   Although impressive results are reported in level-set 
papers, level-set methods with shape priors are not void of drawbacks.  They are often slow, do not 
always generalize well to 3D, and are difficult to re-implement.  Furthermore, several level-set 
methods [6,27,28] have to register the shape model onto the image which is a challenging and 
computationally expensive task.   



Recently, several graph cut methods with shape prior have been proposed [32-38].  These 
publications suggest that graph-cut methods are faster and more prone to reach the global minima 
than level-sets [38].  However, as is the case for most level-set methods, shape-constrained graph-cut 
methods are somewhat restrictive on the shape [39,43] thus leading to underfitting as shown in figure 
2.  Other methods [33,34,38] propose a generic shape prior which do not impose the shape of a 
specific object class.  Our experiments reveal that these types of methods are somehow well adapted 
to aortic segmentation (cf the two right-most images in figure 2).  However, these methods are not 
perfect and often over estimate the aortic wall. 

   Recently, a graph-cut method [39] has been proposed to segment the aorta’s wall provided that 
the lumen has been pre-segmented.  Unfortunately, the method has been designed to work only on 
CT-Scan volumes with a small slice thickness (less than 1mm).  It is thus unclear how the method 
behaves on MRIs and on volumes with a large slice thickness (up to 6 mm). 

Segmenting diseased aortas (that is the lumen and the aortic wall) on MRI and CT-scan images is 
a challenging task on many aspects.  The three most glaring problems one has to deal with are the 
following: 
 

1) By their very nature, MRI and CT-scan picture organs with different grayscales.  As shown in 
figure 1, the lumen appears in bright white in the CT-scan but in midtones in the MRI with 
SSFP sequence. Also, since the thrombus appears in midtones, the gradient between the 
lumen and the thrombus is significantly different in these images.  The background is also 
different in both modalities: dark in the CT-scan and mid gray in the MRI.  As a result, the 
aortic wall is only visible in MR Images. Moreover, the images obtained with a black blood 
MRI sequence (such as T1 spin echo sequence) provide unstable signals through the image. 
For these reasons, a generic method working independently on MRI and CT-scans volumes 
cannot rely on tones to differentiate the lumen, the thrombus, the aortic wall, and the 
background. 

2) The aorta is often located next to another organ whose grayscale is the same.  As shown in 
figure 1, the thrombus in the first CT-scan is pressed against the vena cava whose greyscales 
are identical.  In a similar way, the aortic wall in the MRI touches the black spinal column 
and thus looks as if they were connected.  As a result, a number of methods end up leaking in 
the surrounding organs. 

3) The shape and the position of an aorta (be it the lumen or the thrombus) varies greatly from 
one patient to another.  As shown in figure 1, the lumen is elliptic in the MRI but has a peanut 
shape in the CT-scans (this often happens when a tortuous aorta is pictured in axial images).  
Eccentric lumens and thromboses are common due to the windy shape of some aortas and the 
turbulences of the blood flow.  Furthermore, the variability between AAA makes the problem 
even more difficult as the shape and position of the aneurysm is unpredictable. 

 
In this paper, we propose a 3D aortic segmentation method which requires little human intervention 
and works independently on MRI (with SSFP sequence) and CT-scan volumes.  Our method (1) 
works on edges, (2) does not leak, and (3) recovers a smooth 3D surface without a shape prior.  Our 
solution is thus robust to the three problems just mentioned while requiring little (but intuitive) 
human intervention.  Our method also allows for simple touch-ups in pathological areas.  We 
compared our method to 4 imaging experts who manually segmented the lumen and the aortic wall of 
10 synthetic images, 20 axial series of MR, and 24 contrast-enhanced CT image series. 
 
 



2.0 Material and Methods 
 
2.1 Study Population and Image acquisition 
 
Our database contains 35 patients with an AAA (AAA+) and 9 patients without an AAA (AAA-). 
The table 1 summarizes the study population and the image acquisition parameters.  The choice of 
various image resolutions was intended in order to evaluate our method on a maximum number of 
plausible set-ups. The MR images were acquired using a free breathing ECG-gated SSFP sequence 
providing white blood images in an axial orientation. Every image volume covers the abdominal 
aorta from the renal arteries down to the iliac arteries. The study was conducted in accordance with 
the ethical standards of the World Medical Association and with the recommendations of the local 
ethics committee and the French Ministry of Health, and informed consent was obtained from each 
patient. 
 
2.2 Metrics 
 
Methods such as ours are usually validated with respect to ground truths provided by a human 
observer [17,18].  However, hand-selected results vary from one expert to another, thus leading to 
biased error estimations.  In this paper, we led an inter-observer study to measure the variability 
between experts.  The goal is to show that our method produces results within the human variability 
range, i.e. that our method is statistically as accurate as an expert can be.  Our study involves four 
human operators, all medical imaging experts. The medical experts involved in this study are people 
working every day with abdominal tomographic images.  This study is based on three metrics used to 
measure the distance between segmented aortas i.e.: 
 

1- The volume overlap (VO) [40]; 
2- The Hausdorff distance (HD) [41]; 
3- The maximum diameter distance (MDD). 

 
Considering that a segmented volume contains voxels classified as being “inside” or “outside” the 
contour, VO takes the number of voxels labelled as being “inside” in both volumes divided by the 
total number of voxels labelled as being “inside”.  Roughly speaking, VO measures how much two 
volumes overlap in percentage. This metric is also known as the Jaccard index.  As for the HD, it is 
the maximum distance of a segmented volume to the nearest point in the other segmented volume 
[41].  According to HD, two segmented volumes A and B are close if every point inside the contour 
A is close to some point inside the contour B.  HD can be seen as the maximum deviation in 
millimetres between two segmented volumes.  The third metric takes the difference between two 
maximum diameters.  For each patient, the maximum diameter is manually entered by the experts but 
automatically computed by our method based on the 3D shape it estimated.   
 
2.3 Synthetic images 
 
Our method has also been validated on synthetic images.  One image contains a typical MR image 
with more or less Rician noise [42].  The other represents a typical CT image with more or less 
Gaussian noise (figure 3).  The grayscale ratio between the different regions in these images is 
similar to that of real MR and CT images.   Both images contain a central zone corresponding to the 
lumen surrounded by a disc representing the thrombus.  In the MRI, the thrombus is surrounded by a 
thin layer corresponding to the aortic wall.  A white area is also added representing the vena cava in 
the MRI.  In both images, a blob has been added below the aorta to picture the back muscle.  Note 
that the small white grey areas at the periphery of the thrombus in the CT image represent 



calcifications. The reason for using synthetic images is to compare (with the help of a ground truth) 
contours provided by our method to those obtained by manual tracing.  Manual tracing was 
performed independently by an experienced observer on each image.  
 
2.4 Segmentation Method 
 
2.4.1 Graph Cut 
Our segmentation method is inspired by Boykov and Jolly’s work [13] which we modified to meet 
the needs of aortic segmentation.  Graph-cut methods use a weighted graph },{ ∆Γ=G  made of 
nodes Γ  interconnected by undirected edges∆.  Each edge ∆∈e  connects two nodes Γ∈ba,  and is 

assigned a capacity 0≥ew .  A capacity ew indicates the amount of information (or flow) that can 

circulate between a and b.  The graph also contains 2 terminal nodes called the source s and the sink t 
[43].   

A concept pivotal to graph cut is the notion of “cut”.  By nature, graph-cut is a two-class 
segmentation method which divides (or cuts) the graph in two sets of nodes.  Given a graph G, a cut 
c=(S,T,U) separates the node set Γ  into two subsets, namely S and T.  To be valid, S and T need to 
satisfy the following conditions: Ø=TS �  , Γ=TS � , and TtSs ∈∈ , .  As for U, it contains every 
edge ∆∈e  that had been cut to split Γ  into S and T. The capacity of a cut is the sum of all edges 
contained in U, i.e.  
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The goal of graph cut is to find the minimum cut, i.e. the cut �̂ whose capacity is minimal  
 
     ).(minargˆ cEc c=                     (2) 

 
In our application, the nodes in S are those sitting inside the segmented area and those in T outside 
the segmentation.  Finding the minimum cut of a graph is a known optimization problem for which a 
number of solutions have been proposed [44,45].  In this paper, an alpha-expansion approach is used 
[46].  For more details on graph cut, please refer to [13,43,46]. 
 
2.4.2 Our Method  
 
Building the Graph 
 
The to-be-segmented volume (be it a CTscan or an MRI volume) is made of L images each 
containing MN×  pixels.  The volume is made of voxels whose position (i,j,l) indicates their spatial 
location (i,j) in the lth image. When building the graph, each node is associated to a voxel in the 
volume.  In this way, the graph contains MN  L ××  nodes plus a source and a sink. Each node (read 
voxel) at position (i,j,l) in the volume is connected to its 6 neighbours, i.e. (i+1,j,l), (i-1,j,l), (i,j+1,l), 
(i,j-1,l), (i,j,l+1), and (i,j,l-1). Note that the source and the sink are not associated to a voxel as they 
are terminal nodes (see figure 4a).  The nodes to which s and t are connected depend on the 
initialization entered by the user. 
 
Initialization 
 
As shown in figure 4b, the user is required to roughly select an area of interest.  The area can be the 
lumen or the aortic wall depending on the expected result.  We empirically measured that an 



initialization at every 2 cm is enough to obtain accurate results (that is one contour every 8 to 20 
images for a CT-Scan volume and one every 3 to 5 images for an MRI volume).  

Once every contour has been drawn, the volume is divided into 3 regions: the “inside” region 
(in blue), the “neutral” region (in red and in images with no initialization), and the “outside” region 
(in green).  The nodes (read voxels) within the blue sections are connected to the source with an 
infinite capacity and those in the green area to the drain with an infinite capacity1.  In this way, the 
nodes in the blue and in the green areas will be automatically labelled as being “inside” and “outside” 
the segmented area (i.e. in the “S” and “T” classes).  This is a fundamental property of our method as 
it prevents the results from leaking outside the red contour.     
 
Edge Capacity 
 
The nodes in the blue and the green regions being automatically clustered in the “S” and “T” classes 
their edge capacity has no effect on the end result and thus are assigned a constant value.  As for the 
nodes in the neutral region, there edge capacity is assigned the following value given that a and b are 
neighbours:  
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where I is the image volume (MRI or CT-scan) and ba II ,  stand for the grayscale at voxel a and b. 

This equation also takes into account the gradient direction using a binaryabδ function.  As will be 

shown later, abδ  prevents the method from snapping on the edge of the neighbouring organs.  Let us 

also mention that due to the fact that an aorta has different grayscales in CT and MR images, ew

contains gradient information instead of intensity information.  This is a key element that makes our 
method suited to both MR and CT images. According to equation (3), the capacity gets low whenever 
the inter-voxel gradient || ba II −  is large.  In this way, the method ends up cutting the volume in 

areas of strong gradient, i.e. on the nearest edges.  A “camera noise” parameter σ  is incorporated 
which gives more or less influence to the inter-voxel gradient [13]. 

One common problem arises when the aortic wall exhibits a very low contrast (see the MRI 
lumen in figure 1).  In that case, the method often cuts through a uniform region and thus 
underestimates the volume.  As a solution, we added a parameter γ whose value sharpens the image 
gradient.  This parameter can be seen as gradient-based gamma correction.  

Another common problem with generic graph-cut solutions occurs when the aorta is located 
next to an organ whose edges have a larger gradient than that of the aorta.  In that case, the method 
snaps on the edge of a neighbouring organ (see graph-cut and grow-cut results in figure 2).  To 
reduce this effect, we incorporated a notion of “gradient direction” in the edge capacity.  As shown in 
figure 1, the lumen in the CT-scan and the MRI are brighter than their immediate neighbourhood.   
The situation is similar for the thrombus in the CT-scan.  In these cases, when starting from the 
center of the aorta, the gradient goes from “a light area” to a “dark area”, i.e. ba II >  when a is closer 

than b to the aorta’s center.  However, the situation is completely different with the aortic wall in the 
MRI as ba II < .  Consequently, a binary abδ  function is incorporated whose goal is to select the 

gradients pointing in the right direction: 
 

                                                 
1 The nodes in the neutral region are not connected to the source or the drain. 
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when segmenting the lumen or the wall in the CT-scan, and 
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when segmenting the wall in the MRI volume.  In both equations, ) (and ba dd  stands for the 

Euclidean distance between a (and b) and the center of the aorta.  The influence of the abδ  function is 

illustrated in figure 5.  Given a user selection, the end contour will snap of the lumen or the aortic 
wall depending on whether equation (4) or (5) is used.    
  
Touch Ups 
 
Once the graph is built, the minimum cut optimizer is launched.  The resulting cut corresponds to the 
best 3D volume according to the graph’s configuration.  Although the result is usually good, it is not 
void of errors, especially in pathological areas.  Fortunately, the user can correct local deviations with 
a simple touch up tool which changes the region index of badly segmented nodes.  This tool forces 
the selected nodes to be part of the inside, outside, or neutral regions.  This locally modifies the 
graph’s configuration. Our experiments reveal that up to 5 images usually need to be touched up for a 
patient.  Given that retouching one image requires 4-5 seconds, the average touch up time for a 
patient does not exceed 20 seconds. The optimizer can then be re-launched to generate a new 3D 
volume (cf figure 6). 

3.0 Results 
 
3.1 Inter-operator Study  
Our method (and the experts) returns a segmentation map as well as an estimation of the maximum 
diameter for each patient.  Based on these data, our goal is to show that our method is as precise as a 
human observer can be.  In that perspective, the average distance (and standard deviation) is 
computed between the results returned by an operator (be it our method or the experts) to the ones 
returned by the other four operators.   In this way, if our method is as good as a human operator, than 
its average distance should be similar to that of the other operators.  On the other hand, if our method 
is consistently worse than the experts, its average distance should be systematically larger.  Such 
strategy for detecting outliers is called “distance-based outlier detection” [47]. The average distance 
that we compute for each operator O� is the following: 
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where N is the total number of patients, piR , p
jR  the result returned by iO  and jO on patient p, and 

“metric” is either VO, HD or MDD.  The standard deviation is computed in a similar fashion.  Note 
that to make our evaluation robust to outliers, we computed a trimmed average (and standard 
deviation) by removing the 10% outlying patients [48].   

We first processed the results obtained on the diseased subjects.  As can be seen in tables 2, 3 
and 4, the average distance of our method is always within one standard deviation away from each 
expert.  One should note that the largest distance between our method and an observer according to 



the HD and MDD metrics is below 1 millimetre.  Given that the spatial resolution of our CT-scan and 
MR images is between 0.47 to 0.98 mm and 1.12 to 1.40 mm respectively, this corresponds to a 
maximum average error of less than 1 pixel for the MRI and 2 pixels for the CT-Scan.  Such error is 
barely noticeable by a human eye as can be seen in figures 3 and 7. 
 Tables 5, 6 and 7 display the results obtained on healthy volunteers.  A similar conclusion can 
be drawn as the results from our method are statistically close to those produced by the four experts.  
Here again, our method is within one standard deviation away from every expert.  The VO distance 
for our method ranges between 81% and 89% which is approximately what we got for the human 
experts.  As for the Hausdorff and the maximum diameter distances, our method is always less than 
1mm away from the experts. 

In order to validate the fact that there is no statistical difference between the experts and our 
method, we performed an analysis of variance (ANOVA) with the Levene's test of homogeneity of 
variance.  It is commonly accepted that the null hypothesis is verified when the p-value of the test is 
above 5%.  For the volume overlap, the Hausdorff distance and the maximum diameter distance 
(tables 2 to 7), we created 5 lists containing the values returned for each patient by our method and 
the four experts.  For these data, the p-values are widely above 5% which clearly indicate that there is 
no significant difference between our method and the human experts (the p-value for the maximum 
diameter distance is equal to 79%). We did those tests with a commercial software (SYSTAT for 
Windows).  

For the maximum diameter distance, we also used the Bland-Altman plot to further evaluate 
the robustness of our method [49]. We took for each patient (be it healthy or diseased) the average 
maximum diameter entered by the experts and compared it to the results returned by our method.  
This led to the scatter plot in figure 8 in which each dot corresponds to a patient.  The X and Y axis 
correspond respectively to the average and difference between the experts and our method.  The error 
values (Y axis) being clearly smaller than the average value (X axis), this indicates a good 
concordance between our method and the four human operators. 
 
3.2 Synthetic Images 
 
The results obtained on synthetic images are shown in tables 8, 9 and 10.  These tables contain the 
volume overlap, the Hausdorff distance and the maximum diameter distance for three different noise 
level σ.  Overall, our method is very close to the human observer especially when the noise level is 
low.  In the worst cases, our method is respectively 4.6%2 and 2.47mm3 away from the expert.  As 
for the maximum diameter error, our method is at most 0.9 mm away from the expert which 
corresponds roughly to a 1-pixel error.  As shown in figure 5, these results are both accurate and 
similar. 
 
3.3 Performances 
 
We executed our program on a 2.0 GHz Intel core 2 duo computer with 3Gb of RAM.  In order to 
reduce the processing time and save memory, only the region of interest located around the red initial 
contour is processed. The size of that region varies between 120×120 and 350×350 square pixels. 
Overall, the graph-cut optimizer takes between 0.95 and 2.25 seconds on the MRI volumes and 
between 0.96 and 8 seconds on the CT-Scan volumes.  The hand selection of the initial contours 
takes between 10 to 40 seconds depending on the number of slices in the volume.  The overall 
procedure including initialization, segmentation and touch up takes roughly less than one minute.  
This is fairly small compared to manual segmentation. As a rule of thumb, our experts took between 

                                                 
2 In table 8, 99.51% for expert 1 and 94,91% for our method. 
3 In table 9, 2.0mm for expert 1 and 4.47mm for our method. 



4 and 8 minutes to segment a 20-slice MRI volume and between 7 and 12 minutes for a 40-slice CT-
scan volume. 

4.0 Discussion 
 
It is well documented that the rupture of an AAA is uncommon when the aneurysm’s diameter is 
below 5.5 cm and expanding slowly [2-5]. For that reason, the aneurysm size has always been a key 
parameter in cardio-vascular surgery. Due to the nature of most AAAs, the correct measurement of 
the aneurysm calls for a full imaging examination. On that matter, CT scans and MRI have always 
been the preferred modalities, ultrasounds being inapplicable to correctly determine the size and the 
extent of the aneurysm.  Angiographic techniques provide accurate definition of lumen area, but are 
ineffective in the localization of the aortic wall, restricting the thrombus evaluation. The strength of 
the multiplanar reformation (MRP) CT scan and the MRI comes from the richness of their data: a 
volume made of between 20 and 200 axial tomographic images. Although hand selecting the 
maximum diameter is fairly straight forward, manually determining the size of the aneurysm (useful 
in surgical repair planning) remains tedious in clinical practice. This is especially true when the full 
reconstruction of the lumen and the aortic wall is required.   

As a solution, we proposed a semi-automatic graph-cut segmentation method to rebuild in 3D 
the aortic wall and the lumen interface from the renal arteries down to the iliacs. Our method is 
effective on CT scan images as well as white blood MR images.  As we mentioned, basic graph-cut 
methods such as Boykov and Jolly’s [13] are not well suited to the aortic segmentation problem. We 
thus proposed a cost function that allows (1) to deal with low-contrast edges caused by the windy 
nature of the aorta and (2) differentiate the lumen from the aortic wall.  Furthermore, our method 
does not leak when the aorta is pressed against another organ which is a known problem with 
numerous techniques.  

Our method is user-friendly and useful in clinical practice as it measures the maximum 
diameter of the aneurysm as well as the volume, position and eccentricity of the thrombus. It has 
been validated on data acquired from 44 subjects, some having an AAA and others not.  In order to 
cover different types of acquisitions, various CT scan and MRI settings have been accounted for.  
Our database has a variety of images with different spatial resolution and slice thickness.  Despite 
these various settings and the fundamental differences between CT scan and MR images, we showed 
that our method is on the average as precise as the experts.  The comparison with four experts 
underlined the fact that the average distance between our method and manual drawings is similar to 
the inter-observer variation. Considering the maximum diameter evaluation, the Bland-Altman plot 
shows that there is a good concordance between the human experts and our method. The slight 3.2 
mm overestimation in the graph is due to the management of the aortic wall by some human 
operators. Indeed, some operators selected the inner section of the wall while others selected the 
outer section of the wall.  Since our method always use the outer section of the wall, this led to a light 
shift in the graph.  

Also, although our method relies on a user initialization, this procedure is rapid (a few 
seconds) and intuitive.  Since our method is not void of draw-backs, it sometimes overestimates the 
aortic wall in the vicinity of the collateral arteries.  As a solution, we developed a simple touch up 
tool allowing for manual interventions in pathological areas.  Further improvements of the user 
interface should reduce user intervention. 

Our method is still subject to future methodological improvements that hopefully would lead 
to a complete automatic procedure.  We are also working to extend our method to other MRI 
protocols than the SSFP sequence.  More specifically, we would like to make it work on black blood 
MR sequences such as T1 spin echo sequences.  



As a conclusion, we proposed a semi-automatic method to segment the lumen and the aortic 
wall from a stack of axial images covering the abdominal aorta from the renal arteries down to the 
iliacs. Our solution is generic and allows the management of patient examinations taken from CT or 
MR imagers. A comparison with manual tracing demonstrates that our automatic segmentation is as 
precise as an expert. The deployment of our approach in clinical practice would provide cardiologists 
with key parameters allowing the follow up of patients with AAA.  
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Figure 1 Typical diseased aortas taken from three patients.  The first and third images are CT-scan 
images and the second is an MR image.  As can be seen, the shape, the size and the grayscale of the 
lumen and the thrombus vary significantly from patient to another.  These images show diseased 
aortas with and without a thrombus and with and without the vena cava pressed against the aortic 
wall.  The reader shall notice that the aorta does not always have an ellipsoid shape. 
 

 
Figure 2. Different segmentation results obtained on a CT and an MR image.  These results are 
typical of the type of issues one has to deal with.  (First row) Results obtained with a snake with an 
ovoid shape prior [9], graph-cut [13], grow cut [15], graph cut with star shape prior [38] (second row) 
flood fill [12], iterative graph cut, level set [7], and graph cut with star shape prior [38].  Let us 
mention that the initialization step is similar for all of these methods. 



 

 
Figure 3.  Synthetic version of an MR image (first and third column) and a CT-scan image (second 
and fourth column).  The MR image contains Rician noise with standard deviation of 15 while the 
CT-scan image contains Gaussian noise with standard deviation of 20.  The four left most images 
were hand segmented by an expert while the four right most images have been segmented with our 
method.  
 

   
Figure 4.  (left) Schematic representation and (right) snapshot of an initial contour entered by the 
user.  Pixels inside the blue area are connected to the source with an infinite capacity and those in the 
green area are also connected to the sink with an infinite capacity.  The pixels located in the red 
section are connected to their 6 neighbours (4 in the same image, 1 in the image above, and 1 in the 
image below).  The weight ew of these 6 edges is determined by equation 3. 

 

 
Figure 5.  Given an input image and a user selection, the last two images illustrate the effect of 
equation (4) and (5).   
 



 
Figure 6.  On the left, 3D result of an aortic wall obtained after segmenting a CT-Scan volume made 
of 129 images.  On the right, result obtained with our method for the lumen and the wall in a CT-scan 
and an MRI.  The last two images illustrate the touch up tool.    



 

 
Figure 7.  Typical results produced by an expert and by our method on CT-scan and MRI data.  The 
difference is barely noticeable by an human eye, especially for the CT-scan.  The green line 
corresponds to the maximum diameter. 
 

 
 

Figure 8 : Comparison between automatic and manual processing for the evaluation of the maximum 
diameter with a Bland-Altman plot (mean = 3.2 mm; standard deviation (SD) = 2 mm) 
  



      Table 1 Acquisition parameters and study population  
 MRI CT 

System 3T whole body Imager (10 patients) 
(Trio TIM. Siemens Medical Solution, 

Erlangen, Germany) 
 

1.5 T whole body imager  
(4 patients and 6 healthy subjects) 
(Avanto TIM. Siemens Medical 
Solution, Erlangen, Germany) 

Spiral CT scanner with intravenous 
injection of contrast material 

(LightSpeed Ultra, 
GE Medical Systems, USA) 

Patients with 
AAA 

14 (13 men, 1 woman) 
70 ± 10 years 

21 men 
70 ± 11 years 

Patients without 
AAA 

6 (4 men, 2 women) 
63 ± 14 years 

3 (2 men, 1 woman) 
70 ± 2 years 

Image size 256 × 176 512 × 512 
Spatial resolution 1.12 mm to 1.40 mm per pixel 

according to the subject 
0.47 mm to 0.98 mm per pixel 

according to the subject 
Slice thickness 5 mm 1 mm to 8 mm per pixel according to 

the subject 
 

Table 2 Volume overlap (%) for diseased aortas 

  Expert 1 Expert 2 Expert 3 Expert 4 Our method 

  � σ � σ � σ � σ � σ 

Lumen, MRI 86.26 4.44 85.85 5.35 85.83 5.16 83.86 5.78 83.07 5.25 

Wall, MRI 88.57 5.67 87.93 6.13 88.25 5.61 83.72 5.75 85.24 6.09 

Lumen, CTscan 90.47 4.83 90.83 4.43 90.32 4.86 87.01 6.73 87.69 6.83 

Wall, CTscan 92.89 3.35 91.29 4.01 92.60 3.36 92.23 3.55 90.93 4.90 

 
 

Table 3 Hausdorff distance (mm) for diseased aortas 

Expert 1 Expert 2 Expert 3 Expert 4 Our method 

� σ � σ � σ � σ � σ 

Lumen, MRI 2.43 0.95 2.64 1.16 2.54 1.05 2.79 1.15 2.92 1.10 

Wall, MRI 2.84 1.24 2.97 1.53 2.84 1.30 3.34 1.17 3.52 1.50 

Lumen, CTscan 2.13 0.92 2.17 1.05 2.37 1.10 2.61 1.17 2.68 1.25 

Wall, CTscan 2.33 1.17 2.70 1.39 2.51 1.36 2.57 1.54 3.09 1.81 

 

Table 4 Maximum diameter distance (mm) for diseased aortas 

Expert 1 Expert 2 Expert 3 Expert 4 Our method 

� σ � σ � σ � σ � σ 

MRI 2.55 1.70 2.26 1.50 2.71 1.83 3.16 2.03 3.39 2.08 

CTscan 2.04 1.76 2.01 1.47 2.12 1.47 2.96 2.35 2.86 1.77 

 
         
 
 
 



      Table 5 Volume overlap (%) for healthy aortas 

Expert 1 Expert 2 Expert 3 Expert 4 Our method 

� σ � σ � σ � σ � σ 

Lumen, MRI 89.70 5.61 89.90 6.86 89.50 5.69 88.13 6.41 86.60 5.95 

Wall, MRI 88.94 7.01 88.64 7.50 88.67 5.35 82.68 7.42 81.64 7.03 

Lumen, CTscan 88.84 4.25 89.23 4.99 88.45 4.94 84.85 6.13 86.52 6.37 

Wall, CTscan 89.40 4.53 86.56 6.03 88.63 4.88 88.65 4.97 83.85 6.13 

 
        Table 6 Hausdorff distance (mm) for healthy aortas 

Expert 1 Expert 2 Expert 3 Expert 4 Our method 

� σ � σ � σ � σ � σ 

Lumen, MRI 1.87 2.04 1.97 2.39 1.90 1.91 2.41 3.00 2.25 1.95 

Wall, MRI 2.27 1.46 2.36 1.90 2.42 1.60 3.21 2.31 3.45 1.59 

Lumen, CTscan 1.41 0.38 1.39 0.42 1.49 0.43 1.70 0.39 1.61 0.52 

Wall, CTscan 1.69 0.56 2.00 0.69 1.82 0.62 1.83 0.62 2.31 0.74 

 
Table 7 Maximum diameter distance (mm) for healthy aortas  

  Expert 1 Expert 2 Expert 3 Expert 4 Our method 

  � σ � σ � σ � σ � σ 

 MRI 2.65 1.63 2.61 2.25 2.58 2.05 2.64 2.67 4.86 2.01 

 CTscan 1.93 1.40 1.35 1.12 1.53 0.91 3.05 1.24 1.96 1.54 

 
 

Table 8 Volume overlap (%) for synthetic images 

  Expert 1 Our Method 

Noise Level σσσσ=1 σσσσ=10 σσσσ=15 σσσσ=1 σσσσ=10 σσσσ=15 
Lumen, MRI 97.82 96.74 95.37 100 92.05 91.55 

Wall, MRI 96.51 96.94 95.83 96.46 95.37 93.26 

Noise Level σσσσ=1 σσσσ=10 σσσσ=20 σσσσ=1 σσσσ=10 σσσσ=20 
Lumen, CTscan 99.16 99.51 98.74 99.16 94.91 95.62 

Wall, CTscan 98.47 98.64 98.67 96.03 95.69 96.44 

 
Table 9 Hausdorff distance (mm) for synthetic images 

  Expert 1 Our Method 

Noise Level σσσσ=1 σσσσ=10 σσσσ=15 σσσσ=1 σσσσ=10 σσσσ=15 
Lumen, MRI 1.00 1.00 1.00 1.00 2.83 2.24 

Wall, MRI 1.41 1.41 2.00 2.00 2.83 2.24 

Noise Level σσσσ=1 σσσσ=10 σσσσ=20 σσσσ=1 σσσσ=10 σσσσ=20 
Lumen, CTscan 1.00 1.00 1.00 1.00 2.24 1.41 

Wall, CTscan 2.00 2.00 1.41 4.47 4.00 3.00 

 
  



 
Table 10 Maximum diameter distance (mm) for synthetic images 

  Expert 1 Our Method 

Noise Level σσσσ=1 σσσσ=10 σσσσ=15 σσσσ=1 σσσσ=10 σσσσ=15 
MRI 1.00 1.38 1.67 1.01 1.03 1.59 

Noise Level σσσσ=1 σσσσ=10 σσσσ=20 σσσσ=1 σσσσ=10 σσσσ=20 

CTscan 1.23 0.39 0.55 0.84 0.84 1.45 
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