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Abstract
We describe an automated computerized scheme to identify pulmonary fissures depicted in chest
computed tomography (CT) examinations from a novel perspective. Whereas CT images can be
regarded as a cloud of points, the underlying idea is to search for surface-like structures in the
three dimensional (3D) Euclidean space by using an efficient plane fitting algorithm. The
proposed plane fitting operation is performed in a number of small spherical lung sub-volumes to
detect small planar patches. Using a simple clustering criterion based on their spatial coherence
and surface area, the identified planar patches, assumed to represent fissures, are classified into
different types of fissures, namely left oblique, right oblique and right horizontal fissures. The
performance of the developed scheme was assessed by comparing with a manually created
“reference standard” and the results obtained by a previously developed approach on a dataset of
30 lung CT examinations. The experiments show that the average discrepancy is around 1.0 mm in
comparison with the reference standard, while the corresponding maximum discrepancy is 20.5
mm. In addition, 94% of the fissure voxels identified by the computerized scheme are within 3
mm of the fissures in the reference standard. As compared to a previously developed approach, we
also found that the newly developed scheme had a smaller discrepancy with the standard
reference. In efficiency, it takes approximately 8 minutes to identify the fissures in a chest CT
examination on a typical PC. The developed scheme demonstrates a reasonable performance in
terms of accuracy, robustness, and computational efficiency.
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I. INTRODUCTION
Pulmonary fissures typically divide the human lung into five primary lobes (three in the
right lung and two in the left lung), and each individual lobe acts as a relatively independent
functional unit. For example, Matsuo et al. [1] observed that the pulmonary function was

© 2012 Elsevier Ltd. All rights reserved.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Comput Med Imaging Graph. Author manuscript; available in PMC 2013 October 01.

Published in final edited form as:
Comput Med Imaging Graph. 2012 October ; 36(7): 560–571. doi:10.1016/j.compmedimag.2012.06.001.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



affected significantly by the normal lobar volume (NLV) of the lower lobes. Knowledge of
the characteristics of pulmonary fissures may be useful in the detection, classification, and
assessment of different lung diseases. For example, incompleteness of pulmonary fissures is
often considered in surgical planning and its existence may advance the spread of specific
diseases (e.g., pneumonia) [2,3]. Moreover, pulmonary fissures and their configuration
could also be used for precise localization of lesions, in particular in terms of the possible
involvement of different lobes [4–6]. Hence, accurate identification of pulmonary fissures is
considered clinically important. Unfortunately, the large number of images in a CT
examination makes it mentally challenging and time-consuming for experts to manually
delineate pulmonary fissures in a slice-by-slice manner. At the same time, their frequently
fuzzy appearance makes fissure segmentation from other lung regions, computationally, a
challenging task.

A number of computerized schemes have been developed to identify pulmonary fissures.
Most of these start with an initial detection procedure followed by some type of further
refinement steps. The initial detection step typically aims to discard non-fissure regions
while retaining as many fissure regions as possible. In implementation, this step is often
achieved by identifying either points of interest (POI) or regions of interest (ROI). To
identify POIs, Pu et al. [7] used a simple thresholding operation; Wiemker et al. [8] used
Hessian-matrix and structure-tensor based filters; Rikxoort et al. [9–10] used a pattern
recognition procedure based on a training dataset and a “supervised” filter. In contrast, ROIs
are usually identified by taking advantage of the 3D distance from “fissure to blood vessel”
[11–12], or other airway trees related anatomical information [13–14]. The refinement
procedure is primarily designed to accurately define lines or surfaces. Two-dimensional
(2D) line detection methods include a curve-growing strategy [15–16], Vanderbrug linear
feature detection [17], edge detection [14], and Gaussian and mean curvature analyses [18].
Unlike these methods, Zhang et al. [20–22] presented a method for automatic segmentation
of oblique fissures using an atlas-based initialization procedure followed by a two-step
graph searching procedure to delineate the fissures. As 3D surface representation is
generally more robust in depicting pulmonary fissures than 2D lines, methods to detect 3D
surfaces as a way of identifying pulmonary fissures were recently developed. For example,
Ukil et al. [13] used a “ridgeness” measure followed by a 3D graph search [19] to find the
optimal surface within the ROI. Pu et al. [7] used a computational geometry based approach,
including the marching cubes algorithm (MCA), Laplacian smoothing, and extended
Gaussian image (EGI), to achieve high detection sensitivity of fissure plane patches and to
eliminate other non-fissure related patches. Rikxoort et al. [9–10] and Ross et al. [23] used
second-order information to group points into plates. Kuhnigk et al. [12] used an interactive
3D watershed algorithm. Unlike fissures depicted on a single 2D slice that may be too thick
for accurate line detection or line-like structures that could be interrupted by the presence of
disease, image noise or image artifacts, surfaces do not have these types of problems.
However, the existing 3D surface identification approaches may have some limitations. For
example, the 3D graph search algorithm [19] depended on the robust segmentation of
vascular tree; the algorithms based on the second-order information [9–10] may be sensitive
to image noises or artifacts.

In this study, we proposed an analytical plane fitting algorithm to automatically identify
pulmonary fissures depicted in CT examinations. Here, CT images are treated as a cloud of
points and the lung volume is subdivided into spherical volumes. Potential partial fissure
regions (if any) within each spherical volume are detected by locating the structure that
appears as a planar structure in the specific volume from the perspective of surface (plane)
fitting. A detailed description of the proposed scheme and the test results when applied to 30
chest CT examinations follow.
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II. METHODS
Given the fuzzy appearance of pulmonary fissures on CT examinations, humans can still
visualize fissures primarily because of image contrast representing tissue density differences
(albeit low) between the fissures and surrounding parenchyma. The motivation of this work
is to exploit this characteristic. Whereas pulmonary fissures are 3D freeform surfaces that
can be approximated using a number of small plane patches, we propose to divide the lung
into small spherical volumes (with overlap) and develop a novel robust and efficient
analytical approach to fit a plane (if any) within each sphere. In implementation, given a
chest CT examinations (Fig. 1(a)), the proposed fissure detection scheme consists of five
basic steps as shown in Fig. 1: (1) lung volume segmentation, (2) lung volume partition or
subdivision, (3) filtering using a median filter, (4) fissure patch detection using an analytical
plane fitting algorithm, and (5) classification of different fissure types. The filtering step
simply makes use of the image contrast characteristic and the plane fitting process makes
use of the voxel density characteristic. Since the proposed analytical plane fitting algorithm
is a key component of this scheme, we describe it separately in this section.

A. The Analytical Plane Fitting Algorithm
A.1 Objective Function Selection—A plane in 3D Euclidean space has three degrees of
freedom and is determined uniquely by three parameters. A plane F can be defined as F =
{p|p ∈ R3, f(p) = 0} where:

(1)

where (α, θ, ρ) are the three parameters defining the plane F.

Given N points pi = (xi, yi, zi), i = 1,…, N, in a Euclidean 3D space, our aim is to find a
plane F that minimizes the following objective function:

(2)

where D(pi, F) is the distance between point pi and plane F. It is not difficult to infer from
Eq. (2) that the distance function D(pi, F) plays a pivotal role in the minimization. We note
that for reasons explained in detail in Section B, in this study, the scattered points pi are
voxels in CT images and located within a predefined spherical region (sub-volume). This
constraint does not affect the generality of the algorithm, because a “bounding sphere” could
always be found for a given cluster of points in space. A straightforward solution of Eq. (2)
can be derived using a conventional least square method, where D(pi, F) =|f(pi)|. However,
despite its efficiency, results of the least square method could be easily affected by outliers
(Fig. 2(a)–(b)). Therefore, we chose to use the distance function D defined in Eq. (3) that is
able to provide a relatively accurate solution in the presence of outliers [24][25]:

(3)

where u is a scalar. In this study, u is tightly related to fissure thickness and it can be set to
approximate half of the depicted fissure thickness (e.g., 1.5 mm). Here, we can reformulate
Eq. (2) as

(4)
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Substituting Eq. (2) and Eq. (3) into Eq. (4), the plane fitting is now transformed from
minimizing E(α, β, ρ) (i.e., Eq. (2)) into maximizing E′(α, β, ρ) (i.e., Eq. (5)) by finding a
set of optimal parameters (i.e., (α, θ, ρ)):

(5)

It can be seen from Eq. (5) that only the points whose distances to the plane F are smaller
than u affect the objective function E′. As the density of the points in space is used to detect
fissure planes (if any) in a small spherical sub-volume, we propose to divide function E′ in
Eq. (5) by the corresponding cross-sectional area S of a plane F(α, θ, ρ) and thereby the
density-based plane fitting becomes a problem of finding optimal parameters (α, θ, ρ) by
maximizing Eq. (6):

(6)

where S(α, θ, ρ) = π(r2 − f(o)2) is the cross-sectional area of the plane F(α, θ, ρ) with
respect to the sphere, and o and r denote the center and the radius of the sphere, respectively.
The motivation of dividing E′ (α, θ, ρ) by S is to assure that the objective function ε is
independent of the cross-section area and therefore is only determined by the point density
near the plane.

Whereas the objective function (Eq. 6) is not convex, one cannot simply use a gradient
descent method to optimize the parameters. Although an exhaustive brute-force search could
be used as a solution, the computational complexity is extremely high. For a grid system (α,
θ, ρ) with a size of Nα × Nθ × Nρ, the computational complexity in time is O(Nα × Nθ × Nρ
× N) and this is unacceptable in practice. Hence, an efficient optimization algorithm is
desirable. In the following, we propose to reduce the computational complexity to O(N(α, θ)
× N) without sacrificing accuracy and robustness, thereby making the algorithm practical for
the fissure identification task.

A.2 Optimization of Parameter ρ Using an Integration-Based Approach—
Assuming α and θ are fixed, let n = (cos(α) sin(θ), sin(α) sin(θ), cos(θ)) denote the norm of
a plane F and

(7)

where · represents inner product. By substituting Eqs. (1) and (7) into Eq. (6), ε(α, θ, ρ) can
be rewritten as:

(8)
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Given a variable m and a unit vector n, when m = min qi, we have max qi ≤ m + 2r because
points pi are inside a spherical volume with radius of r. Let:

(9)

where j = 1,2,…, Nρ, Nρ = 2r/λ, and λ is the grid interval of a discretized ρ. In this study, λ
is set at a small value (e.g., λ = 0.1 mm. Whereas the CT image resolution is typically larger
than 0.5 mm, this grid interval is relatively very small and sufficient for our specific
application). Let A, B, C be the integrations of a, b, and c as in Eq. (10):

(10)

Now the objective function (Eq. 8) at each ρ (= m+jλ) is computed as:

(11)

where l = (ρ − m − u)/λ and k = (ρ − m + u)/λ. Here, ρ − m and u are integral multiples of
λ; hence, both l and k are integers. Using integration we now have an optimal ρ for each (α,
θ) pair with a reduced computational complexity in time from O(N × Nρ) to O(N + Nρ).

A.3 Optimization of (α, θ) Using a Multi-scaling or a Coarse-to-Fine Strategy—

Let ε(α, θ) denote , an optimal parameter pair (αopt, θopt ) can be found by
solving:

(12)

The objective function ε(α, θ) is not convex with respect to (α, θ). Whereas the regularized
distance function in Eq.(3) is continuous, ε(α, θ) is continuous and hence the function
values over the region (Ω) near the optimal (αopt, θopt ) is similarly greater than the values
over other regions (as illustrated in Fig. 2(f)). Taking advantage of this characteristic, we use
a coarse-to-fine strategy in order to efficiently search for optimal (α, θ) pairs. We first
search in (α, θ) space with a relatively coarse error δ (i.e., search interval of α and θ) for a
near optimal pair (αc, θc) in terms of Eq. (12). Thereafter, we search for the final optimal
parameter pair (αopt, θopt ) in the sub-space defined by ([αc − 0.5δ, αc + 0.5δ] and [θc −
0.5δ, θc + 0.5δ]) with a smaller predefined error δrefine (e.g. δrefine = 0.01). For pulmonary
fissure identification, δ = 0.1 is sufficient for the initial search in order to avoid being
trapped in local minima. For the example in Fig. 2(f), where the spherical sub-volume with a
cloud of points is extracted from an actual chest CT examination, the region Ω near the
optimal (αopt, θopt) is larger than a circle with a radius of 0.3, i.e.,

. Fig. 2(f) shows the objective function ε(α, θ)

corresponding to the three-dimensional point cloud in Fig. 2(c), where .
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Using the coarse-to-fine strategy, search times for (α, θ) will be reduced from  to

. For example, for δ = 0.1 and δrefine = 0.01, the actual search time of (α, θ) is
reduced from 105 to 103 approximately.

To increase the efficiency given a desired level of accuracy, it is preferable to have the
candidate normal vectors n = (cos(α) sin(θ), sin(α) sin(θ), cos(θ)) corresponding to (α, θ)
homogenized (i.e., uniformly sampled) on half a unit spherical surface. Otherwise, there
could be a number of similar directions repeatedly searched when θ is small (e.g. for θ=0, n
= (0,0,1) would be the same even if α is set at different values). In this study, we simply
assign θ = 0: δ: π and α = 0: δ/sin(θ): π to generate the (α, θ) pairs and the normal vectors
n, respectively, and the search times for optimal (α, θ) pairs will be further reduced from

 to .

To demonstrate the robust and generic characteristics of this fitting algorithm, we applied it
to some 2D and 3D cloud of points in Fig. 2. For the 2D examples (Fig 2(a)–(b)), the lines in
green represent the results obtained by the least square fitting method, and the lines in red
represents the results obtained by the proposed density fitting method. It can be seen that the
proposed fitting scheme is able to accurately identify the lines in spite of the presence of a
large number of outliers, while the least square fitting method is sensitive to the presence of
outliers.

B. Pulmonary Fissure Identification
B.1 Lung Segmentation—Lung volume segmentation (Fig. 1(b)) enables limiting the
search space during fissure detection, thereby improving computational efficiency and
eliminating the possibility of erroneous (false positive) fissure detections outside the actual
lung regions [27–28]. In this study, we use an automated lung segmentation approach
proposed in [26], namely Adaptive Border Marching Algorithm (ABMA), to segment the
lung volume depicted on CT images. As a geometric technique, this algorithm is able to
obtain a “smooth” lung boundary with high computational efficiency by “bridging” regional
concave regions of lung boundaries in a progressive marching manner. A detailed
description of the scheme along with experimental results can be found in [26].

B.2. Volume Subdivision—In this study, an axis-aligned bounding box (AABB) is used
to establish a volumetric grid system for each CT examination, where each cell (sub-
volume) is empirically set at a size of 5×5×5 mm3. Centered at each vertex of the grid
system, a sphere with a radius r is used as a sub-volume (Fig. 1(c)). As pulmonary fissures
typically have relatively low curvature within a small region, r is empirically set at a value
of 10 mm in this study. Such a small sub-volume will assure that the contained fissures
appear approximately as a planar patch. We use spheres rather than cubic boxes in this
study, as spheres are rotation invariant and the cross-sectional area of a sphere along any
direction can be computed efficiently. Given a grid interval of 5 mm, the distance of any

point K to the nearest vertex O is smaller than  in the 3D Euclidean space.

B.3. Point Filtering—To narrow the search space for pulmonary fissures, we filter the
segmented lung volume in a two-stage manner (Fig. 1(d)). First, as the intensity or voxel
value (I(p)) of pulmonary fissures typically varies from −900 HU (Hounsfield Unit) to −300
HU, voxels with intensity values outside this range are labeled as non-fissure voxels and
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removed. Second, as there are rarely large vessels near fissures and the majority of fissure
regions have intensity levels higher than their surrounding regions (voxels), voxels with
intensity values smaller than the median intensity in a local region are removed as well. The
size of the local region of interest is defined as a spherical volume described in Section B.2.

B.4. Fissure Detection through Fitting of a Plane within a Candidate Sphere—
Given a sphere with a center o(x0, y0, z0) and a radius r of 10 mm and the remaining

candidate points  inside the sphere (Fig. 2(c)) after the filtering operations, we fit an
optimal plane F parameterized by (α, θ, ρ) using the objective function in Eq. (6). As
intensity values of voxels representing pulmonary fissures could vary significantly in
different examinations and in different regions within the same examination, we consider the
density distribution alone for plane fitting. To increase the robustness in identifying fissures
representing planes (if any) within each sphere, we only considered a plane F(α, θ, ρ) with a
distance less than 5 mm to the center of the sphere (o), i.e., d = |f(o)|≤ 5 mm, where f(o) is
defined in Eq. (2). This will assure that the cross-sectional area of F in regards to the
spherical volume π(r2 − d2) is larger than π(102 − 52) ≈ 236 mm2. Since the distance of any
point (K) to the nearest grid vertex is less than 5 mm, there exists a sphere (centered at the
nearest vertex) with a distance from its center to the point of interest (K) which is less than 5
mm. Therefore, all points on a candidate fissure are ultimately considered during the fitting
process. Given an optimal plane Fj(αj, θj, ρj ) identified in the jth spherical volume, if the
energy function ε(αj, θj, ρj) (refer to Eq. 6) is greater than a predetermined threshold T, the
identified circular cross-section (plane) will be considered (assumed to be) a part of the
fissure. In this study, we use an adaptive threshold T (e.g., T = 0.6maxjε(αj, θj, ρj)).
Applying the density-based fitting algorithm to all spherical sub-volumes will result in the
identification of pulmonary fissures (Fig. 3). Because only the remaining voxels after the
point filtering operation that are closed to the fitted planes are treated as fissure points, the
identified (output) fissures are smooth in appearance.

B.5. Fissure Cluster—In this study, we automatically cluster the detected fissure plane
patches and classify these into the different fissure types. Let nj denote the normal vector
and Kj = oj+(ρj − nj · oj)nj represent the center of the (circular) cross-section with respect to
the jth spherical volume, given two fissure patches Fi and Fj identified in two neighboring
spherical volumes, they belong to the same cluster (i.e. Fi ~ Fj ) if either of the following
conditions is met: (1) Fi is a 26-connected neighbor of Fj and |ni · n j|>e1 and |(Ki−Kj) · ni| + |
(Ki−Kj) · nj| < e2; (2) ∃k, s.t., Fi ~ Fk and Fj ~ Fk.

Given two plane patches Fi and Fj detected in neighboring spherical volumes, the parameter
e1 is used to control the curvature or “allowable” angle between Fi and Fj, and the parameter
e2 is used to control the continuity between the distance between Fi and Fj. Here, e1 is set at
a value of 0.98 and similarly e2 is set at a value of 2.0 mm. The clustered regions are then
ranked in a decreasing order of the number of fissure sections contained in each cluster. In
the left lung, the first cluster is assumed to represent the left oblique fissure (in green) and in
the right lung, the first and the second clusters are assumed to represent the right oblique
fissure (in red) and the right horizontal fissure (in blue), respectively (Fig. 3). All other
clusters (in cyan or pink) are then removed/marked as non-fissure regions. The voxels
located within the thin round plane are labeled as fissures.

C. Performance Assessment
We assess the performance of the proposed fissure detection algorithm from two
perspectives. First, we compare the results obtained using the method described here with a
manually created reference standard consisting of 30 CT examinations. Second, we compare
the performance of the developed scheme with a previously one (we term it as “C-Method”
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in this study) described in [7] by applying them to the same dataset. Distance from a point p
to a point set A is computed via

(13)

where d(p, q) denote the 3D Euclidean distance between points p and q. Given two sets of
points A and B, corresponding to the fissures detected by either a computerized scheme or a
human expert, we used a cumulative error distance distribution (CEDD) [7] as a summary
measure of the discrepancy between two paired fissure detection results (i.e., the two point
sets). The CEDD is computed as the cumulative percentage of the shortest distance between
the point sets while each point is considered for this purpose. This measure not only
indicates the fraction of fissures obtained by different methods that lies within a specific
error, but also provides an assessment of how far the points are in one dataset from another
[26]. Root mean squares (RMS), mean, and maximum distances of each case between
compared methods [13] are computed as well. We note that none of the examinations in the
test dataset are used for model development or parameter selection.

III. EXPERIMENTS AND RESULTS
A. The CT Dataset

When creating the reference standard, we collected 30 lung CT examinations specifically
from a chronic obstructive pulmonary disease (COPD) dataset available at the University of
Pittsburgh Medical Center (UPMC). The collected cases covered a healthy dataset and five
different types of lung diseases, i.e., emphysema, interstitial lung disease (ILD), pulmonary
embolism (PE), pneumonia, and cystic fibrosis. For each category, five cases are selected.
These examinations were reconstructed using the GE Healthcare “lung” reconstruction
kernel. The section thickness ranged from 0.50 mm to 1.25 mm, and in-plane pixel size from
0.55 mm to 0.78 mm. With the aid of a computational tool developed by our group, a trained
human image analyst manually traced the fissured depicted of these CT examinations and
marked them using freehand sketches on the 2D sagittal views in a slice-by-slice manner
because the sagittal view gives a relatively more straightforward representation of the types
of different fissures as compared with other views (i.e., axial and coronal views). We note
here that the transversal and coronal views are also provided for the image analyst when
tracing the fissures on the sagittal view. Different types of fissures were marked separately.
Only visible major and minor fissures in the CT examinations are marked (e.g. Fig. 8(b)),
while accessory fissures are ignored.

B. Experimental Results
The cumulative error distance distribution (CEDD) between results obtained by the
proposed fitting scheme (“F”)/the C-Method (“C”) [7] and the reference standard (“G”) is
shown in Fig. 4. The “F to G” distance provides an assessment of the “false positive”
identification. The “false positive” refers the voxels that were detected by the scheme as
pulmonary fissures but were not marked by the image analyst as fissures. On average, 94%
of the fissure voxels identified by the fitting scheme have a distance less than 3 mm to the
reference standard. The “G to F” distance provides an assessment of the “false negative”
identification. The “false negative” refers the voxels that were marked by the image analyst
but not detected by the scheme as fissures. On average, 92% of the fissure voxels in the
reference standard (“G”) have a distance less than 3 mm to those identified by the developed
computerized scheme (“F”) in this study. We note that the classification algorithm failed to
classify the three fissures correctly depicted on three of the 30 cases, because some
accessory fissures are larger than the right minor fissures. In these cases, we manually select
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the clusters those represent left major fissures, right major fissures and right minor fissures
for quantitative assessment purpose.

When comparing the proposed fitting scheme (“F”) with the C-Method (“C”), we can see
that “F” constantly has smaller “false positive” than “C”. Though “C” has smaller “false
negative” than “F” when only voxels with distance smaller than 2mm are considered, “F”
has smaller “false negative” than “C” if more voxels are involved. In particular, the
discrepancies for different types of pulmonary fissures between the results obtained by the
computerized scheme/the C-Method [7] and the reference standard are also presented in Fig.
4(a–c). The average and standard deviation of root mean squares (RMS), mean, and
maximum of the discrepancies between the reference standard and the results obtained by
the computerized scheme and a previously scheme in [7] are summarized in Table I and II.
When comparing the proposed scheme (“F”) with the gold standard (“G”), it can be seen
that the left oblique fissures have obviously smaller discrepancy (error) than the right
oblique fissure, and the right horizontal fissures have the largest discrepancy (error). When
comparing the proposed scheme (“F”) with the C-Method (“C”) described in [7], we can see
that the proposed scheme has smaller discrepancy with the standard reference than the
previous scheme. A comparison between the results after application of the proposed fitting
scheme to the normal and diseased examinations is given in Table III. It can be seen that the
proposed fitting scheme has larger discrepancy (error) from/to the gold standard for the
diseased examinations. Finally, an example in Fig. 5 is used to visually demonstrate the
performance of the newly developed algorithm in fissure detection.

V. DISCUSSION
We developed a fully automated fissure identification scheme that was based on a novel
piecewise plane fitting algorithm and assessed its performance by comparing the identified
results with those in a reference standard. Totally, 30 chest CT examinations are used for the
evaluation purpose. Both pulmonary fissures and body fat appear as surface-like regions.
However, in technique, identifying pulmonary fissures depicted on CT images are different
from isolating body fat from CT or MRI images [37–38], because of their distinct
appearances on images. For example, (a) the appearance of pulmonary fissures is very fuzzy
on CT images as compared with surrounding structures and their densities range from −900
HU ~ −300 HU, while the body fat has a relatively high density ranging from −190 HU to
−30 HU [37] and their contrast with surrounding structures are relatively high; (b)
pulmonary fissures are very thin tissues with a thickness of only 2mm – 3mm, while the
body fat are much thicker. Given these differences, it is actually more challenging to
accurately identify pulmonary fissures depicted on CT images. Similar to the computational
geometry method (C-Method) described in [7], the underlying idea of this scheme is to
detect small plane patches as well. However, these two schemes are completely different in
methodology and implementation. The C-Method used Laplacian smoothing and EGI
algorithm for plane detection, where the lung structures were modeled as a geometric
surface. In contrast, the method in this paper is based on a fitting operation, where the
images are treated as a cloud of points. The plane fitting algorithm has a number of
distinctive characteristics or merits. First, this algorithm is generic in nature and can be
applied to detect lines/planes from a cloud of points (e.g., the examples shown in Fig. 2). As
a freeform surface can be approximated by a set of small planes, the algorithm can be used
to detect a 3D surface as well, such as the fissure identification in this study, without any
changes in methodology. Second, the developed scheme is reasonably accurate. As the
comparison experiments showed that this scheme had a smaller discrepancy with the
“reference standard” than the C-Method. Approximately 94% of the detected fissure voxels
have a distance less than 3 mm to those in the reference standard. The reason that we
selected 3 mm as an error threshold during the evaluation is due to the fact that the thickness
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of pulmonary fissures typically ranges from 2 ~ 3 mm [32]. The amount of the detected
fissures that are within 3 mm in regard to the “reference standard” may give us a perception
of the performance of the scheme in fissure detection by describing the distances between
two clusters of points (fissure voxels). Also, our approach is able to detect more pulmonary
fissures than the C-Method described in [7]. Third, in terms of robustness, as demonstrated
in Fig. 2, the developed scheme is generally insensitive to the presence of the outliers. When
we applied the method to the 30 lung CT examinations, the task was executed in a batch
mode without any interruption and all the parameters were fixed. The insensitivity to the
outliers is important when attempting to identify fissures depicted in CT examinations with
relatively severe disease, as shown in Fig. 6 and Fig. 7. We note that the C-Method failed to
detect the fissures depicted on the examination in Figure 7. Fourth, in terms of
computational efficiency, the computational complexity of the fitting algorithm in time is
reduced from O(Nα × Nθ × Nρ × N) to O(N(α, θ) × N). Detecting fissures in a typical chest
CT examination takes only approximately 8 minutes, while the C-Method takes
approximately 20 minutes and the method developed by Rikxoort et al. [29] takes
approximately 90 minutes for similar examinations. Because the lung volume is subdivided
into a set of spherical sub-volumes and the same procedure can be applied repeatedly, the
computational efficiency of this algorithm can be further improved by using parallel
programming on multiple core systems or GPU. Fifth, in terms of simplicity, the underlying
idea and the implementation of this scheme are quite simple in that analytical plane fitting
algorithm within small sub-volumes of lung regions lead to the identification of fissures.

When comparing the results obtained by the developed scheme with a reference standard,
our experiments (i.e., Fig. 4, Table I and Table II) show the following phenomena. First, the
cumulative percentage of the “F to G” is consistently and obviously larger than that of the
cumulative percentage of the “G to F” if the discrepancy is less than 0.5 mm. When the
discrepancy is less than 3.0 mm, the difference in the cumulative percentage of the “G to F”
and the “F to G” is shrunk significantly. This phenomenon implies that the manually marked
fissures have somewhat perturbations. We admit that this is true because perturbations are
unavoidable during manual tracing process. As a result, the “reference standard” is not
perfect. Second, the left oblique fissures have obviously smaller discrepancy (error) than the
right oblique fissure and the right horizontal fissures have the largest discrepancy (error).
The reason is obvious when considering the relatively high fuzzy appearance of the right
horizontal fissures (right minor fissures). The same observation has been reported in Pu et
al.’s study [30]. In particular, we notice that the maximum discrepancy from the
computerized scheme to the reference standard (“F to G”) is approximately 20 mm and from
the reference standard to the computerized scheme (“G to F”) is approximately 24 mm. The
large “F to G” discrepancy may be caused by the identification of invisible fissures by the
fitting scheme (e.g., the example in the top row of Fig. 8), while the large “G to F”
discrepancy is typically caused by the fact that the computerized scheme may fail to detect
some fissures in diseased cases (e.g., the example in the bottom row of Fig. 8).

This scheme involved the determination of a few parameters. We adopted a conservative
approach to determine the values of these parameters by leveraging their underlying
physical background instead of using any training dataset. For example, in the fissure
clustering procedure, we set the value e1 as 0.98, which corresponds to an angle of around
10 degree. This small angle is sufficient for the smoothness between two planar patches.
Similar for the parameter e2, an error of 2 mm is sufficient for the continuity of two
neighboring planar patches when considering that the fissure thickness is typically around 2
~ 3 mm [32]. During our development, we do not choose the parameters based on the
images we experienced. For quantitative regional lung CT analyses, it is often desirable to
have individual lobes identified. However, the existence of incomplete fissures, which may
be caused by the fissure identification scheme or other reasons (e.g., anatomy or imaging
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resolution) [2–3,33–36], makes it impossible to directly obtain pulmonary lobes using the
detected fissures. A post-processing is typical required to estimate the incomplete regions of
pulmonary fissures. Some discussions about these issues and the potential solutions can be
found in [7, 30].

In spite of the above mentioned strengths, the described approach has several limitations.
First, our approach failed to detect some fissures that might make the fissure discontinued in
space. An examples in Fig. 8 (bottom row) shows that the fitting scheme fails to detect some
portions of the fissures due to relatively high intensities (>−300 HU) in the missed regions.
This is caused by the fact that pulmonary fissures are assumed in this study to have an
intensity ranging from −900 HU to −300 HU (Section II.B.3) in order to narrow the search
space. As a result, the fissures with high intensities are filtered out. In order to improve the
performance of the developed scheme, a more adaptive approach in identifying the potential
pulmonary fissure candidates may be needed. Second, in theory, the developed scheme may
not result in an accurate result around the intersection of the major and minor fissures in the
right lung. However, because only points (voxels) that are very close to the associated
planes affect the energy function, and meanwhile the neighboring sub-volumes (spheres)
have relatively large overlaps, the scheme will deliver a relatively accurate result. Third, the
classification strategy based on a simple size criterion may not be robust enough for some
examinations depicting diseases. The classification algorithm fails to classify the three
fissures correctly on three of the 30 cases and we manually classify the three cases for the
comparison. An example of misclassification is shown in Fig. 9. This stems from the fact
that some specific diseases may result in segmenting relatively large surfaces that could
actually be larger in terms of area than that of the minor fissure. Currently, we are
investigating how to leverage lung anatomical knowledge (e.g., a lung atlas) to improve
performance in this regard by discarding falsely detected regions (surfaces). Finally, like
many previous approaches [13, 29], evaluating the performance of the fissure identification
scheme is often difficult due to the lack of the “ground truth.” In this study, we used a
manually generated “reference standard” to relatively assess the performance of this scheme.
We admit that the manually created “reference standard” is associated with some errors due
to the unavoidable perturbation during the manual tracing process. However, the comparison
between the results obtained by the scheme and the “reference standard” provides a relative
straightforward conception in regard to the accuracy of the developed scheme.

VI. CONCLUSION
We described a fully automated pulmonary fissure detection and classification approach by
taking advantage of the contrast of pulmonary fissures on CT images. This approach uses a
unique strategy to convert a complex freeform surface identification problem into a plane
fitting task. An efficient and robust plane fitting algorithm was developed for this purpose
and it is designed primarily to identify a plane in a point cloud in the 3D Euclidean space.
Our comparison experiments with a manually created reference standard and a previous
approach [7] demonstrate that this newly developed scheme can achieve a reasonable
performance in accuracy, robustness, and efficiency.
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Fig. 1.
Basic steps of the pulmonary fissure segmentation scheme: (a) a chest CT examination, (b)
the segmented lung volume of (a), (c) the subdivision of the segmented lung volume, (d)
application of a point filtering, (e) fissure detection after application of the analytical plane
fitting algorithm, (f) the clustered types of fissures, (g) identified fissures displayed as
overlay, and (h) the 3D surface model of the detected fissures in (g).
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Fig. 2.
Illustration of the plane fitting algorithm.(a)–(b) show the fitted lines in a two-dimensional
point set. The lines in green represent the results obtained by the least square fitting method,
and the lines in red represents the results obtained by the proposed density fitting method.
(c) shows a 3D point cloud in a spherical volume that is extracted from an actual chest CT
examination. (d) visualizes the point cloud in (c) using the inner product of the points
vectors and the normal vector (i.e., Eq. (7)). (e) shows the fitted plane (in red) using the
developed method. (f) shows the function ε(α, θ) corresponding to the 3D point cloud in (c).
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Fig. 3.
Fissure detection and classification results: (a) a CT examination, (b) the detected, sorted,
and classified fissures (overlay with different colors), and (c) the final fissure segmentation
and classification (overlay) after the removal of non-fissure regions as indicated by the
arrow in (b), where the voxels in green, red and blue indicate the left oblique, right oblique
and right horizontal fissures, respectively. (d) visualizes the detected fissure voxels and their
classification in 3D space.
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Fig. 4.
The cumulative error distance distribution (CEDD) between the proposed fitting scheme/the
C-Method [7] and the manually created reference standard. (F: the developed scheme, C: the
C-Method [7], G: the reference standard)
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Fig. 5.
An example demonstrating the performance of the newly developed scheme for identifying
pulmonary fissures depicted in a relatively normal examination. The top row shows the
original CT images, and the bottom row shows the identified fissures in overlay. The left,
middle, and right columns show the axial, the sagittal, and the coronal views, respectively.
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Fig. 6.
An example demonstrating the performance of the newly developed scheme, in comparison
with the C-Method [7], for identifying pulmonary fissures depicted in a diseased
examination with ILD (Interstitial Lung Disease). The top row shows the original CT
images, the middle row shows the fissures identified by the proposed scheme, and the
bottom row shows the fissures identified by the C-Method [7]. The left, middle, and right
columns show the axial, the sagittal, and the coronal views, respectively.

Gu et al. Page 19

Comput Med Imaging Graph. Author manuscript; available in PMC 2013 October 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 7.
An example showing the detected pulmonary fissures by the proposed scheme in an
abnormal examination with severe bronchiectasis (cystic fibrosis). The top row shows the
original CT images, and the bottom row shows the identified fissures in overlay. The left,
middle, and right columns show the axial, the sagittal, and the coronal views, respectively.
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Fig. 8.
Two examples with large discrepancies between the results obtained by the proposed
computerized scheme and the reference standard. The left column shows the original CT
images, the middle column shows the fissures in overlay in the reference standard, and the
right column shows the fissures in overlay identified by the computerized scheme in this
study. The top row shows a CT examination where portion of the right horizontal fissure
voxels is invisible but identified by the fitting scheme; the “F to G” discrepancy is 26.3 mm.
The bottom row shows a CT examination with the presence of pneumonia where the potions
of the fissures were missed by the fitting scheme; the “G to F” discrepancy is 35.6 mm.
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Fig. 9.
An example showing a miss-classification of pulmonary fissures. The regions in pink
indicate the discarded fissures. Red arrow indicates the true right horizontal fissure and
green arrow indicates the cluster that was falsely recognized as the right horizontal fissure.
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Table III

Average (± standard deviation) of mean discrepancy (error) in the Euclidean distance between the manually
generated reference standard and the results after the application of the developed scheme to the collected
normal and diseased CT examinations. (F: the developed scheme, G: the reference standard)

Fissure type

F to G (mm) G to F (mm)

Normal Diseased Normal Diseased

left oblique fissure 0.5 ± 0.1 0.7 ± 0.7 1.2 ± 0.2 1.8 ± 1.3

right oblique fissure 0.8 ± 0.1 1.4 ± 2.4 1.0 ± 0.2 2.3 ± 2.5

right horizontal fissure 0.9 ± 0.6 2.8 ± 3.7 1.2 ± 0.4 2.4 ± 2.7

all fissures 0.7 ± 0.2 1.1 ± 1.2 1.1 ± 0.2 2.1 ± 1.8
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