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Abstract
Recently, the optimal surface finding (OSF) and layered optimal graph image segmentation of
multiple objects and surfaces (LOGISMOS) approaches have been reported with applications to
medical image segmentation tasks. While providing high levels of performance, these approaches
may locally fail in the presence of pathology or other local challenges. Due to the image data
variability, finding a suitable cost function that would be applicable to all image locations may not
be feasible.

This paper presents a new interactive refinement approach for correcting local segmentation errors
in the automated OSF-based segmentation. A hybrid desktop/virtual reality user interface was
developed for efficient interaction with the segmentations utilizing state-of-the-art stereoscopic
visualization technology and advanced interaction techniques. The user interface allows a natural
and interactive manipulation on 3-D surfaces. The approach was evaluated on 30 test cases from
18 CT lung datasets, which showed local segmentation errors after employing an automated OSF-
based lung segmentation. The performed experiments exhibited significant increase in
performance in terms of mean absolute surface distance errors (2.54 ± 0.75 mm prior to
refinement vs. 1.11 ± 0.43 mm post-refinement, p ≪ 0.001). Speed of the interactions is one of
the most important aspects leading to the acceptance or rejection of the approach by users
expecting real-time interaction experience. The average algorithm computing time per refinement
iteration was 150 ms, and the average total user interaction time required for reaching complete
operator satisfaction per case was about 2 min. This time was mostly spent on human-controlled
manipulation of the object to identify whether additional refinement was necessary and to approve
the final segmentation result. The reported principle is generally applicable to segmentation
problems beyond lung segmentation in CT scans as long as the underlying segmentation utilizes
the OSF framework. The two reported segmentation refinement tools were optimized for lung
segmentation and might need some adaptation for other application domains.
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1. Introduction
Quantitative analysis of medical images is essential for efficient utilization of medical image
data in medicine. Medical image segmentation is often the first step of the quantitative
analysis. Manual segmentation of organs in medical images requires the user to delineate/
draw object boundaries. This is a tedious and time-consuming process. For example, manual
lung segmentation in high-resolution multi-detector computed tomography (MDCT) images
can take more than six hours. In the past, methods for automated segmentation were
developed, but such methods can fail to produce correct segmentations of normal and
especially diseased organs like for example the lungs depicted in Figs. 1(a) and 1(c). An
important observation in this context is that segmentation errors are frequently bound to
local regions. Consequently, it is accepted (best) practice in research and clinical
applications to manually inspect and edit automatically generated segmentations to correct
(local) segmentation errors (Figs. 1(b) and 1(d)). Doing so is more efficient than reverting to
a pure manual segmentation. However, manual editing can still be time-consuming and is a
limiting factor for utilization of quantitative lung image analysis in clinical and research
applications.

In this paper, we address the issue of efficient editing of segmentations, which were
generated by an automated graph-based optimal surface finding (OSF) method [1, 2].
Specifically, we propose a solution for more time-efficient editing of lung segmentations.
The OSF-based segmentation approach guarantees global optimality of the resulting 3-D, 4-
D, or generally n-D result according to a given cost function. In the literature, a number of
OSF-based segmentation applications can be found. For example, methods for airway wall
segmentation [2], simultaneous segmentations of bladder and prostate in 3-D CT scans [3],
liver segmentation in 3-D CT scans [4, 5], segmentation of lungs with large lung cancer
masses in 3-D CT scans [6], cartilage segmentation of the knee joint in 3-D MRI scans [7],
femoral head and acetabulum segmentation [8], segmentations of retinal layers in 3-D retinal
Optical Coherence Tomography (OCT) scans [9, 10], and finding of abnormalities in
volumetric optical coherence tomography (OCT) images [11, 12] were reported. However, it
is a nontrivial problem to find a suitable cost function for a specific segmentation problem.
A cost function may work for the majority of cases, but some anatomical and pathological
variation might cause the automated OSF segmentation to fail in a local region (Fig. 2). To
correct the local failure of the automated OSF-based segmentation, effective interactive
refinement methods are required. Once the initially problematic segmentation is refined, it
can be utilized for further processing or analysis.

Interactive segmentation or segmentation refinement for 3-D medical data sets can be used
when automated segmentation algorithms are not successful. A number of such techniques
and tools were proposed in literature. For example, the 2-D live-wire segmentation method
presented in [13] is a popular interactive segmentation approach, utilizing a conventional
desktop (2-D) user interface. A 3-D extension of 2-D live-wire was presented in [14], but
requires user interaction in many cross-sectional images. Slice-by-slice based interactive
segmentation is tedious, time consuming and error prone, especially in the case of large
image data sets. Schwarz et al. [15] proposed an interactive surface editing framework to
refine the result of a 3-D Active Shape Model (ASM) segmentation utilizing a 2-D user
interface.

In contrast to conventional user interfaces, a Virtual Reality (VR) based (3-D) user interface,
which provides stereoscopic visualization and six degrees of freedom (6 DOF) input
devices, allows true depth perception and natural interaction with objects or surfaces. A true
3-D interactive region growing approach presented in [16] is an early attempt to use a VR
environment for segmentation. Harders et al. [17] performed tubular structure detection
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utilizing a desktop monitor based VR environment and tactile feedback. Deformable model
based mesh surface editing tools with a hybrid VR/desktop user interface were introduced
by Bornik et al. in [18]. As demonstrated in a recent study on liver segmentation [19],
segmentation refinement performed with VR-based tools was found less time consuming
compared to standard 2-D refinement. In [18] and [19], refinement is solely driven by the
user without utilizing image segmentation algorithms during refinement. Thus, the user
needs to manually “drive” the surface to match object boundaries visible in the image data.

In this work, we presented a novel interactive 3-D segmentation refinement method based
on the OSF segmentation framework. The basic idea behind this method is that the user
interacts directly with a segmentation algorithm to effectively correct potential errors in
automatically generated OSF segmentation results. Our approach utilizes a hybrid desktop/
VR user interface. The proposed method was validated in the context of lung segmentation
in volumetric CT scans.

The paper is organized as follows. First, we briefly review the automated OSF segmentation
framework. Second, we describe the utilized hybrid desktop/VR user interface used for
refinement. Third, we present the interactive OSF-based refinement approach. Fourth, we
evaluate our approach. Finally, we presented a discussion and conclusion.

2. Methods
2.1. OSF-based Segmentation

In the work presented in this paper, we assume that an initial segmentation was generated
with an OSF segmentation approach that may yield local segmentation errors and thus may
require refinement. The proposed refinement approach builds on the initially utilized OSF
framework, but allows the user to locally guide the segmentation result.

The main idea of the OSF-based segmentation algorithm is to transform the segmentation
problem into a graph optimization problem. To utilize the OSF-based segmentation
framework proposed by Li et al. [2], a weighted graph G(N, A) is built from an initial mesh
surface M(V, F) (shape and topology prior) close to the target surface, where N represents a
graph node set, A a graph arc set, V a triangle vertex set, and F a triangle face set,
respectively. For each vertex v ∈ V, a graph column with lp nodes is generated along the
search profile. The direction of the search profile goes from inside to the outside of the
segmented object. The node density on the profile is dn and is adjusted to the given image
resolution. Intra-column arcs are built to connect nodes n(v, k) to n(v, k − 1) on a column
col(v) with infinity weights, where k is the column node index. Column col(vi) and col(vj)
are adjacent columns, if vertices vi and vj are on the same triangle edge. For adjacent
columns, inter-column arcs are built to connect the node n(vi, k) to the node n(vj, k − Δ) with
infinity weights. Here Δ is the hard smoothness constraint, reflecting the largest allowed
difference in nodes between two adjacent vertices. An example of such graph representation
is shown in Fig. 3. The graph node weights C (cost function) are derived from volumetric
image data to describe local image characteristics. The segmentation task is transformed to
find a minimum-cost closed set by means of a maximum-flow algorithm [20]. To define a
minimum-cost closed set problem, node costs are transformed into s-t arc capacities. A node
weighted graph eventually becomes an arc weighted graph. The feasible surface is the
envelope of the minimum-cost closed set.

2.2. User Interface
We utilize a combination of desktop (2-D) and VR (3-D) user interfaces similar to the work
reported in [18]. Refinement can be accomplished by using a stereoscopic display with a
tracked (6 DOF) input device or a standard 2-D interface (e.g., monitor and mouse) for more
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accurate control. The hybrid user interface reported in [18] utilized a distributed architecture
with two computers. Thus, all operations, data, and visualizations needed to be synchronized
over the network between 2-D and 3-D user interface computers. The drawback of such an
approach is that large data sets might slow down communication and lead to low frame
rates, besides potential network latency issues. Since a responsive system with high frame
rates is essential for an interactive VR system, we have developed a hybrid user interface
where 2-D and 3-D interfaces are implemented on the same machine.

2.2.1. Hardware Setup—The hardware setup consists of several components and
includes an active stereo display, an optical tracking system, a Wacom interactive pen
display (Wacom Co., Ltd., Japan), and a graphics workstation (Fig. 4). A Mitsubishi 3-D
DLP HDTV with 73 inch diagonal, 1920 × 1080 pixels, and a refresh rate of 120 Hz was
utilized as active stereo display. It was operated in the side by side stereo mode in
combination with Nvidia 3-D Vision (Nvidia Corp., Santa Clara, CA) stereo shutter glasses
(Fig. 4(a)). The stereo display and Wacom display are driven by a Linux workstation with
four 6-core 2.93 GHz Xeon CPUs and a Nvidia Quadro Fx 5800 graphics card (Nvidia
Corp., Santa Clara, CA). The 6 DOF input device (Fig. 4(a)) built for 3-D and 2-D user
interaction consists of a Bluetooth mouse, a Wacom display stylus, and an optical tracking
target. The optical tracking system (NaturalPoint Inc., Corallis, OR) includes a tracking
server and five optical tracking cameras, which track the user’s head, the stereo display, and
the input device (Fig. 4(a)). The tracking system software is running directly on the graphics
workstation, and tracking data are transported from tracking server to our developed
software via a loopback device.

2.2.2. Software Architecture—The developed system utilizes Studierstube [21] and
OpenTracker [22] to implement the VR system. Studierstube is a C++ library developed for
Augmented Reality (AR) and VR applications. OpenTracker software is utilized for
handling tracking data. Specifically, we use the Virtual Reality Peripheral Network (VRPN)
protocol to transmit the tracking data. Studierstube forwards tracking data from
OpenTracker to our application. We extended the original Studierstube library to support
side-by-side stereo rendering mode required by the 3-D DLP TV.

2.2.3. Visualization Algorithms—Visualization tools facilitate the inspection of
segmentation results and interactive refinement of segmentations, if needed. The VR user
interface utilizes a textured cutting plane, a form of a multi-planar reconstruction (MPR), for
displaying volumetric context data. For this purpose, OpenGL 3-D texture is utilized. In our
system, segmentations are represented by triangle meshes. In a refinement task, the operator
uses the 6 DOF input device to place the MPR and inspect arbitrary 2-D views on the MPR
in combination with the mesh surface. However, the rendering of surfaces and a MPR are
inadequate to observe local details. Thus, a 2-D contour resulting from the intersection of
the mesh surface with the MPR can be visualized, if needed. In this contour rendering mode,
the MPR is used as a clipping plane.

The contour rendering is essential for verifying the segmentation result. However, the mesh
surface can consist of many triangles, and MPR location/orientation and the surface are
subject to frequent changes. Thus, a fast contour rendering method is required. For this
problem, Bornik et al. [18] proposed a two-pass image based contour rendering algorithm.
First, the algorithm renders the clipped surface in two-sided light mode to the OpenGL
Frame Buffer Object (FBO) buffer, which is used to generate an image with a white cross
section of the clipped surface on a black background. Second, edge detection is used to
extract the boundary. This approach has some disadvantages. If there are holes in the surface
(e.g., open surface) or the orientation of some polygons is flipped (e.g., due to mesh
folding), artifacts in the form of false silhouettes can appear (Fig. 5(a)). Also, this
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algorithmis not able to highlight a portion of the contour with a different color, which is
required by our refinement method.

To address these problems, a CUDA1 based contour visualization algorithm was developed.
Fig. 6 provides an overview of the algorithm. In our approach, we assume that each mesh
vertex has a label corresponding to a color. In the first pass (Fig. 6), the intersection points
of the mesh surface and MPR (clipping plane) are calculated in parallel. In the CUDA
implementation, a thread is generated for each triangle and delivers zero or two intersection
points of the triangle with the clipping plane. Note that without loss of generality, the case
with only one intersection point can be represented with two intersection points. Each
intersection point is labeled according to the set label of the nearest triangle vertex. Thus,
each intersection point is assigned a color according to its set label. Two intersection points
are drawn as a line and finally rendered into the FBO buffer as 2-D texture. In the second
pass (MPR rendering pass depicted in Fig. 6), the 2-D texture is superimposed onto the
textured plane representing the image context utilizing an OpenGL Shading Language
(GLSL) fragment shader program. Thus, the contour is always shown on the textured plane
without any occlusion. Note that if the two intersection points were assigned different
colors, the color of the line in between will be interpolated accordingly.

Fig. 5 shows a comparison between our result and a result generated with Bornik’s
algorithm [18]. Fig. 7(b) and Fig. 7(c) depict another example of the application of the
contour rendering algorithm in the context of segmentation refinement.

2.3. Generic OSF-based Segmentation Refinement
Our segmentation refinement method utilizes the same graph structure G(N, A) as described
in Section 2.1. In this context, note that our method does not change the topology of the
underlying graph structure. Basically, the task of segmentation refinement can be split into
two sub-tasks:

a. identify (label) the local error on the surface and

b. change the cost of columns associated with errors such that the error is corrected or
at least reduced when the new optimal surface is calculated for the updated graph.

In this context, it is desirable that user interaction is minimized for both sub-tasks.

The individual processing steps of the developed segmentation refinement algorithm are as
follows.

1. The user inspects the segmentation result and detects an error on the surface by
comparing CT data visualized on the cutting plane to the boundary of the
segmentation result (Fig. 7(a)).

2. The incorrect part of the surface is labeled. For this purpose, the user identifies a
point on the true surface location near the error region (Fig. 7(b)). During this
process, the algorithm displays the estimated incorrect (labeled) portion of the
surface interactively. This allows the user to pick a good location for the input
point.

3. Costs in G(N, A) are locally updated for affected columns.

4. The maximum-flow is recalculated for the graph G(N, A). To speed up the
computation, we avoid to recompute the maximum-flow from scratch and utilize
the previously calculated residual graph instead, similar as described in [23].

1http://www.nvidia.com/object/cuda_home_new.html
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5. The new solution (surface) is displayed (Fig. 7(c) and 7(d)).

The above described refinement method can be utilized iteratively, if needed. The
refinement process is supported by the hybrid user interface and the visualization tools
presented in Section 2.2. In the following, we describe step 2 and step 3 of our refinement
algorithm in detail.

Error region labeling (step 2)—The user specifies a point on the true boundary in an
erroneous segmentation region using the hybrid user interface (Fig. 7(b)). The algorithm
searches for the nearest node on all graph columns based on the specified point. The nearest
node n(v, k) is found. Corresponding column v is labeled as the center column, and the
center column node n(v, i) on the previously calculated surface is found (Fig. 8). A breadth-
first-search (BFS) algorithm [24] is applied to find similar neighboring columns. The
neighborhood relation is defined based on mesh topology. The BFS starts from the center
column v and examines neighboring columns by utilizing predefined similarity criteria,
which are based on three components that are combined by means of a logical AND
operation:

1. Surface normal vector direction — To limit the search to a local region with
roughly similar surface orientation, we require that the angle between mesh surface
normal vectors of the center column v and a neighboring column v′ must be less
than 90°, and thus, fulfill nv · nv′ > 0, where n denotes the surface normal (Fig. 8).

2. Gray-value characteristics of the incorrect surface boundary — This criterion is
based on the observation that the incorrect surface passing through the center and
the neighboring columns should have similar local image characteristics. The gray-
value profile around a node n(v, i) will be denoted as set P(v, i) = {g(n(v, i + j))| j ∈
{−7, −6, …, 7}}, where g(n) represents the gray-value of a node n. Let v′ represent
a column in the proximity to the center column with node n(v′, i′) on the previously
calculated surface (Fig. 8). Then D(P(v, i), P(v′, i′)) = maxj∈{−7,−6,…,7}{|g(n(v, i −
lr + j)) − g(n(v′, i′ + j))|} denotes a gray-value profile similarity function. Columns
v and v′ are similar if the following criterion is fulfilled:

(1)

where t1 is a threshold. In our lung CT segmentation task, we use t1 = 180 HU
(Hounsfield Units).

3. Gray-value characteristics of the true boundary location — The basic idea behind
this criterion is that the correct surface point(s) on the center column and
neighboring columns have similar gray-value appearance. The correct surface point
n(v, k) on the center column was selected by the user (Fig. 8). However, we need to
search for the correct surface points on neighboring columns. For the neighboring
column v′, we start the search from n(v′, k) (Fig. 8) with a variable search length

(2)

to express increasing uncertainty regarding location of true boundary points with
increasing distance from column v. Here, dv,v′ denotes the Euclidean distance
between previously calculated surface nodes on column v and v′; σ was set to 5
mm. Columns v and v′ are similar if
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(3)

Threshold t2 was set to 90 HU. The node with the most similar gray-value profile
on column v′ is stored in a set Vsim.

After the BFS algorithm stops, holes are filled in the labeled surface. Nodes corresponding
to the surface patch are stored in the set Verr. Fig. 7(b) shows an example of a labeled
erroneous surface patch visualized on the cutting plane. Parameters for the similarity criteria
were selected conservatively to avoid leakage. Thus, the BFS step might in some cases not
completely label the incorrect surface patch. To address this issue, the patch can be dilated
by the user.

Updating OSF costs (step 3)—The cost function of the center column is updated by

(4)

Because all costs are initially normalized between 0 and 1, the final segmentation is very
likely to pass through the user determined location k on column v. All remaining columns
related to the set Verr are updated with

(5)

where Ω is a set containing all center columns selected by the user during the refinement
process. Thus, the refinement never changes the cost function of columns already updated
using Eq. 4 in the previous refinement steps. The term

(6)

is used to locally adapt the previously utilized costs, where node k′ represents an estimate for
the true boundary location on column v′. The estimation of k′ will be described in the next

paragraph. σ(v, v′) is calculated with . The idea behind Eq. 6 is that the
costs on column v′ near to the node n(v′, k′) have to be low while the impact of the
weighting function becomes weaker for nodes on columns that are further away from n(v′, k
′).

The estimate for the true boundary node n(v′, k′) is calculated as follows. Let Vborder denote
a set of outer border nodes of Verr (Fig. 8). A Thin Plate Spline (TPS) surface [25] is fit
through user selected node n(v, k), nodes in Vborder, and nodes in Ωsim. To speed-up
computation, ωsim is a randomly selected subset of Vsim with 20 % of the size of Vsim. We
utilize a TPS interpolation because we assume that the corrected surface has low shape
complexity. For TPS interpolation, the kernel function U(r) = r2 log r is utilized. The
interpolation works in 2.5D while the surface patch consists of 3-D points. Thus, an
appropriate 2-D plane has to be found to apply TPS interpolation. By means of singular
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value decomposition, a plane is fitted in a least square fashion to nodes in Vborder. The
intersection of the interpolated surface and columns related to set Verr\{n(v, i)} form
estimates for the true boundary.

Note that n(v, k) and nodes in Vborder are believed to be on the true surface, but nodes
corresponding to Ωsim were estimated. Therefore, we enforce the fitted surface to pass
through nodes n(v, k) and Vborder with a regularization parameter value of 0, but do not
enforce it through nodes related to Ωsim with a regularization parameter value of 1.0 [26].

Note that parameters used in the described method were determined experimentally on five
cases, which were not included in test data sets. An example of generic OSF-based
interactive segmentation refinement is given in Fig. 7.

2.4. Specific OSF-based Refinement Method for Leakage to Trachea and Main Bronchus
The tool described in Section 2.3 is well suitable to correct lung segmentation errors.
However, we observed that when the OSF based lung segmentation leaks to the trachea and
main bronchus (Fig. 9(a)), the method is not efficient, requiring the user to specify too many
refinement points. To address this issue, we designed a specific tool for this segmentation
problem. This specific method also consists of 5 steps as described in Section 2.3, but step 2
(error region labeling) and step 3 (updating OSF costs) are different from the generic
approach. In the next sections, these steps are explained in detail.

Error region labeling (step 2)—The basic idea is to utilize the gray-value and gradient
characteristics of CT image data to identify/label surface points corresponding to the leak to
trachea and the main bronchus. The center column node n(v, k) (nearest node in Fig. 10) is
found based on the manually selected point on the true lung boundary in the area of the leak.
The BFS algorithm is utilized to identify the incorrect nodes and is based on two properties:

1. Gray-value properties — A large density difference between air-filled airway
lumen and surrounding tissue can be observed. Fig. 9(c) shows a typical gray-value
profile passing through the airway lumen and surrounding tissue corresponding to
the profile shown in Fig. 9(b). Columns involved in the leakage to trachea and main
bronchus pass through the airway lumen as illustrated in Fig. 10. Thus, for the
neighboring column v′, nodes starting from n(v′, i) to n(v′, 0) are searched (Fig. 10)

and their average gray-values  are examined. The
averaging is used to reduce the influence of noise. At first, the search looks for a
node n(v′, j) with ga(v′, j) < −900 HU (air). Once such a node is found, the search
continues on the column until the first node n(v′, k) with ga(v′, k) > −600 HU is
found. The node n(v′, k) will be close to the inner airway boundary (Fig. 10). The
search is refined by identifying the maximal gradient magnitude location about
node n(v′, k) in a search range of ±3 nodes, resulting in node n(v′,m). Gradient
magnitude gmag and direction gdir are pre-calculated for each voxel in the volume.
Prior to gradient calculation, the gray-value range is truncated to −1000 and −700
HU, to reduce the effect of unrelated structures on the gradient. The gradient is
calculated by utilizing Gaussian derivatives with a standard deviation σg = 0.5 mm.
In addition, to reduce the influence of noise, gradient magnitudes less than 10 are
ignored. The same search is performed for the center column, but it takes place
between nodes n(v, i) and n(v, k).

2. Gradient properties — Trachea and main bronchus are elongated tubular structures
along the z-axis of the volume. Thus, the z-axis is approximately perpendicular to
the (normalized) gradient direction of each voxel on the airway boundary. This
constellation can be described by the dot product z · gdir, where z = (0, 0, 1)T
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represents the z-axis direction and gdir = (gx, gy, gz)T is the normalized gradient
direction of each voxel. Fig. 9(d) shows a typical example of a z · gdir volume.

The criterion is fulfilled if a node n(v′,m) can be found for a neighboring column with z ·
gdir(n(v′,m)) < t3 with the angle threshold t3 = 0.4. After the BFS algorithm stops, nodes
corresponding to the surface patch are stored in the set Verr, and holes in the patch are
closed. In addition, nodes on the airway wall (n(v′,m)) are stored in the set Vsim. For columns
related to holes in the surface patch, the location of the node n(v′,m) is estimated by
interpolation, and the result is added to Vsim.

Updating OSF costs (step 3)—The cost function of the center column is updated
according to Eq. 4. All other columns corresponding to nodes in Verr are updated by Eq. (5)
as

(7)

with n(v′,m) ∈ Vsim. c0(v′, i) is the initial cost function utilized before refinement. Thus,
nodes inside the airway lumen receive a cost of one.

3. Evaluation Methodology
3.1. Image Data

For our study, 18 multidetector computed tomography (MDCT) thorax scans of patients
with lung tumors were selected from a larger pool of data sets such that at least the left or
right lung required segmentation refinement after automated segmentation (Section 3.3). In
the 18 MDCT scans, 21 left/right lungs were found to require segmentation refinement.
MDCT images where acquired with different scanners and imaging protocols. The image
sizes varied from 512 × 512 × 415 to 512 × 512 × 642 voxels. The slice thickness of images
ranged from 0.6 to 0.7 mm and the in-plane resolution from 0.60 × 0.60 to 0.79 × 0.79 mm.
None of the test data sets has been used for the development of algorithms.

3.2. Independent Reference Standard
For all tested data sets, an independent reference standard was generated by following the
current standard procedure utilized in numerous large multi-center research projects as well
as clinical applications. First, an automated lung segmentation was performed by utilizing a
commercial FDA 510K approved lung image analysis software package PW2 (VIDA
Diagnostics Inc., Coralville, IA). Second, since the software was not designed to deal with
lungs containing large lung cancer regions, an expert inspected all the segmentations slice-
by-slice and manually corrected all segmentation errors. In the case of diseased lungs, this
process took several hours per lung.

3.3. Initial Automated Lung Segmentation
For automated segmentation, we adapted the approach proposed by Sun et al. [6]. The lung
segmentation uses a robust ASM based segmentation followed by an OSF-based
segmentation approach. In [6], Sun et al. utilized a multi-scale OSF approach with a hard
smoothness constraint [2] and straight line search profiles normal to the mesh surface. For
the experiment reported in this paper, we utilized an improved version of this algorithm that
included a linear soft smoothness constraint (a constant weight α was used to penalize the
shift on two adjacent vertices on the final feasible surface) proposed in [3] and a gradient
vector flow based approach to build column profiles [27]. Also, in contrast to [6], we used a
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single-scale approach. The number of mesh vertices used for the OSF-based segmentation
was 10, 242. For the soft and hard smoothness constraints, α = 0.001 and Δ = 12 were used,
respectively. The search profile length was lp = 117 nodes. Points on the search profile were
obtained at discrete sampling positions with a distance of 0.35 mm between them. A
Gaussian gradient filter kernel with variance σ = 2.0 mm was utilized to calculate the cost
function as outlined in [6].

3.4. Identification of ROIs for Performance Analysis
To assess segmentation refinement performance, 30 volumetric region of interests (ROI)
were identified in the images that contained major local segmentation errors. The approach
for generating ROIs was as follows. First, an exclusive OR operation was applied to the
volumetric lung masks of the independent reference standard (Section 3.2) and initial
automated segmentation (Section 3.3) to generate a volume that depicts the differences
between both segmentations. A morphological erosion operation was applied to remove
smaller regions. The remaining large regions were morphologically dilated to form ROIs
that include major segmentation errors (Fig. 11). These ROIs were also utilized to indicate,
which region should be refined by the user. Table 1 summarizes segmentation error types
included in the defined ROIs. Note that there can be one or more types of segmentation
errors in a single ROI. An expert was asked to refine the segmentation errors inside the
ROIs.

3.5. Quantitative Indices
The utilized ROIs were defined such that the segmentation errors can be corrected by
manipulating the surface portion inside the ROIs. However, the user might unintentionally
affect a portion of the surface in close proximity to the ROI boundary or the global optimal
OSF calculation might cause changes outside of the ROI. Therefore, we evaluate refinement
performance inside and outside the ROIs.

1. Validation inside ROIs — The following quantitative error indices were utilized:
mean absolute surface distance (da) [28] and mean signed border positioning errors
(ds) [29]. A negative value for ds indicates that the segmentation boundary is inside
the reference object and a positive value indicates that the boundary is outside the
reference object.

2. Validation outside ROIs— The Euclidean distance (de) of two corresponding
surface vertices before and after refinement are utilized to measure vertex
displacement. In addition, for each refinement-modified vertex outside the ROI, a
shortest geodesic distance (dg) to the ROI boundary is utilized to measure
proximity to the ROI. To calculate dg, a weighted undirected graph Gdg is
constructed from the triangle mesh. The arc weight is based on the Euclidean
distance between two triangle vertices. dg is calculated based on Dijkstra shortest
path algorithm [24].

In addition to the above outlined indices, the user interaction and algorithm computing time
required for refinement per ROI was recorded.

4. Results
The mean and standard deviation of user interaction times needed for segmentation
refinement per ROI was 1.9 ± 1.2 min with a median of 1.6 min. User interaction times
ranged between 0.4 and 4.5 min. On average 5 ± 3.4 (median: 4) manually defined surface-
correcting points were required, and the minimum and maximum were 1 and 13 points,
respectively.
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A plot of required interaction in dependence of surface area inside the ROI is depicted in
Fig. 12. The actual computing time required by the algorithm was 150 ± 152 ms (median:
101 ms) with minimum and maximum computing time of 73 and 1220 ms, respectively.

4.1. Results inside ROIs
The mean absolute surface distance and mean signed border positioning errors before and
after refinement measured inside ROIs for all thirty test cases are shown in Figs. 13 and 14,
respectively. A Student’s t-test at a significance level of 0.05 was performed to determine
whether the average error indices after refinement were significantly different than prior to
the refinement. Both indices, the mean absolute surface distance (p ≪ 0.001) and mean
signed border positioning error (p = 0.02), were significantly improved. The mean absolute
surface distance errors prior to the refinement were 2.54 ± 0.75 mm (median: 2.44 mm) and
the same errors decreased to 1.11 ± 0.43 mm (median: 1.04 mm) after the refinement. Fig.
13b shows boxplots graphically demonstrating improvements in the surface distance errors
after refinement.

Examples of segmentations before and after refinement are depicted in Figs. 11, 15, and 16.
In the case of Fig. 16, the independent reference standard is also shown for comparison.

4.2. Results outside ROIs
The impact of segmentation refinement on the segmentation outside the ROIs is summarized
in Fig. 17, which shows a plot of the number of altered vertices as a function of the mean
number of triangle edges on the ROI boundary. For each test case, boxplots for the
displacement of nodes outside the ROIs after refinement are shown in Fig. 18. Combined
over all 30 cases, the average node displacement was 0.56 ± 0.38 mm (median: 0.57 mm)
with a range of 0 to 1.34 mm.

5. Discussion
The optimal surface finding framework is a powerful approach and has demonstrated utility
in a number of medical image segmentation problems, as outlined in Section 1. However,
when dealing with segmentation of structures/organs that are abnormal due to disease or
other causes, designing a suitable cost function that would work correctly for all possible
situations is challenging and may be impossible since pathology augments image
characteristics. As a consequence, segmentations can exhibit local errors. Such local
inaccuracies or errors must be corrected prior to the subsequent quantitative analysis. For
achieving full yield of medical imaging under all disease conditions, an efficient and
inherently three-dimensional approach must be available in the workflow to facilitate
efficient modification or refinement of the resulting segmentations. Clearly, the current
state-of-the-art approach of slice-by-slice editing offers neither efficiency nor 3-D
performance.

In this paper we have addressed this problem in the context of lung segmentation of
volumetric CT scans. We have developed an OSF-based segmentation refinement system,
which utilizes a virtual reality user interface to facilitate an efficient interaction with
automatically-determined object/organ surfaces. We have demonstrated the feasibility and
potential of such an approach.

The validation showed that the developed method allowed the user to successfully reduce/
correct segmentation inaccuracies in all 18 test data set with 30 ROIs where the automated
segmentation approach locally failed and interactive surface refinement was necessary (Fig.
13 and 14). Quantitative assessment of the achieved segmentation improvements
demonstrated that the improvements are statistically significant.
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Our 3-D refinement results show that the refined surfaces exhibit smooth boundaries (Fig.
16(k–o)), an additional benefit of our approach compared to slice-by-slice manual editing of
2-D contours, which shows surface inconsistencies (zig-zag lines) across slices (Fig. 16(a–
e)). In addition, it is difficult to consistently define the lung boundary in the area near the
hilum where vessels and airways enter/leave the lungs and no generally accepted standard
for segmentation exist. In this context, it is interesting to note that in four out of the five test
cases, for which the mean absolute surface distance after refinement exceeded 1.5 mm,
required refinement in the hilum region, further stressing the difficulty of expert-
determination of proper surfaces in this location of pulmonary anatomy.

Because the OSF approach delivers a globally optimal solution, a local manipulation of a
cost function could potentially lead to an alteration of the solution (surface) outside of the
local area where the cost function was purposely modified (i.e., surface changes may
theoretically appear outside of the refinement ROI). The performed assessment of such
change outside the predefined ROIs indicated that in our 18 datasets, only minor changes
occurred in close proximity to the ROI region and no changes were detected in the
remaining parts of the lung surface. This result suggests that the influence of the
modifications remains local in practice and the global modifications possibility does not
form a problem in the image segmentation refinement application.

The required user interaction time was in the low single-minute range. The plot shown in
Fig. 12 suggests that the refinement times of more than 2.5 min were only required for
inaccuracies affecting large portions of the lung surface. Manual editing of the segmentation
error in a slice-by-slice fashion would take much longer, because manipulating a surface is
more efficient than editing 2-D contours in a cross-sectional images.

The average computing time of 150 ms per refinement iteration demonstrates that our
algorithm is well suited for real-time interactive use. The maximum computing time of 1,
220 ms or just little over one second was recorded for a case involving a large surface region
and was mainly required for surface interpolation. To further increase the responsiveness of
the interactive refinement environment, we plan to develop a parallel implementation of the
interpolation steps using CUDA. Once in place, we expect interaction response times not
exceeding 100 ms per interaction. This will provide the user with a truly real-time
interactive feeling when using the surface refinement environment.

In our CT lung surface segmentation refinement application, the two refinement tools—one
generic and one specifically designed for leaks to trachea/main bronchus—were sufficient to
handle the full range of frequently occurring lung segmentation inaccuracies. In both cases,
a single user selected point was utilized per refinement iteration. With this information, the
cost function of a local region was automatically modified by weighting costs, and
subsequently, the (automated) OSF segmentation algorithm was applied to refine/manipulate
the initial segmentation result. This approach has three major benefits. First, the refinement
is performed within the initial segmentation framework. Thus, the same constraints (surface
smoothness) apply, and surface discontinuity is avoided. Second, user input as well as local
image features are utilized at the same time during the refinement process. Third, with just a
single point, a larger local surface region can be refined. However, depending on the
application (e.g., type of the lung disease, the utilized imaging protocol, etc.), adaptation of
the existing tools and/or development of new tools may provide further benefits.

A potential limitation of our OSF-based segmentation refinement approach is that the
correct solution must be representable by the utilized graph structure, because only weights
(costs) of the graph are modified during refinement. Consequently, no topology modification
is possible. This issue can be addressed in two ways. One would yield segmentation
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refinement methods that also allow the user to locally modify the graph structure. This
approach is demanding in terms of the required computational effort and may not be
achievable in real-time. Another approach is to revert to refinement tools based on
interactively user-modified deformable contour described in [18, 19]. While such an
approach would offer a larger degree of flexibility, it would likely require more user
interaction steps and thus increase the overall refinement times.

In this paper, we focused on a refinement approach for single surface OSF segmentation.
However, similar methods can be developed for dual-surface or 4-D (single surface plus
time) OSF segmentation. An adaptation to other graph-based segmentation approaches
might not be straight forward, or such methods might have refinement/interaction solutions
like for example graph cuts [23].

The utilized hybrid user interface allows the user to either utilize a standard desktop
environment (mouse and monitor), a 3-D VR environment (6 DOF tracked input device and
stereoscopic display), or a combination of both. During the reported experiments, we
observed that the user utilized the VR environment most of the time. One reason for this
might be that it is quite intuitive to select a cross-sectional plane (multiplanar reconstruction)
such that it shows large portions of the incorrect contour. On the other hand, refinement is
highly computer-aided and the user only needs to specify one or more points on the correct
object contour to manipulate the surface. We found that the point placement is not critical
for good results, as long as the user-specified points are located on the correct boundary.
Thus it seems to be very likely that the same performance can be achieved even if only the
desktop user interface is utilized. Training of users might also play a role in the context of
setup preference. To answer questions regarding the optimal user interface for specific
refinement tasks, detailed studies of human computer interface aspects need to be
performed. The presented hybrid desktop/VR user interface positions us well to investigate
these aspects in the future. Also, we expect that the complexity of refinement tasks and
associated tools will increase over time. This will lead to a clear distinction between pros
and cons of user interface options. Another aspect in this context is that virtual reality
hardware as currently utilized in experiments is not widely available in clinical practice.
However, resulting from the advances driven by computer gaming and home entertainment,
the accessibility of the VR environment components is rapidly increasing with a rapid
decrease in the associated cost. Therefore, we expect that such VR equipment will become
commonplace in health care and will be utilized for a range of medical applications.

6. Conclusion
We have presented a new OSF-based interactive segmentation approach utilizing virtual
reality technology. This approach was investigated in the context of lung segmentation in
volumetric CT scans. For efficient interaction, a hybrid desktop/VR user interface was
developed utilizing state-of-the-art stereoscopic visualization technology and advanced
interaction techniques in the context of medical image segmentation. The effectiveness of
our approach was demonstrated on 18 lung scans containing 30 predefined ROIs, which
consisted of segmentation errors frequently appearing in automated OSF-based lung
segmentation results. Experimental results showed lower segmentation error indices
compared to the errors of the automatically generated segmentations. An average user
interaction time of about 2 min per ROI was achieved with a low number of user interaction
“clicks”. Our work demonstrates the achievable benefits resulting from graph-based
segmentation refinement.

The presented principle is equally applicable to other segmentation problems and across
imaging modalities. However, the individual refinement tools may require some adaptation
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to be optimal for an specific application. All in all, the reported approach may be useful for
all cases, for which automated segmentation approaches fail in some – perhaps difficult or
pathologic – cases. The reported 3-D interactive refinement approach is being extended to 4-
D to contribute to simultaneous context-aware segmentation of two lung volumes associated
with breathing, the TLC (total lung capacity) and FRC (functional residual capacity) lung
scans. In addition, applicability of interactive OSF-based refinement for segmenting
multiple surfaces simultaneously (e.g., inner and outer surfaces of intravascular ultrasound
images) will be investigated in our future work.
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Figure 1.
Example of fully automated lung segmentation results and corresponding results after
manual slice-by-slice editing. (a) Normal lung where the segmentation leaked into the gas-
filled colon (arrow) and (b) manually corrected segmentation. (c) Diseased lung with
automatically generated segmentation result. The segmentation does not include cancer
tissue (arrow) that is part of the lung. (d) Result after manual correction of this error.
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Figure 2.
Example of a local OSF segmentation error (arrow) due to lung pathology (cancer). The
employed OSF cost function is not well suited to successfully handle such pathology.
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Figure 3.
Graph construction of a single-surface segmentation problem in the OSF framework. (a)
Search profiles are constructed starting from the shape prior. (b) Relation between search
profiles and triangle face of the shape prior. (c) Example of the shape prior (pre-
segmentation) used for OSF-based lung segmentation. (d) OSF graph structure with arcs
enforcing the surface smoothness constraints.
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Figure 4.
Hybrid user interface for interactive OSF segmentation refinement. (a) The user inspects the
segmentation result by utilizing a 3-D user interface. Circled devices are shown in enlarged
sub-figures: (1) tracking cameras, (2) shutter glasses with head tracking targets, (3) stereo
display with tracking targets, and (4) tracked input device. (b) The user operates the 2-D
user interface. (a) (b) (c)
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Figure 5.
Comparison of the visualization approach presented in [18] (a) and our proposed method
(b). (a) False contours are clearly visible on the cutting plane. (b) Our algorithm produces a
correct contour. (c) The contour shown in (b) is combined with the clipped mesh. Arrows
show locations of mesh folding.

Sun et al. Page 20

Comput Med Imaging Graph. Author manuscript; available in PMC 2014 February 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 6.
Overview of the contour rendering algorithm.
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Figure 7.
Visualization of generic interactive OSF-based segmentation refinement for a lung with a
lung mass adjacent to the lung boundary. (a) The user inspects the lung segmentation and
locates a segmentation error. (b) In a cross-section, the user selects a point on the correct
boundary location with a virtual pen. Note that the incorrect portion of the contour is
highlighted in light blue and was automatically generated based on the selected point. (c)
and (d) Refinement result after calculating maximum-flow. (d) The corrected surface region
is highlighted in green.
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Figure 8.
Search for similar neighboring columns in the OSF graph structure.
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Figure 9.
Example of incorrect lung segmentation (leakage to trachea and main bronchus) and
corresponding image features utilized for error identification. (a) Lung segmentation leaking
to trachea (arrow 1) and main bronchus (arrow 2). (b) Profile location and (c) corresponding
gray-value profile passing through airway lumen and surrounding tissues. (d) Corresponding
z · gdir volume.
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Figure 10.
Labeling surface points corresponding to the leakage to trachea and main bronchus based on
BFS.
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Figure 11.
A comparison of segmentation before (a) and after (b) refinement. The segmentation is
highlighted in red and the ROI region is shown in yellow. (a) Initial automated OSF
segmentation. (b) Corresponding 3-D segmentation refinement result.

Sun et al. Page 26

Comput Med Imaging Graph. Author manuscript; available in PMC 2014 February 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 12.
User interaction times required for each refinement task in dependence of surface size inside
the ROI. Note that conventional approach to correcting severe segmentation failures using
slice-by-slice contour editing tools typically require tens of minutes and up to several hours
per image dataset.
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Figure 13.
Mean absolute surface distance error before and after segmentation refinement measured
inside the ROIs. (a) A case by case comparison. (b) A boxplot comparison summarizing
performance in all tested cases. The boxplot is a graphical display of a five number
summary (from bottom to top vertical line): the so-called smallest observation (Q1 − 1.5(Q3
− Q1)), first quartile (Q1), median (Q2), third quartile (Q3), and the so-called largest
observation (Q3 + 1.5(Q3 − Q1)); + marks indicate outliers.
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Figure 14.
Mean signed border positioning errors before and after segmentation refinement measured
inside the ROIs.
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Figure 15.
A comparison of automated segmentation and segmentation refinement in mesh
representation for the case shown in Fig. 11. (a) Initial automated OSF segmentation. The
region marked green indicates segmentation error due to a large lung cancer region. (b)
Corresponding 3-D segmentation refinement result.
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Figure 16.
Examples of segmentation results on five different data sets (columns). (a)–(e) Independent
reference standard. Note that a zigzag pattern of the reference boundary can be observed on
both the sagittal or coronal views, because the manual expert segmentation was performed
in a slice-by-slice fashion and typically leads to slice-by-slice inconsistencies. (f)–(j) Initial
automated OSF segmentation results. (k)–(o) Segmentation after 3-D refinement.
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Figure 17.
Dependence between number of after refinement altered vertices outside the ROI and
average triangle edge count on the geodesic shortest path from altered vertices to the ROI
boundary. Note that six test cases are located at the origin of the coordinate system, as
indicated by the arrow.
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Figure 18.
Boxplot of the displacement distance of vertices outside the ROI that were altered during
refinement. Note that for the six cases without displacement a red line at zero is shown.
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Table 1

Summary of segmentation error types included in the predefined ROIs. Note that only major segmentation
problems in ROIs were taken into account.

Error location Frequency

cancer region 12

leak to high contrast region (e.g., contrast agent) 12

leak to airway branch & hilar region 5

leak to trachea and main bronchi 2
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