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Abstract
We proposed a statistical modeling method for the quantitative evaluation of segmentation
methods used in image guided radiotherapy. A statistical model parameterized on a Beta
distribution was built upon the observations of the volume overlap between the segmented
structure and the referenced structure. A statistical performance profile (SPP) was then estimated
from the model using the generalized maximum likelihood approach. The SPP defines the
probability density function characterizing the distribution of performance values and provides a
graphical visualization of the segmentation performance. Different segmentation approaches may
be influenced by image quality or observer variability. Our statistical model was able to quantify
the impact of these variations and displays the underlying statistical performance of the
segmentation algorithm. We demonstrated the efficacy of this statistical model using both
simulated data and clinical evaluation studies in head and neck radiotherapy. Furthermore, the
resulting SPP facilitates the measurement of the correlation between quantitative metrics and
clinical experts’ decision, and ultimately is able to guide the clinicians in selecting segmentation
methods for radiotherapy.
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1. Introduction
Recent advances in three-dimensional conformal radiotherapy (3DCRT) and intensity-
modulated radiotherapy (IMRT) allow the radiation to be delivered to the target with a better
spatial dose distribution to minimize radiation toxicity to the adjacent normal tissues [1–3].
To achieve this precise distribution of radiation, it is crucial that clinical specialists
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accurately define the targets and the concerned organs-at-risks (OARs). Traditionally, these
targets and OARs are manually delineated by the clinical specialists. This manual
contouring process has proven to be tedious and time-consuming. For example, some studies
have shown that specialists may spend more than one hour on average to fully define the
desired treatment target and OARs for a head and neck cancer patient to receive IMRT [4,
5]. In addition, this manual contouring process introduces intra-/inter-observer variations
that are caused by the different clinical experience, training of the specialists, and the quality
of available medical images. As a result, computer-aided robust automatic segmentation
tools have become increasingly important to reduce contouring time and create more
accurate and objective standardized contours.

However, automatic segmentation of human anatomy from medical images has been a
challenging problem for many years. Many researchers have devoted themselves to solving
this problem and have devised different approaches [6–10]. The majority of segmentation
systems developed for radiotherapy treatment planning are based on semiautomatic
techniques that capitalize on a priori information such as anatomical atlases from previous
treatments that have well-defined manual contours [10]. The major obstacles to auto-
segmentation are that each patient has a different anatomy and that organs of each patient
vary daily in terms of their size, position, shape, and composition. These obstacles together
with limitations in image quality pose great challenges for automatic segmentation
algorithms. If used in clinical practice, automatic segmentation is generally used as a starting
point for the contouring. The physicians review and modify the auto-segmented contours as
needed. This has been demonstrated as an effective clinical practice [7]. However, the
efficiency of this contouring practice is highly dependent on the implementation of auto-
segmentation algorithms. If the auto-segmentation result is poor, it may take longer to
modify these contours than contouring them from scratch. Therefore, objective performance
evaluation of different auto-segmentation approaches is desirable to better capitalize on the
usability of this technique in clinical practice.

Evaluation of image segmentation, particularly its accuracy, has long been a difficult
problem mostly because of a lack of a gold standard, i.e., the ground truth of the actual
segmentation [11]. At present, most of the ground truth segmentation is taken from the
experts’ manual contouring; however, the aforementioned intra-/inter-observer variability
then necessarily affect the segmentation’s assessed quality. Some quantitative evaluation
methods have been proposed in the literature to evaluate the accuracy of automatic
segmentation for radiotherapy [4, 5, 7, 12–14].

In most cases, a volume overlap index (VOI) metric, such as the Dice similarity coefficient
(DSC) [15] between the segmented contours and the gold standard, is used as the
measurement for segmentation accuracy. The VOI value ranges in [0, 1] with 0 indicting the
worst performance and 1 indicating the best performance. Statistical analysis is performed to
obtain sample mean and standard deviation (SD) of the VOI values measured on the same
object from multiple data sets in order to eliminate the impact from variations of observer
variability and image quality. In general, this statistical analysis is based on the assumption
of Gaussian distribution of these VOI values. However, this assumption could be incorrect
because the distribution of VOI value is restricted in [0, 1] while the Gaussian function
assumes a continuous distribution in [−∞, +∞]. It is important to take advantage of the
statistical information in multiple observations to model the variations of each auto-
segmentation approach. Accuracy and consistency are major concerns for clinical
implementations, which is our main motivation to develop this statistical modeling method
for evaluating segmentation algorithms.
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We built a statistical model using a Beta distribution based on the observations of the
volume overlap between the segmented structure and the referenced structure. A statistical
performance profile was then estimated from the model to define a probability density
function characterizing the distribution of performance values. This method not only takes
into account the variations during evaluation, but also provides a graphical visualization of
the segmentation performance. We demonstrated the efficacy of our statistical modeling
method using patient images collected during image-guided radiotherapy for head and neck
cancer patients.

2. Methods
Here we describe the formulation of our statistical model and its important properties when
applying it to evaluation of anatomy segmentation performance. We built our statistical
model using observations from the overlap of two volumes or regions of interest (ROIs),
with one delineated by the automatic segmentation method and the other by the assumed
ground truth segmentation. To simplify the formulation of our statistical model, we
considered only one ROI structure. However, our model can be applied separately to each of
several ROIs being considered.

2.1. Data model
We assumed a specific ROI structure was delineated using a segmentation method on a total
of M data sets and a reference ROI was available for each data set. The overlap of the
segmented ROI and the reference ROI was evaluated to measure the segmentation
performance. Let Di, i = 1, …, M, denote the segmentation decision and Ti, i = 1, …, M,
denote the ground truth for each data set. We define Ni, i = 1, …, M, as the total number of
voxels that are assigned an object value of 1 either by the segmentation decision map or by
the ground truth image and xi, i = 1, …, M, as the number of voxels assigned a value of 1 by
both the segmentation decision map and the ground truth image. Figure 1 illustrates the
definition of Ni and xi. Let y denote the underlying performance of the segmentation
algorithm. This variable is unobservable and could be regarded as a random variable. Let Y
= {yi: i = 1, …, M} be the underlying performance of the method applied to the M
observations; we assume that each yi is independent and identically distributed (i.i.d.). Let X
= {xi: i = 1, …, M} denote the collection of xi and N = {Ni: i = 1, …, M} denote the
collection of Ni. We can model X as a random vector whose elements are statistically
independent, where xi is drawn from a binomial distribution with parameters Ni and yi as

(1)

This binomial formulation assumes underlying independency of each voxel on the binary
segmented images, similar to the problem formulation in simultaneous truth and
performance level estimation (STAPLE) algorithm [16]. The independency assumption is
reasonable because this formulation is for evaluation purpose only. The variable yi takes
values from [0,1] to indicate the performance of the segmentation algorithm applied to the
ith data set, with 1 being the best performance and 0 being the worst. Eq. (1) implies that,
the greater the amount of overlap between the segmented ROI and the ground truth, i.e., the
value xi is closer to Ni for i = 1, …, M, the better the performance of the testing
segmentation method. Because yi takes values from [0,1] and the Beta distribution is a
conjugate prior of the binomial distribution, it is reasonable to model variable yi with the
Beta distribution, i.e.,
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(2)

where α > 0 and β > 0 are unknown parameters that need to be estimated based on the given
observations of the volume overlaps. B(α, β)is the Beta function used as the normalization
constant in Eq. (2):

(3)

2.2. Parameter estimation
In the model denoted by Eqs. (1) and (2), {X, N} are the observed data and {α, β} are the
parameters we need to estimate. In general, the {α, β} are regarded as the hyperparameters
of the binomial distribution (1), and the generalized maximum likelihood (GML) can be
applied to estimate these hyperparameters [17]. To be specific, let θ denote the set of
parameters {α, β}. Then the parameter estimation problem can be formulated as

(4)

This optimization problem can be implemented by successively maximizing with respect to
θ and Y:

(5)

Note that the first equation in Eq. (5) is equivalent to the following maximization problem:

(6)

This can be interpreted as a maximum likelihood (ML) estimate of θ if Y(k) could be
considered as samples of the prior distribution in Eq. (2). The ML estimation for the
parameters of the Beta distributions has been studied extensively [18–20]. A closed-form
solution does not exist. A common alternative is to estimate the parameters using the method
of moments [21]. Using this method, we have the following updated equations for
parameters α and β:

(7)

where

(8)
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To estimate Y in Eq. (5), we need to first compute the probability density function for the
posterior distribution, f(Y|X, θ), i.e.,

(9)

Eq. (9) shows that the posterior is also a Beta distribution but with parameters {xi + α, Ni −
xi + β} for each observed data set. By taking the derivative of Eq. (9) with respect to yi, i =
1, …, M, given the knowledge of θ(k), we can obtain the updated equations for the
performance values Y as

(10)

Eqs. (7), (8), and (10) constitute an iterative procedure to estimate the parameters θ = {α, β}
as well as the hidden performance values Y. The initialization for the iterative procedure can
be estimated by applying the ML estimator to Eq. (1) with the assumption that yi is
deterministic. Therefore,

(11)

Eq. (11) is equivalent to assuming α(0) = β(0) = 1, i.e., the prior distribution of the
underlying performance is uniform over [0,1], the completely uninformative case. By
observing Eq. (11), we can see that the initial performance is equivalent to the union volume
overlap index, i.e., the Jaccard coefficient [22].

The estimation given by Eqs. (7), (8), and (10) may be unstable or over sensitive when the

observations do not well distribute. In this situation, the estimated , i = 1, …, M, from Eq.

(10) converges to the mean of  so that the variance in Eq. (8), v(k), becomes very small.
This will cause numerical instability when estimating α(k) and β(k) in Eq. (7). Should this

situation happen, we will use  in Eqs. (7) and (8) to estimate {α, β} directly, instead of
going through the iterative estimation. However, in real cases, this situation normally will
not happen.

2.3. Statistical performance evaluation
In our data model, the performance of a segmentation method is represented by a random
variable y, and the final estimates Y = {yi:i = 1, …, M} can be viewed as the samples of the
underlying performance y when the method is applied to the M data sets. As mentioned
previously, y follows the Beta distribution with a probability density function (PDF) of

(12)

where α and β are the parameters estimated on the basis of the observed data using the
method described in section 2.2. The PDF in Eq. (12) exemplifies the distribution of the
performance values over [0, 1]. We refer to this PDF as the statistical performance profile
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(SPP) for the given segmentation method. For different data sets or different ROIs in the
same data sets, the SPP could be different for a same segmentation method. The SPP can
also be graphically displayed with a curve, which intuitively illustrates the distribution of the
segmentation performance values. Figure 2 shows some examples of the SPP, i.e. the PDF
of the Beta distribution. Using the SPP, the performance of a given method can be easily
visualized and the performance of different methods can be easily compared.

The expected performance score (mean) for a given method based on the M observations
can be given by the expectation of y as

(13)

The standard deviation (SD) of the distribution is another important measure for the
performance evaluation and may be related to the robustness of the segmentation
performance,

(14)

The performance score obtained when the method is applied to a new data set with prior
knowledge of the Beta distribution may also be of interest. Assume the ROI overlap (N, x)
for the new data set is observed. Then the posterior distribution of the performance would be

(15)

With this observation, the performance score for this data set would be

(16)

This value can be viewed as a performance score rectified from the Jaccard coefficient by
considering the prior knowledge learned from the training data with properties similar to the
new data set.

3. Results
In this section, we will first use the Monte Carlo simulation to justify the iterative parameter
estimation method described in section 2.2. Then we will present results from both a
simulation study and a clinical study to demonstrate the efficacy of our statistical modeling
method. Specifically, we applied the SPP to evaluate an atlas-based segmentation method
using deformable image registration. In our experiments, we performed deformable image
registration [6] to obtain a vector field characterizing the mapping from the atlas image to
the testing image. This vector field was then used to transfer the well-defined ROI structures
on the atlas to the corresponding positions on the testing image for segmentation.

The data used in our study are the computed tomography (CT) images of head and neck
cancer patients. The structures of interest are the bilateral parotid glands. Parotid gland is
one of the most important organs to be avoided during the head and neck radiotherapy. The
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delineation of parotid gland is not easy due to the low contrast of this organ with its
surrounding tissues, such as muscle and skins, on the CT image. The pitch rotation of the
head may also add difficulty to exactly locate the parotid glands on the axial slices of the CT
image. Figure 3 shows some important structures on an axial CT slice that are normally
contoured for head and neck radiotherapy.

3.1. Accuracy of parameter estimation
To verify the accuracy of parameter estimation described in section 2.2, we performed the
following Monte Carlo simulation. In particular, we were interested in how the number of
samples, M, affected the parameter estimation. To perform the simulation, we assumed the
data model had known values of α,β, and N (of size M) and then generated 100 realizations
of X using Eqs. (1) and (2). We ran the iterative algorithm described in section 2.2 to get α̂
and β̂, the estimation of parameters α and β, respectively. Then we calculated the mean
square errors (MSEs) of the estimation, i.e., E((α̂ − α)2) and E((β̂ − β)2) based on the 100
simulations. We varied the value M and repeated the simulation to record the MSEs at
different numbers of samples for comparison. Figure 4 illustrated an example with α = 9.6,
β = 6.5 and a constant number of 18000 for each Ni, (i = 1, …, M). We chose various values
of M from 50 to 1000 and calculated the MSEs for α and β, respectively. In figure 4, for
both α and β, the estimation error decreased as the sample size M increased. When the
sample size was less than 300, the parameter estimation was biased by the variations
existing in the samples thus resulting to estimation error. When the sample size was over
300, the error became very small; when the sample size further increased to over 600, we
were able to obtain an estimation that was quite accurate.

3.2. Simulation study
We constructed a set of deformed CT images from a reference patient with head and neck
cancer; the images were obtained during a course of radiotherapy with an in-room CT
scanner (Mx8000 IDT, Philips Medical Systems, Cleveland, OH). All CT scans were
obtained from patient database through an institutional review board-approved protocol.
Two steps were involved in creating the simulated deformed CT images: a training step and
a simulation step. In the training step, we performed deformable image registration to
deform the planning CT to 33 daily CTs in a treatment course to acquire 33 deformation
fields that represented real changes in human anatomy. We then applied principal
component analysis (PCA) to these 33 deformation fields to extract the mean deformation
field and 10 most prominent modes of variation. In the simulation step, we used the mean
field and 10 modes of variation as a template to generate random deformation fields, as
described in a previous study [23]. The random deformation fields were then applied to the
planning CT to produce a set of deformed CT images. The defined contours on the planning
CT were also transformed to each deformed CT as the ground truth that would be used in the
performance evaluation. We generated 600 deformed CT images. Figure 5 shows some of
the simulated CTs with defined contours. Our simulation method was similar to the one
proposed in a previous study [24]. Because the random deformation fields were learned
from real changes in human anatomy, the simulated CT could represent realistic human
subjects.

In these 600 deformed CT images, we randomly selected 300 as atlas images and the
remaining 300 CTs were used as testing images to form 300 pairs of atlas-testing image sets.
We preformed the registration between the atlas and testing images for each pair and
transformed the contours on the atlas image to the testing image automatically. We
examined the bilateral parotid glands because they are critical structures to spare in head and
neck radiotherapy. Two registration algorithms were used to generate the automatic
delineated contours. One registration algorithm was the linear registration using the centered
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affine transformation with an intensity similarity metric, which was implemented in ITK
[25]. The other registration algorithm was the deformable registration using the dual-force
“Demons” algorithm [6]. We also directly mapped the atlas contours to testing image sets
without performing any registration. We computed the SPP for each contour mapping
method and demonstrated how SPP could easily be used to compare the performance of
different approaches. The estimated SPP parameters are presented in table 1, and the SPPs
are illustrated in figure 6. From figure 6, it is easy to see that the deformable registration
performed much better than the affine registration in this testing. This result is not surprising
because the simulated data were generated with random local deformation instead of global
transformation. The global affine registration was not able to recover the local deformation.
Because the parotid glands are small relative to the entire head-and-neck region, affine
registration may be able to improve the registration for the entire image but may not result in
good registration in the parotid gland region. This fact may explain our observation of a
wider spread of SPP for affine registration than for direct mapping. In other words, the
affine registration was not robust when we used it to register the parotid glands. The larger
SD in table 1 also showed this point. The SPP for the deformable registration had a narrow
and sharp outline, which demonstrated a robust good performance.

3.3. Clinical study
In this clinical study, we demonstrated the capability of our SPP to show the intra-observer
variability in clinical contouring. CT images for 10 head and neck cancer patients who had
undergone three CT scans weekly using an in-room CT scanner were evaluated for the
accuracy of the contours that were automatically propagated from the planning CT image.
Each of these 10 patients had undergone 11–14 daily CT scans, and a total of 122 CT scans
were evaluated. One physician contoured each daily CT from scratch and modified
deformed contours that were propagated from the planning CT. The automatic contour
propagation was implemented with deformable registration using the dual-force “Demons”
algorithm [6]. Figure 7 shows an example of the auto-propagated contours for one of the
head-and-neck cancer patients. Some of the most important contours for radiotherapy are
displayed, such as the primary targets, clinical target volumes (CTVs) of three risk levels,
parotid glands, and spinal cord. For each patient, the deformed contours were compared with
both the physician-drawn contours and the physician-modified contours for performance
evaluation. We computed the SPPs for the high-risk CTV and both parotid gland contours.
CTV were not contoured from scratch due to its high variations across the treatment course.
Table 2 shows the estimated parameters, and figure 8 compares the SPPs of “contours from
scratch” and “modified contours” for the left and right parotid glands.

Parotid glands are difficult to delineate due to their low contrast to surrounding tissue and
high variability. Even experienced physicians may produce different contours if they are
asked to independently contour the same anatomy twice. The SPPs for “contours from
scratch” in table 2 or figure 8 demonstrate this point. The SPPs showed a mean
segmentation performance of 0.71 with averaged standard deviation of 0.07 for both parotid
contours. Figure 8 also showed the performance values were mostly distributed in [0.5, 0.9],
and the probability of performance value above 0.90 was nearly 0. This demonstrated the
high intra-observer variability in contouring the CT scans of patients with head and neck
cancer.

The same physician who did the previous contouring was also asked to modify the deformed
contours to generate a set of clinically acceptable contours. The SPPs for the “modified
contours” showed a much higher performance, with a mean value around 0.98 and standard
deviation of 0.05. Because the mean value is very close to the right boundary 1.0, the
distribution significantly skews to the left so that the PDF curve peaks at the boundary, as
shown in figure 8 of the curves for the modified contours. This illustrates that the
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performance values most likely distribute around 1.0. Actually, the distribution of
performance values was mostly in [0.7, 1.0], and the probability of performance value above
0.99 was around 80% for both parotid glands. The physician also modified the deformed
CTV contours. The SPP showed a mean performance for modified CTV contours as 0.94,
with 50% probability of these contours having a performance value above 0.95. This
indicates that the auto-propagated contours matched well with the physician’s judgment and
the intra-observer variability was significantly reduced when the physician modified
contours from a reference. By comparing the SPPs of the “contours from scratch” and the
“modified contours”, we concluded that the auto-propagated contours were very helpful in
reducing the observer variability in clinical contouring practice. This, on the other hand, also
demonstrated that the observer variability in the manual reference contours had a great
impact on the evaluation of auto-segmentation.

4. Discussion
We have demonstrated an efficient statistical modeling method to evaluate the accuracy of
anatomy segmentation with a focus on applications for head and neck radiotherapy. This
method takes advantage of a parameterized statistical model, and the model parameters are
estimated from a set of observations. The number of the observations (i.e., the samples) has
a great impact on the estimated parameters. In our Monte Carlo study described in section
3.1, we found the estimation was generally not subject to the sample variations and was
relatively accurate when the number of samples was over 300. With a limited number of
data samples, the variance in the data may affect the estimated performance profile. In
general, the SPP may be biased if the data collection is limited to specific cases, such as
intra-patient contour propagation or contours produced by one physician only. However, the
estimated SPP was still meaningful since it would reflect the estimated performance for only
the given testing samples. It is very important to specify the testing data accurately when
discussing the SPP. Furthermore, to better characterize segmentation performance for a
specific treatment site, such as the head and neck, one needs to collect a variety of data that
are typical for that site in clinical practice and pick representative ROIs to generate the
SPPs. The collection of the clinical data to generate a benchmark database therefore is very
important to thoroughly evaluate a given segmentation method.

We also compared our SPP of the Beta distribution against the statistical analysis based on
the assumption of a Gaussian distribution. We used the SPPs for parotid glands in our
clinical study (Section 3.3) as an example to illustrate the difference between Gaussian and
Beta distributions. Table 3 lists the means and SDs of the Beta distribution and the Gaussian
distribution for both parotid glands using the two contouring methods, contouring from
scratch and modifying deformed contours. The means and SDs of the Gaussian distribution
were computed based on the samples of observed volume overlap, i.e., the Jaccard

coefficient , i = 1, …, M. We found that the means and SDs of the Beta distribution and
the Gaussian distribution were similar. This was not surprising because we used the method
of moments to estimate the parameters for the Beta distribution, which forced the means and
SDs of the Beta distribution to be the same as those of the Gaussian distribution. However,
the distribution could be quite different when the sample mean is close to 1 for the cases of
modified contours. Figures 9(a) and (c) show that the Beta distribution is very close to the
Gaussian distribution for the contouring-from-scratch method. Although Gaussian
distribution looks slightly sharper in Figure 9(c), it does not necessarily mean that Gaussian
distribution is better than Beta distribution. In this situation, further study is required to
determine which model is better, such as the monotonic hypothesis testing [26, 27]
discussed later in this section. However, figures 9(b) and (d) show that the distributions are
quite different for the modifying-deformed-contours method. In this situation, the Beta
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distribution is more appropriate to approximate the actual performance distribution than the
Gaussian distribution because the Gaussian distribution is incomplete in the range of [0, 1].

Another important aspect of our quantitative evaluation study was our attempt to verify
whether a proposed objective evaluation measure accurately predicts human perception.
Human perceptual evaluation is generally accurate if the subjective human tests are
performed correctly; however, subjective human tests are inconvenient, expensive, and time-
consuming. The performance may also depend greatly on the experience of the persons
involved in the testing. Therefore, it is desirable to investigate a quantitative measure that
can accurately “predict” subjective human perception. Because understanding of the human
visual system (HVS) is incomplete, this type of investigation is quite difficult. In our
previous study, we developed a monotonic correlation method [26] and a diffuse prior
monotonic likelihood ratio (DPMLR) method [27] to analyze image quality for image
fusion. In those studies, we evaluated how well the fused image quality measures indicated
the effectiveness of human perception of targets of interest in fused imagery to determine
effective quantitative evaluation measurements for image fusion algorithms. The key in
those studies was to create a data model for evaluation purposes and then use hypothesis
testing to relate the intrinsic human perceptual evaluation to the quantitative measures. In
the present work, we have proposed a statistical model, which can be used for this
correlation analysis. In our future studies, we will devise an experiment to determine how
well this proposed measurement relates to clinical experts’ decision, and ultimately to guide
the clinicians in selecting segmentation methods for radiotherapy.

5. Conclusion
We have developed a statistical modeling method for evaluating different segmentation
algorithms. The efficiency of this method has been demonstrated in head and neck
radiotherapy. A statistical model was developed based on Beta distribution and statistical
inferences of a set of observations. We derived the SPP from the model using the
generalized maximum likelihood approach to characterize the distribution of performance
values. The SPP was able to differentiate the performance of segmentation in the presence of
observer variability and quality of the images and provided a graphical visualization of the
segmentation performance. We validated this method in both simulation studies and clinical
data.
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Figure 1.
Illustration of the volume overlap of auto-segmented ROI [Di] and manual reference ROI
(the ground truth [Ti]), and the definition of Ni and xi.
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Figure 2.
Probability density function of Beta distribution with different parameters (α, β). The pdf
plot shows the distribution of performance values in the interval [0, 1].
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Figure 3.
Some normal structures delineated for head and neck radiotherapy. The left and right parotid
glands are in magenta color, the mandible is in green color, and the spinal cord is in read,
surrounded by cervical vertebrae.
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Figure 4.
The MSEs of α and β estimations for different sizes of samples.
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Figure 5.
Ten examples of the simulated CT images with defined left and right parotid contours. This
figure shows the axial view of these images in the same slice.
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Figure 6.
SPPs for direct mapping, affine registration, and deformable registration methods when they
are applied to (a) left parotid contours and (b) right parotid contours. For better performance,
the SPP curve should be narrow and sharp, and towards the high performance value. In this
illustration, deformable registration shows a better performance than affine registration and
direct mapping.
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Figure 7.
Auto-propagated contours for one patient with head-and-neck cancer. Original contours
were drawn on the “Plan” CT and then were transformed automatically using deformable
image registration to the daily CT images (“CT1”, “CT2”, …, “CT13”).
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Figure 8.
SPPs for contours from scratch and for modified contours. In this illustration, the “modified
contours” shows a much better performance than the “contours from scratch”.
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Figure 9.
Comparison of the Beta distribution and Gaussian distribution for the parotid contours
described in section 3.3. For the contouring from scratch, the performance distribution is
similar for both Beta and Gaussian distribution; for modifying contours method, the Beta
distribution is better than the Gaussian distribution since the effective range of Gaussian
distribution is beyond the interval [0, 1].
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