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a  b  s  t  r  a  c  t

Partial  volume  effect  is  still  considered  one  of  the  main  limitations  in  brain  PET  imaging  given  the  limited
spatial  resolution  of  current  generation  PET  scanners.  The  accuracy  of anatomically  guided  partial  vol-
ume effect  correction  (PVC)  algorithms  in  brain  PET  is  largely  dependent  on  the  performance  of  MRI
segmentation  algorithms  partitioning  the  brain  into  its  main  classes,  namely  gray  matter  (GM),  white
matter  (WM),  and  cerebrospinal  fluid  (CSF).  A comparative  evaluation  of four  brain  MRI  segmentation
algorithms  bundled  in  the  successive  releases  of Statistical  Parametric  Mapping  (SPM)  package  (SPM99,
SPM2,  SPM5,  SPM8)  using  clinical  neurological  examinations  was  performed.  Subsequently,  their impact
on  PVC  in 18F-FDG  brain  PET  imaging  was  assessed.  The  principle  of  the  different  variants  of  the image
segmentation  algorithm  is to  spatially  normalize  the  subject’s  MR images  to  a corresponding  template.
PET  images  were  corrected  for partial  volume  effect  using  GM  volume  segmented  from  coregistered  MR
images. The  PVC  approach  aims  to compensate  for  signal  dilution  in  non-active  tissues  such as  CSF,  which
becomes  an  important  issue  in  the  case  of  tissue  atrophy  to  prevent  a  misinterpretation  of  decrease  of
metabolism  owing  to PVE.  The  study  population  consisted  of  19  patients  suffering  from  neurodegen-
erative  dementia.  Image  segmentation  performed  using  SPM5  was  used  as  reference.  The  comparison
showed  that  previous  releases  of SPM  (SPM99  and  SPM2)  result  in  larger  gray  matter  regions  (∼20%)  and
smaller white  matter  regions  (between  −17%  and  −6%),  thus  introducing  non-negligible  bias  in  PVC  PET
activity  estimates  (between  30%  and  90%).  In contrary,  the more  recent  release  (SPM8)  results  in similar
results  (<1%).  It  was  concluded  that  the  choice  of  the  segmentation  algorithm  for  MRI-guided  PVC  in PET
plays  a crucial  role  for the accurate  estimation  of  PET  activity  concentration.  The  segmentation  algorithm
embedded  within  the  latest  release  of  SPM  satisfies  the requirement  of  robust  and  accurate  segmentation
for  MRI-guided  PVC  in brain  PET  imaging.

Published by Elsevier Ltd.

1. Introduction

Molecular brain imaging using positron emission tomography
(PET) has emerged as one of the most promising modalities that
steadily gained importance in the clinical and research arenas [1].
Considerable progress has been made to optimize the design of ded-
icated high resolution PET scanners and to integrate multimodality
images to correlate functional findings to anatomy through the use
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of CT and MRI  and to improve the quality and quantitative accuracy
of brain PET images, however, emerging clinical and research appli-
cations of functional brain imaging promise even greater levels of
accuracy and precision and therefore impose more constraints with
respect to the information provided to clinicians and research sci-
entists [2].  Since MRI  is more suitable than CT for brain imaging
owing to its high soft tissue contrast and better spatial resolu-
tion, combined PET-MRI systems dedicated for brain imaging have
emerged as alternatives to PET-CT [3].  One of the first steps to obtain
the best of the various imaging modalities is to coregister functional
and anatomical images, and to a pre-segmented atlas if available.
Wu et al. [4] has shown that this task can be optimized using
non-rigid registration procedures compared to rigid or semi-rigid
procedures such as those implemented in the Automated Image
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Registration (AIR) and the Statistical Parametric Mapping (SPM)
packages. These techniques are, however, especially useful when
dealing with inter-subject image registration.

Unfortunately PET imaging suffers from many physical degrad-
ing effects, partial volume effect (PVE), which is common to all
medical imaging techniques owing to the discrete sampling of the
image formation process, being one of them. In brain PET imaging,
this effect is not negligible owing to the large voxel size, which
produces images where high activity regions spillover into low
activity regions, potentially leading to erroneous results in the qual-
ification of functional brain imaging [5,6]. Since neurological PET
imaging was developed very early, the first attempts to reduce the
impact of the PVE and restore the image content focused on brain
imaging [7].  This has been addressed through the calculation of
recovery coefficients [8],  thus limiting the methods to the use of
only PET data, since in these early years multimodality imaging was
still not readily available as it is nowadays. The advent of modern
multimodality imaging, and particularly brain PET/MR, stimulated
the development of new partial volume correction (PVC) tech-
niques which exploit a priori information gathered from anatomical
information through partitioning MR  images into different com-
partments, typically gray matter (GM), white matter (WM),  and
cerebrospinal fluid (CSF) [9].  More recently, a novel class of PVC
algorithms that do not require segmentation of anatomical images
was introduced [10]. This includes very promising approaches such
as the wavelet decomposition technique [11] and the Bayesian
approach [12]. In both cases, the algorithm is able to find the high
frequency information lacking in low resolution PET images at a
voxel-level without increasing the noise.

Current PVC algorithms that require the segmentation of
anatomical images correct functional PET images in the pro-
jection space, during the reconstruction process or after their
reconstruction (post-reconstruction) at regional level using a
region-of-interest (ROI)-based analysis or in a more general way
at the voxel level (voxel-based) [13]. Among ROI-based post-
reconstruction methods, the most popular techniques use recovery
coefficients [7,8] or the geometric transfer matrix (GTM) method
[14,15] used in our previous work [16]. The principle of ROI-based
methods is to calculate the effective activity in different regions
assuming that the tracer uptake in each particular region is homo-
geneous. Naturally, the complexity of the problem increases when
the number of considered regions increases, rendering PVC of the
whole brains a complex problem. Nevertheless, in a simple case
using ROIs has shown promising results [15].

Conversely, voxel-based approaches are not limited to a par-
ticular ROI since they attempt to recover the actual activity
concentration in the cortex on a voxel-by-voxel basis, though
with a priori assumptions about the tracer distribution [10,17,18].
These techniques have the advantage of generating corrected image
for qualitative assessment and visual interpretation. The principal
drawback of voxel-based methods compared to ROI-based meth-
ods is that they are quantitatively less accurate and rely on many
assumptions. Partition methods are one example of voxel-based
methods, the simplest case being to define one unique partition cor-
responding to brain tissue classes (GM and WM)  and to compensate
the spillover on non-active regions (CSF) by converting PET inten-
sities from activity per spatial volume to activity per tissue volume
[19]. This is achieved by convolving the partition (brain mask) with
the point spread function (PSF) of the PET imaging system. This
approach was extended to two (GM and WM)  [20] and three com-
partments assuming that the CSF activity is not only the result of
spillover from contiguous regions [18].

MR image segmentation is the critical component of MRI-guided
PVC in brain PET imaging [14,17,21].  In a previous work, we com-
pared the impact of various MR  image segmentation algorithms on
the GTM algorithm for PVC of 18F-FDG and 18F-FDOPA brain PET

data [16]. One of the conclusions of this work was  that Statistical
Parametric Mapping (SPM2) segmentation software is more suit-
able for clinical routine examinations owing to the robustness of
its normalization algorithm for atypical brains.

In this work, we aim to assess the influence of 4 chronologically
successive releases of SPM segmentation software on a voxel-based
PVC method proposed by Matsuda et al. [9] in contrast to previous
work referenced above.

2. Materials and methods

2.1. Brain MRI segmentation algorithms

SPM is among the well established packages used for statistical
analysis of neuroimaging data including PET, SPECT and fMRI [22].
It is well-documented, freely available, technically supported by
well established brain imaging centers [23] and widely used by
the neuroimaging community. The brain MR  image segmentation
technique implemented in this package considers the three tissue
classes of interest for PVC, namely gray matter (GM), white matter
(WM),  and cerebrospinal fluid (CSF).

A comparative evaluation of the impact of brain MRI  segmen-
tation algorithms on PVC in 18F-FDG PET imaging was performed
using the implementations embedded in the last four successive
releases of SPM, namely SPM99,  SPM2, SPM5 and SPM8.  The main
steps of the SPM segmentation algorithm are:

• Spatial normalization involving the transformation of the sub-
ject’s images to corresponding template image;

• Segmentation of the images into a limited number of clusters
(k). In this case the clusters correspond to GM,  WM,  CSF and
background [24];

• Preprocessing of the segmentations through convolution with an
isotropic Gaussian kernel to obtain the cluster concentration rep-
resenting the probability distribution that the voxel belongs to a
given region (GM, WM,  or CSF).

A detailed description of the history of SPM and evolution of
the segmentation toolbox is beyond the scope of this paper. Nev-
ertheless, we give a brief description of the evolution of the MRI
segmentation toolbox implemented in the SPM package for the
above mentioned versions. One must note that SPM99 [25], the
earliest version used in this work, is already the 5th release of the
SPM package [22]. This version has consolidated the image nor-
malization procedure by introducing penalization factors on the
non-linear deformation to obtain more robust invertible deforma-
tions. The SPM2 release marked a turning point on the SPM software
since this version introduced the Bayesian framework to replace the
frequentist methods. SPM5 release has consolidated the Bayesian
formulation introduced in the previous version by its generalization
in all the modules of the software. In the image registration and nor-
malization this was  made replacing the mean squared difference
minimization between the subjects with Bayesian prior probabili-
ties [26] allowing spatial normalization of different MRI  sequences
without the need to construct sequence-specific templates. The sta-
tistical analysis was also modified to include Bayesian formulation
using spatial smoothness priors.

SPM8 version is the most recent release dating back to April
2009. The unified segmentation was  rendered more stable by
modeling, not only the brain, but the entire head using the
Diffeomorphic Anatomical Registration Through Exponentiated
Lie-algebra (DARTEL) [27]. These are deformations parameterized
by a single flow field intended to obtain more accurate image reg-
istration between the brains of different subjects. This new version
included routines for the construction of posterior probability maps
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to be used with the Bayesian formulation in the statistical inference
part.

The 4 versions of SPM segmentation were used to segment
clinical T1-weighted MR  brain images and the resulting partitions
fed as input into the 2 compartment voxel-based PVC algorithm
described in the following section. In the absence of ground truth
for comparative assessment of clinical studies, we have chosen
SPM5 segmentation and the resulting PVC PET images as reference.
This choice is justified by the fact that at the time the study started,
this was the most stable version of the SPM software.

2.2. Partial volume effect correction

Partial volume correction was performed using the method pro-
posed by Matsuda et al. [9].  The algorithm uses utilities available
in SPM99 for image registration and MRI  segmentation by default.
The algorithm comprises the following 10 steps:

1. The scalp of MR  images is removed by binary masking of the
whole brain;

2. Original MR  and PET images are registered using rigid-body
transformation (6 degrees of freedom: 3 translations and 3
rotations). This step was performed on the Hermes platform
(Hermes MultiModalityTM, Nuclear Diagnostics AB, Sweden);

3. The segmented white and gray matter images are convolved
with the PSF of the PET scanner to obtain dispersion coefficients.
Since the radial spatial resolution varies from 4.1 @ 1 cm to
4.9 mm @ 10 cm offset while the axial spatial resolution varies
from 4.6 to 5.5 cm,  we took an average full width at half maxi-
mum  of 5 mm of the 3D Gaussian PSF for our system;

4. The convolved images are normalized to have a maximum
floating point value (32 bits) of 1;

5. A binary image is created from the normalized convolved GM
image using a threshold of 0.2 (20% of maximum). This image
will serve as a mask for the GM;

6. A whole brain image mask is created from the mask of the GM
(of step 5) by filling interior holes;

7. A WM PET image is simulated from the normalized WM image
(of step 4) by replacing its maximum (1.0) value with the maxi-
mum  PET counts in WM.  This maximum PET count is calculated
through an automatic ROI determined by setting a threshold
above 95% of the maximum count density of the white matter
MR images (of step 4);

8. The GM PET images are obtained by subtracting the WM PET
images (of step 7) from the original PET images (of step 2);

9. Finally, the GM PET image is divided by the normalized GM MR
image (of step 4), and masked with the GM binary mask (of step
5);

10. One constraint on the procedure is fixed to avoid edge effects
by limiting the maximum corrected voxel value to be lower or
equal to the maximum uncorrected voxel value.

2.3. Clinical data acquisition

Nineteen patients suspected to suffer from neurodegenera-
tive dementia were referred to the Nuclear Medicine Division
of Geneva University Hospital for a PET/CT scan using [18F]-
fluorodeoxyglucose (FDG). Their age ranged from 50 to 91 years
(mean ± SD = 72 ± 9.15). PET/CT data acquisition was performed
on a Biograph HiRez Sensation 16 (Siemens Healthcare, Erlangen,
Germany) using a standard protocol recommended by the manu-
facturer. PET acquisition was started approximately 30 min  after
injection of 370 MBq  of [18F]-FDG. The PET emission study (20 min,
1 bed position) followed immediately the CT study (120 kVp,
320 mA  s, 16 × 0.75 collimation, a pitch of 0.8 and 1.5 s per rota-
tion) used for attenuation correction. The 3D PET sinograms were

corrected for detector sensitivity, dead time, random coincidences,
scatter and attenuation, and converted to 2D sinograms using
Fourier rebinning. A filtered backprojection algorithm was used for
PET image reconstruction.

MR images were acquired on a Philips 1.5-T Eclipse scan-
ner (Philips Medical Systems, Best, The Netherlands) using a 3D
T1-weighted gradient-echo sequence. The parameters were as
follows: TR = 15 ms,  TE = 4.4 ms  and a flip angle of 25◦. Image
matrix consisted of 256 × 256 × 160 voxels, with a resolution in the
transaxial direction of 0.97 mm × 0.97 mm,  and an axial resolution
of 1.1 mm.

2.4. Comparative assessment strategy

The quantitative assessment of the performance of different
segmentation algorithms was  performed by comparing the seg-
mentation results of the different versions of SPM with the SPM5
segmented images for each tissue class relevant for PVC (GM  and
WM).  Moreover, the impact of MR  image segmentation on PVC esti-
mates in 18F-FDG brain PET studies was  evaluated by calculating
the linear regression for each paired combination of corrections
realized using 2 different segmentation algorithms. Quantification
of the agreement between the corrections realized using 2 seg-
mentation algorithms was  also performed using Bland and Altman
statistical analysis by plotting the difference against the average of
the compared methods [28]. The relative difference between the
corrections using 2 different segmentation algorithms was defined
as:

Percent difference = VOImethod − VOISPM5

VOISPM5
× 100%

where VOImethod is the activity concentration in a particular vol-
ume  of interest (VOI) calculated on the PVE corrected PET image
segmented using the considered method, whereas VOISPM5 is the
activity concentration in the same VOI calculated on the PVE
corrected PET image segmented using SPM5. We  assessed 20 sym-
metric VOIs for each patient that are listed below with their
abbreviations:

Left Right

Gyrus frontalis superior LGFS RGFS
Gyrus frontalis inferior LGFI RGFI
Gyrus temporalis medius LGTM LGTM
Gyrus supramarginalis LGS RGS
Cuneus LC RC
Precuneus LPREC RPREC
Hippocampus LH RH
Thalamus LT RT
Putamen LP RP
Caput nuclei caudati LCNC RCNC

To further assess the PVC method in an absolute manner, we
calculated the mean recovery coefficients for each of the 20 previ-
ously defined VOIs as the ratio of the uncorrected to PVC corrected
activity concentration values.

3. Results

3.1. Comparison of brain MRI segmentation methods

Figs. 1 and 2 show representative slices of a clinical T1-weighted
MR study and the corresponding segmentation results when using
the 4 segmentation algorithms. Images of GM and WM regions are
shown separately. The first observation one can formulate is that
non-brain matter is often included into the GM region of segmen-
tations performed using SPM99.

Table 1 shows the relative differences between the 4 segmen-
tation algorithms with respect to GM and WM volume calculation
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Fig. 1. Transverse views of gray matter segmentation of a MR  image of a patient with probable Alzheimer’s disease. From left to right: Original MRI, SPM99, |SPM5 − SPM99|,
SPM2,  |SPM5 − SPM2|, SPM5, SPM8, |SPM5 − SPM8|.

of clinical brain MR  images. Overall, there is a large variability in
the difference between the volumes ranging from 0.001 to 62%. For
the GM,  a low correlation was observed between the segmentation
algorithms of the first 3 versions of SPM. However, a high corre-
lation was obtained between SPM5 and SPM8 as expected. Similar
observations were made for WM.

3.2. Impact on partial volume effect correction

Fig. 3 shows a representative example illustrating the impact
of MRI  segmentation on partial volume correction of FDG brain

PET images in a patient with probable Alzheimer’s disease. Par-
tial volume effect correction improves the resolution of brain PET
images. One can see that differences between PVC PET images
when comparing various segmentation techniques to SPM5 algo-
rithm appear mainly on the boundaries of the brain when using
SPM99 and SPM2 while SPM8 produces similar results compared to
SPM5.

The mean relative differences for the 19 clinical studies sum-
marized in Table 2 substantiate the qualitative results. One can see
that the mismatch between segmentations performed using SMP99
and SPM2 compared to the one obtained with SPM5 introduce an

Fig. 2. Same as Fig. 1 for white matter segmentation.
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Table  1
Relative differences (%) between the 4 segmentation algorithms with respect to gray matter (GM) and white matter (WM)  volume estimates of the clinical MR  images after
realignment to PET images. The differences are calculated on the basis of the segmentation implemented in SPM5.

GM WM

(SPMx − SPM5)/SPM5 × 100% (SPMx − SPM5)/SPM5 × 100%

SPMx SPM99 SPM2 SPM8 SPM99 SPM2 SPM8

Patient 1 31.91 24.79 0.00 −12.05 −5.92 0.00
Patient 2 62.28 54.40 1.16 −17.13 −8.10 −0.49
Patient 3 16.36 27.28 −1.19 −19.90 −6.35 0.01
Patient 4 16.84 20.08 −0.01 −19.08 −13.57 −0.06
Patient 5 16.19 21.17 0.00 −19.89 1.46 0.00
Patient 6 13.92 9.49 0.17 −11.25 −4.16 −0.02
Patient 7 13.95 18.74 −0.84 −13.47 7.33 −0.62
Patient 8 18.93 20.94 0.02 −20.43 −8.44 0.00
Patient 9 13.98 16.34 0.01 −17.38 −12.63 0.00
Patient 10 25.62 18.40 −0.03 −16.27 −6.74 −0.03
Patient 11 44.51 20.00 0.01 −28.49 −4.40 0.02
Patient 12 12.50 12.23 0.73 −8.26 −4.97 −0.71
Patient 13 25.38 21.40 −0.01 −16.28 −3.79 −0.01
Patient 14 28.83 23.47 0.00 −28.46 −12.14 0.00
Patient 15 8.11 5.93 −0.01 −19.65 −5.08 0.03
Patient 16 10.15 6.78 0.16 −21.67 −6.57 1.03
Patient 17 18.18 15.15 0.10 −15.32 −3.61 −0.02
Patient 18 14.25 12.91 0.15 −14.58 −11.43 0.03
Patient 19 19.40 19.76 −0.08 −17.92 −6.53 0.03

Mean 21.65 19.44 0.02 −17.76 −6.09 −0.04
SD  13.12 10.29 0.48 5.12 4.90 0.35

overcorrection in the PVC recovered activity. This is particularly
noticeable for the white matter resulting in mean relative differ-
ences of 91.8% and 71.3% for SMP99 and SPM2, respectively. This
overcorrection is lower for the gray matter but still remains high
(37.3% and 29.8% for SMP99 and SPM2, respectively). Likewise, there
is good agreement between SPM8 and SPM5 with relative difference
of 0.3% and 0.76% for gray and white matter, respectively.

The mean recovery coefficients calculated for the 20 defined
VOIs are summarized in Table 3. One can see that the general trend
is that the recovery coefficients slightly increase when using SPM99
compared to SPM2 and SPM5 segmentations. The latter produces
almost similar results compared to SPM8.

Figs. 4 and 5 show linear correlation plots between the recovered
activity estimates obtained using the 3 segmentation algorithms
versus SPM5 for gray and white matter, respectively. It can be seen
that the slope of the regression line for the GM is very close to 1 for
all segmentation algorithms; however, the correlation coefficient
(R2) is below 0.8 for SPM99 and SPM2 showing that the relationship
between the results is in some way  random. On the other hand,
the correlation coefficient is almost 1 for SPM8 showing that the
segmentation achieved with SPM8 is equivalent to those obtained
with SPM5. The situation is worst for the WM as shown on Table 2
since the correlation coefficients for SPM99 and SPM2 are below
0.2 with slopes around 0.5. This indicates that there is almost no

Fig. 3. Illustration of the impact of the segmentation method on the partial volume correction in functional brain PET imaging for a patient with probable Alzheimer’s disease,
presented in the same order as Figs. 1 and 2.
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Table  2
Relative difference (%) between activity concentration estimates in gray matter (GM) and white matter (WM)  after PVC when using the four segmentation algorithms on
clinical 18F-FDG brain PET images. The differences are calculated with respect to SPM5 segmentation algorithm.

GM WM

(SPMx − SPM5)/SPM5 × 100% (SPMx − SPM5)/SPM5 × 100%

SPMx SPM99 SPM2 SPM8 SPM99 SPM2 SPM8

Patient 1 33.18 24.65 1.71 67.90 −1.69 1.76
Patient 2 69.45 68.06 1.82 104.80 98.31 2.22
Patient 3 31.73 38.01 −0.20 48.81 54.04 −0.55
Patient 4 35.94 35.41 0.05 98.85 28.83 −0.15
Patient 5 37.32 28.73 0.00 110.48 68.54 0.00
Patient 6 13.20 12.98 0.23 7.63 30.89 0.39
Patient 7 31.86 26.84 1.22 180.35 228.92 8.91
Patient 8 33.08 33.62 0.01 58.84 33.20 −0.03
Patient 9 20.78 24.52 0.00 16.80 10.30 0.01
Patient 10 49.61 31.87 −0.16 119.47 68.63 −0.31
Patient 11 58.49 12.96 0.01 125.25 20.62 −0.02
Patient 12 52.83 56.02 1.73 218.98 264.20 0.87
Patient 13 33.74 23.07 0.00 66.91 16.87 0.00
Patient 14 45.90 36.07 −0.01 74.45 70.59 0.01
Patient 15 12.42 8.25 −0.02 5.52 21.00 0.04
Patient 16 36.41 26.12 −0.80 118.52 148.46 1.12
Patient 17 49.52 34.64 0.10 205.92 149.28 0.02
Patient 18 27.65 21.20 0.13 63.21 17.61 0.07
Patient 19 34.79 23.90 −0.06 51.63 25.85 0.06

Mean 37.26 29.84 0.30 91.79 71.29 0.76
SD  14.49 14.14 0.74 61.12 75.31 2.10

correlation between these results. SPM8 algorithm is closely related
and well correlated with SPM5 (R2 = 0.998, slope very close to 1).
These results are further confirmed by Bland and Altman plots for
gray and white matter (Figs. 6 and 7).

Linear regression analysis was also performed between recov-
ered activity estimates obtained using SPM5 and those obtained
using the 3 other segmentation algorithms for the 20 VOIs. The
resulting slopes and correlation coefficients for the 19 patients are

reported in Fig. 8. It can be seen that, except few cases, SPM99
(for patients 6, 7, and 18) and SPM2 (for patients 6, 8 11 and 18)
segmentations are uncorrelated with SPM5 segmentation, whereas
excellent correlation could be observed between SPM8 and SPM5
segmentations except a single study (patient 19).

Figs. 9 and 10 show the relative differences between regional
cerebral glucose metabolism (rCGM) estimated using the various
algorithms compared to SPM5 segmentation. Similar observations

Fig. 4. Correlation plots between partial volume corrected activity values of 3D brain scans comparing results obtained using SPM5 (abscissa) and (A) SPM99,  (B) SPM2, and
(C)  SPM8 (ordinate) together with best fit equations and correlation coefficients for gray matter.

Fig. 5. Same as Fig. 4 for white matter.
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Fig. 6. Bland and Altman plots showing difference partial volume corrected activity values obtained using (A) SPM99, (B) SPM2 and (C) SPM8 methods against SPM5 method
for  the gray matter. The middle line is the mean, and the upper and lower broken lines are the mean ± 1.96 * SD.

Fig. 7. Same as Fig. 6 for white matter.

Fig. 8. Plots of slopes and correlation coefficients (R2) for each patient resulting from linear regression analysis between PET PVEC 99 and PET PVEC 5, between PET PVEC 2
and  PET PVEC 5, and PET PVEC 8 and PET PVEC 5 for 20 VOIs: (A) the slopes of the regression lines; (B) the correlation coefficients.

Fig. 9. Relative differences between absolute rCGM estimates for PET PVEC 5 and (A) PET PVEC 99, (B) PET PVEC 2, (C) PET PVEC 8 for the 20 VOIs studied.
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Fig. 10. Box and Whisker plots showing relative differences between absolute rCGM with respect to PET PVEC 5 of (A) PET PVEC 99, (B) PET PVEC 2, and (C) PET PVEC 8. The
median,  10, 25, 75 and 90 percentiles are calculated over the 20 VOIs for each of the 19 patients studied.

can be made in the sense that, depending on the VOI, SPM99 and
SPM2 result in large relative differences compared to SPM5 while
SPM8 produce relatively small differences. One can also notice that
right and left putamen (RP and LP) as well as right and left caput
nuclei caudati (RCNC and LCNC) present with the highest differ-
ences in all comparisons. The right and left thalamus (RT and LT)
present with the largest differences when using SPM99 and SPM2.
The relative errors averaged over all regions for each patient are
below 5% for some clinical studies (patients 5, 10, 15 and 19) when
comparing SPM99 and SPM5 but at least 11 cases present with rel-
ative differences of at least 10%. The relative differences between
SPM2 and SPM5 are slightly lower since most of the cases present
with values lower that 10%. Similarly, SPM8 presents with the low-
est relative errors (<3%).

4. Discussion

It is well established that PVC improves image quality and
quantitative accuracy of functional PET imaging where the image
degradation resulting from the PVE is higher as a consequence
of their poor image resolution. PVC is crucial to avoid misin-
terpretation of functional brain PET data [5]. Unfortunately, the
performance of PVC algorithms is highly dependent on accuracy
of the various steps involved in the procedure in a complex way.

Table 3
Mean recovery coefficients (%) over the 19 patients calculated for 20 VOIs.

SPM99 SPM2 SPM5 SPM8

RGFS 56.0 56.3 59.9 59.8
LGFS 56.3 56.8 60.5 60.6
RGFI 56.8 58.0 61.2 61.0
LGFI  55.6 57.3 60.8 60.7
RGTM 52.1 53.3 56.7 56.5
LGTM 52.1 53.2 56.2 56.1
RGS  51.8 54.2 57.6 57.4
LGS  51.8 54.0 57.0 57.0
RC  63.2 63.6 66.2 66.0
LC  62.5 62.6 65.9 65.8
RPREC 59.2 60.3 63.9 63.9
LPREC 58.8 59.6 63.3 63.4
RH  50.9 51.9 55.8 55.8
LH  51.5 52.2 55.7 55.6
RT  56.1 58.3 65.3 65.3
LT  56.8 59.2 65.7 65.7
RP 63.0  66.9 73.6 72.2
LP  63.0 67.0 74.0 73.4
RCNC 57.8 60.4 64.1 64.5
LCNC 55.2 57.6 62.4 61.7

Mean 56.5 58.1 62.3 62.1
SD 4.1  4.5 5.3 5.1

Overall, with one exception [29], it has been reported that the accu-
racy of MRI  segmentation has a higher impact on the accuracy of
the PVC activity concentration estimates compared to the influence
of image co-registration [18,21,30].

This study focused on the impact of four MRI  brain segmentation
algorithms embedded in various version of the SPM software on
MRI-guided voxel-based PVC using clinical FDG-PET data. The first
observation regarding the segmentation algorithm is that newer
versions of SPM (starting from SPM5) seem to produce more reliable
segmentation of brain images. We  have demonstrated in this work
that previous versions of SPM produce mis-segmentation errors,
thus overestimating the size of GM while underestimating the size
of WM.

This is probably due to the implementation of new and more
sophisticated computational approaches, mainly the utilization of
the Bayesian framework that was not used in SPM99.  Note that this
version results in the largest differences compared to SPM5. Even if
SPM2 incorporates this kind of analysis, it appears that the early
implementation was not efficient enough and was consolidated
only in SPM5 [22].

The differences between MRI  segmentation algorithms highly
influence partial volume correction of PET data; however, the rela-
tionship between the results of MRI  segmentation algorithms and
PVC of brain PET data is not trivial since PVE correction is not a lin-
ear process. Nevertheless, it should be noted that they seem to be in
some way linked because higher differences between MRI  segmen-
tations (Table 1) produce higher differences in recovered activity
estimates (Table 2), and higher recovery coefficients (Table 3).

Several studies assessed the influence of PET-MR image regis-
tration and MR  image segmentation errors on the accuracy of PVC
algorithms [14,18].  This has been investigated for both the region-
based [14,15,29,31] and voxel-based approaches [18,29,30,32]. It
has been reported that the influence of the accuracy of the image
registration procedure on the GTM approach is small (less than
2%) compared to the accuracy of the MRI  segmentation procedure
(∼5%). However, this error affects only the mis-segmented regions
[14]. Likewise, Muller-Gartner et al. [18] have shown that their
voxel-based 3-compartment partition method is less sensitive to
mis-registration errors (−6% to 2.5% for a shift of −3 to 3 pixels)
than to mis-segmentation errors (−20% to 30% for a mismatch of
−3 to 3 pixels).

The implementation of the voxel-based PVC method used in
this work [9] bears some similarities to Muller-Gartner’s method
[18] and as such has similar properties and presents with a simi-
lar behavior. In our case, an overestimation of GM volume (mean
of about 22%) produces an overestimation of the GM recovered
activity concentration by about 37% in the worst case (SPM99).
This higher value is in agreement with observations made by
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Muller-Gartner et al. [18] which have reported an error in the order
of 5% in GM PET estimate for a 20% error in WM tracer concentra-
tion. It should be noted that the later is a 3-compartment method
in contrast to the 2-compartment method (GM and WM)  adopted
by Matsuda et al. [9].

Bland and Altman analysis (Figs. 6 and 7) further confirmed that
PET PVC activity estimates obtained using SPM99 and SPM2 are
poorly related to results obtained using SPM5. SPM8 and SPM5 are
highly correlated since the mean values (x-axis) of these plots have
a large spread while the difference between them is kept very low
(y-axis).

It would be interesting to explore the impact of differences
in brain MRI  segmentation techniques on other voxel-based PVC
approaches, such as the wavelet decomposition method [10]. On
the other hand, alternative PVC approaches that do not require MRI
segmentation, thus enabling to overcome the inaccuracies asso-
ciated with this procedure were recently introduced. Given the
limitations of deconvolution algorithms, their use will result in
some degradation of the precision of the processed data and as
such, a high variance associated with the corrected estimates [21].
Promising PVC strategies that are capable of compensating for res-
olution loss in PET images using the information present in the
corresponding anatomical images are becoming available. One such
promising approach is the mutual multiresolution analysis method
using 3D wavelet decomposition of both anatomical and functional
images combined with local analysis (using empirical parameters)
to adapt the model according to regional information [11]. Another
approach uses a Bayesian model that introduces the lacking infor-
mation in the form of a priori probability of the high frequency
activity presence considering as hypothesis the fact that the image
formation is a linear combination of the actual activity concentra-
tion and a Gaussian noise [12]. The latter assumption could be at
the origin of some artefacts seen on the image, though the obtained
results are encouraging.

5. Conclusion

SPM is a popular software for multi-modal brain image analy-
sis including a powerful toolbox for the challenging task of brain
MR image segmentation. The introduction of novel segmentation
methods and their implementation in new releases of this package
have rendered older versions obsolete [22]. The Bayesian formula-
tion introduced in SPM2 and further consolidated in SPM5 version
was, probably, the most relevant improvement into SPM segmen-
tation procedure. The segmentation algorithm embedded within
the latest release of SPM satisfies the requirement of robust and
accurate segmentation for MRI-guided PVC in brain PET imaging.
It has been shown that the various versions of SPM produce sub-
stantially different MR  segmentation results which impacts the
PET recovered activity estimates. Therefore, conclusions drawn
from using early versions of SPM segmentation toolbox should be
verified.
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