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a b s t r a c t

Augmented Reality is a promising paradigm for intraoperative assistance. Yet, apart from technical issues,

a major obstacle to its clinical application is the man–machine interaction. Visualization of unneces-

sary, obsolete or redundant information may cause confusion and distraction, reducing usefulness and

acceptance of the assistance system.

We propose a system capable of automatically filtering available information based on recognized

phases in the operating room. Our system offers a specific selection of available visualizations which

suit the surgeon’s needs best. The system was implemented for use in laparoscopic liver and gallbladder

surgery and evaluated in phantom experiments in conjunction with expert interviews.

1. Introduction

With advances in medical imaging and the increasing availabil-
ity of intraoperative sensors, there is more and more information
available to surgeons. High-resolution endoscopes, real-time track-
ing of instruments as well as instrument recognition via RFID
and image processing generate large amounts of information. The
downside of this development, however, is increased workload
for surgeons. The ensuing information overflow can easily be dis-
tractive and tiresome. In order to integrate and make use of the
additional information from different sources, assistance systems
with new user interfaces are needed. Augmented Reality (AR) has
emerged as a paradigm for this purpose. Yet, AR even with high
accuracy registration and advanced visualization metaphors alone
may prove insufficient to deal with huge quantities of data. Abun-
dant visualizations pose a risk because they distract surgeons from
the surgical field, especially since visualizations are commonly
overlaid on top of areas of interest. Context-aware visualizations,
on the other hand, provide visualizations just in time without
handicapping the surgeon. Such systems have a certain under-
standing of the situation, enabling them to automatically derive
the current information needs of the surgeon. This enables them
to filter the huge amount of available information and selectively
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display only what is currently relevant. For instance, it is only
necessary to display vital structures like nerves or blood ves-
sels when they are actually in danger of being harmed. Thus, the
system automatically adapts itself to the needs of the surgeon with-
out taking away focus from his actual task, the execution of the
surgery.

Based on concepts introduced in [1,2], we develop a context-
aware system for laparoscopic liver surgeries. The basic idea
is to monitor the progress of the surgery with sensors, e.g.
intraoperative data from medical devices in the operating room
(OR), positional information from tracking systems or analyzed
endoscope images. The current situation is then expressed in a
computational model using Description Logics and enriched with
background information from an ontology. This allows us to use
interpretation algorithms to recognize the current phase of the
operation. After that, it is possible to let the visualization adapt
itself automatically in accordance to the current context. This is
of special importance in laparoscopic liver surgery since the area
of interest contains numerous vital structures which should not
be harmed. Displaying all of them during the entire surgery would
not be helpful. It would rather overwhelm the surgeon and make
him disregard the visualizations after a while. Context-awareness,
on the other hand, allows the system to selectively display vital
structures just when needed. The visualizations, therefore, are
not distracting and the surgeon is more likely to pay attention
to them since they are a rather rare but important occurrence.
Similarly, navigational information about the position of tumors
and preoperatively collected image data, while highly important
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for patient outcome, is only useful during specific parts of the
surgery and should just be displayed in those cases.

We present the basic architecture of the system as well as
the algorithms we developed, additionally to results from exper-
iments on a phantom and in a realistic setup for laparoscopic
cholecystectomy using a pig liver in a surgical simulator. Our main
contributions are methods for ontology-based situation interpreta-
tion in the OR. We aim to show what context-awareness can add to
AR systems in medical applications such as laparoscopy and dental
implant surgery [3].

2. Context-aware and Augmented Reality systems in
surgery

AR systems have long been in focus of research activities. The
main issues revolve around finding ways to display visualizations
and to track real-world objects. A categorization and review of
current systems and research is presented by Nicolau et al. [4].
Endoscopic soft tissue surgery poses a special challenge since estab-
lished optical and electromagnetic tracking devices only deal with
rigid structures and are not readily able to track soft tissue deforma-
tions. To overcome these problems, a number of approaches have
emerged. Intraoperative image acquisition efforts with ultrasound,
MRI and CT have been undertaken as well as approaches using
endoscopes as sensors to track artificial or natural landmarks, as
reviewed by Baumhauer et al. [5] and Mirota et al. [6].

Those systems, in contrast to context-aware ones, are aimed
at improving image and registration quality as well as accu-
racy, especially under soft tissue conditions. Yet to actually bring
AR systems into the OR, improvements in accuracy and display
quality are fundamental, but not sufficient. New interfaces and
interaction techniques will still have to be developed. To handle
the increased workload, information flow and to manage com-
plex assistance functions, context-awareness is a very promising
paradigm. Apart from the intraoperative information filtering and
automatic selection of visualizations, context-awareness itself can
also support intraoperative decision making by comparing current
situations with previously recorded ones. In this way, context-
aware systems can intraoperatively provide information about how
other, possibly more experienced, surgeons have handled sim-
ilar situations. Context-awareness also helps in robotic surgery
by facilitating human–machine collaboration [7,8]. Furthermore,
instrument changes needed in upcoming phases can be predicted
to help staff members to prepare in time [9]. Estimations of the
surgery’s remaining duration can be used to plan anesthetizations.
Postoperatively, semi-automatic creation of reports and quality
assessment such as surgical skill evaluation [10,11] are possi-
ble.

Situation interpretation is a crucial part of context-aware sys-
tems since it allows a certain kind of understanding of the events
in the OR. For this purpose two main algorithmic approaches have
emerged. On the one hand, there are efforts to use machine learn-
ing techniques to interpret situations. Blum et al. extract several
features from endoscopic images like gradients, histograms and
scaled versions of the original image [12,13]. These feature vec-
tors are used to represent surgeries. Interpretation is done by using
statistical models, namely Hidden Markov Models (HMMs) and
Dynamic Time Warping. Lalys et al. use HMMs and Support Vec-
tor Machines to recognize surgical phases [14]. A combination of
Bayesian networks and HMMs is used in [15]. In a similar vein,
Rosen et al. employ discrete Markov models to model minimally
invasive surgeries [16].

On the other hand, there are efforts to use formal methods
such as ontologies to model medical background knowledge
in a machine readable fashion [17,18]. They can be directly

incorporated with knowledge representation techniques, which in
our case are Description Logics in OWL (Web Ontology Language)
[19,20]. Additionally, this approach improves safety since large
parts of the hypothesis and the underlying assumptions are
explicitly stated in a human readable fashion. This leads to easier
inspection and verification.

In contrast to existing systems, we aim to provide context-aware
AR assistance, with an emphasis on seamless integration in the
surgeon’s workflow. Adaption to the current conditions and pro-
cesses in the OR, without direct input from the surgeon, is key
to this aim. We follow a novel approach using generic knowledge
representation techniques, as offered by OWL, to convey general
information about abdominal surgeries. This allows us to adapt our
system more easily to different types of interventions. In contrast
to machine learning-based approaches, we need fewer training
samples. Pieces of information known to medical experts do not
need to be learned by using training samples. This is of special
importance in the medical field, where expert knowledge, from
literature and clinicians, is plentiful while training data is sparse
and hard to come by. Compared with the existing work in for-
mal description of surgeries, our emphasis lies in the real-time
analysis of incoming data and the reuse of our ontology and inter-
pretation algorithms in a Description Logic based framework. Our
goal is to develop a system which can be easily adjusted for differ-
ent laparoscopic surgeries. Furthermore we aim to realize the idea
of an information filter by intraoperatively controlling visualiza-
tions to limit informational overflow and minimize the time spent
configuring the system so that surgeons can fully focus on the inter-
vention itself. The technical idea is to mix formal approaches with
machine learning techniques to overcome limitations inherent to
both paradigms. Compared to our work in dental implant surgery
[3], the field of laparoscopy offers more diverse and complicated sit-
uations, as there are more instruments, anatomical structures and
surgical skills involved. This calls for more background knowledge
and an extended ontology.

3. Methods

Our methods focus on algorithms for situation interpretation
since they are vital for the reliable display of context-aware visual-
izations. The situation interpretation is based on the surgical events
currently happening in the OR and its aim is to recognize the surgi-
cal phase. For the purpose of this paper, we define a surgical event
to be a vector with three components: the instrument, the surgical
activity performed and the anatomical structures acted upon. For
instance, we consider lifting the greater omentum with an atrau-
matic grasper or cutting the gastrocolic ligament with a ligasure to
be single events. A surgical phase, as we define it, is a sequence of
events which are logically coupled and lead to a predefined, imme-
diate goal, such as mobilizing an organ or the resection of diseased
tissue. Situation interpretation and phase recognition are used syn-
onymously, since the result of the interpretation is the recognized
phase. The technical process for providing situation interpretation
services is based on knowledge-based techniques using subsym-
bolic input. It is divided into three individual steps. First, we collect
sensor data and convert the measurements in a logic-based rep-
resentation of the current scene using Description Logics. In the
current experimental setup, the sensor data consists of distance
measurements between the instrument and anatomical structures.
The resulting description is then interpreted using a rule-based
approach in order to recognize the current phase of the operation.
In dependence of this result, an appropriate visualization is chosen
and displayed in the final third step. These steps are detailed in the
following.
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3.1. Linking numerical measurements to ontological vocabulary

Handling of subsymbolic, numerical data within an ontologi-
cal framework is of particular importance in the intraoperative use
case since measurements from medical devices, tracking systems,
etc. are usually not available in symbolic form. In order to close
this semantic gap, we developed algorithms to convert subsymbolic
data into logical predicates.

First, we calculate a fuzzy description of the real-valued mea-
surement. In the case of distance measurements, we calculate the
membership values to fuzzy sets like “near”, “medium” and “far”.
They can be regarded as values of the linguistic variable “distance”.
This step can be performed by using different approaches. We
developed and compared three methods to learn the corresponding
membership functions from data samples. In the second step, the
measurements are converted into logical predicates. The member-
ship values are used to find the most fitting element in the ontology,
which is then assigned to the measurement. Finally, this informa-
tion is used to form a computational model of the current situation,
which is then interpreted to recognize the current phase of the
surgery. These three steps are discussed in the following.

In order to find the fuzzy sets, we first collect labeled training
samples. They consist of labels describing the values of the linguistic
variable along with numerical values. To compute the fuzzy sets, we
developed and evaluated three different methods: the evidence-
based approach, the Bayesian approach with Gaussians and the
Bayesian approach with Histograms.

3.1.1. Evidence-based approach
The evidence-based approach is motivated by Weisbrod [21].

Each training sample can be seen as proof that this particular value
belongs to the corresponding fuzzy set. In this way, information is
used positively, i.e. new observations enlarge the amount of real-
valued measurements which belong to a certain fuzzy set. The
membership functions for the fuzzy sets are represented as Gauss-
ian mixtures, normalized to the interval [0, 1]. For each sample
in the training set, a new Gaussian curve is added with a weight
of 1 and a mean equal to the value of the measurement. In this
way, the evidence for areas with a high density of observations is
highly elevated while outliers contribute only little to their respec-
tive regions. Given a training set T of real-valued measurements
m, assigned to the fuzzy set s, the membership value �s(x) for a
measurement x is computed as:

�s(x) = w
∑

m∈T

e−(1/2)((x−m)/�2)

where � is the standard deviation and w a normalization factor with

w−1 = max
x

∑

m∈T

e−(1/2)((x−m)/�2)

3.1.2. Bayesian approach with Gaussians or histograms
Both the other approaches are based on the idea that P(c|x), i.e.

the probability that predicate c holds, given a measurement x, can
be used as a measure of how strongly the measurement x belongs
to the fuzzy set corresponding to c. According to Bayes theorem,
P(c|x) can be computed as:

P(c|x) = P(x|c)P(c)

P(x)

P(x|c) and P(x) can be estimated from training samples. We
developed two different approaches to do this. In the Gaussian-
based method we assume a normal distribution and estimate the
corresponding parameters: mean and standard deviation. For the

histogram-based estimation we use histograms as an estimate of
the actual distribution. The resulting values are normalized to [0,
1], as conforms with the definition of fuzzy sets.

3.2. Conversion to logical predicates

In order to assign new measurements to their logical predi-
cate, we use a correspondence function. Given the current distance
between two objects, we find the fuzzy set with the greatest mem-
bership value and use the corresponding ontological relation to
denote the relationship between those objects. Given a set P of
predicates and equally named fuzzy sets the corresponding predi-
cate p for a measurement x is given by:

p = argmax
s∈P

�s(x)

3.3. Situation interpretation

Our situation representation is grounded in the OWL standard
of Description Logics. The idea in OWL is to distinguish between
background knowledge, stored in the terminological box (TBox)
and situational knowledge in the assertional box (ABox).

We developed a TBox representing knowledge from laparo-
scopic abdominal interventions. It consists of over 150 concepts,
like “instrument”, “diaphragm” and “common-bile-duct” on sev-
eral granularity levels and over 30 relations like “cut”, “grasp”
or “bloodflow-between”. The system has extensive background
knowledge about instruments, anatomical structures and surgical
activities as well as relations between them. We use definitions of
the domain and range of relations to denote the type of objects
between which the relation is valid. Therefore, the system for
instance knows that the relation “cut” only occurs between a
“sharp-instrument” and an “organ”. Using the well-defined set of
concepts and relations as a vocabulary, we describe the current
situation in the ABox, using relations computed from numerical
measurements. Due to restricted sensor data, the only rela-
tions computed on-line concern descriptions of distances (“near”,
“medium” and “far”). The actual situation interpretation is per-
formed on discretised sensor data using OWL-reasoning services
on the ABox and TBox. The idea is to use handcrafted rules to
describe phases and have them operate on an ABox as exem-
plified in Fig. 1. If the conditional term of the rule holds, a
certain surgical phase is assumed. Thanks to the availability of
reasoning services, the rules can be written in a general way,
making use of powerful OWL features like qualified cardinality
restrictions, classification and reflexive, irreflexive, symmetric, and
anti-symmetric properties. For instance, risky situations, can be
identified by looking for “sharp instruments”, “near”, “vitalstruc-
tures” in the current description of the situation in the ABox.
The exact nature of the rules depends on the underlying type of
surgery and on the phase to be recognized. Especially for standard-
ized procedures they can be constructed from literature and with
knowledge extraction techniques, e.g. interviews, directly from
experts.

Fig. 1. ABox description of a scene.
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Fig. 2. Visualizations for (a) directing the surgeon to the tumor, (b) showing the resection margin and (c) the resection line and (d) displaying vital structures currently at

risk.

3.4. Visualization

Depending on the recognized phase an appropriate visualization
is chosen. For the alignment of the endoscope toward the tar-
get structure we developed an intuitive visualization, displaying a
green rectangle at the edge of the screen, indicating the direction in
which to move the endoscope to see the tumor. For the treatment of
the tumor, its resection margin is displayed. Endangerment of vital
structures is conveyed by displaying a virtual overlay of the struc-
ture with its opaqueness increasing proportionally to the proximity
of the endangering instrument. Also, if the system assumes that the
liver is about to be resected, it displays the preoperatively planed
resection trajectory. All visualizations are shown in Fig. 2.

4. Evaluation

The evaluation is split into two parts. In the first part, we used
a silicon phantom of a single liver to evaluate the basic functions
of the system, giving a quantitative assessment of the phase recog-
nition rate. In the second part, we used a pig liver, stored in a box
trainer to perform a selected section of a cholecystectomy, using
context-aware visualizations. The second evaluation offers qual-
itative results of the applicability to real-world scenarios in the
OR. Both evaluations use slightly different sets of rules, which are
detailed in their respective sections. The evaluation as a whole was
conducted on a regular PC using Pellet [22] for logical reasoning
and Protege [23] as an OWL-editing software.

4.1. Phantom evaluation

The phantom experiments evaluate the situation interpretation
module and the visualizations. The experimental setup consisted
of a silicon liver phantom, an endoscope and laparoscopic instru-
ments. All entities were tracked using the Polaris optical tracking
system. For the purposes of the evaluation, soft tissue aspects of
the liver were not taken into consideration as all registration pro-
cesses were done rigidly. The AR visualizations were superimposed
on the endoscopic images and displayed using a standard moni-
tor. The aim of this evaluation is to get quantitative data about the
phase recognition rate by comparing the system’s classification to
a ground truth given by annotations. Furthermore, we aim to eval-
uate the plausibility of the learned fuzzy sets and get insight on the
usability of the visualizations.

4.1.1. Evaluation of the ontology-based situation interpretation
To evaluate the phase recognition rate, two data sets were

collected for training and evaluation purposes respectively. The
training set consists merely of distance information and the cor-
responding classifications to “near”, “medium” and “far”. The
evaluation set, on the other hand, contains semantic content like
information about the instrument, the treated structure and the
current surgical phase, in addition to the numerical values. For
the evaluation, the training set is used to compute the fuzzy sets.
The recognition rate is then only computed on the level of surgical
phases. The transition to the symbolic domain is just a means to an
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Fig. 3. Collection of samples.

end. Therefore, we treat the evaluation data set as a simulation of
intraoperative sensors which are fed into the system in real time.
We judge its performance based on the eventual result, the recog-
nized surgical phase. The steps necessary to achieve this are shown
below.

4.1.2. Situation interpretation
In this evaluation scenario, four phases are considered: “safe

situations”, “risky situations”, “treatments of diseased structures”
(e.g. tumors) and “search for target structures”. Phases can also
overlap in time. The phase “search for target structures” is rec-
ognized when the target structure, i.e. the liver, is not within the
endoscopes viewing frustum. This is calculated by knowing the
viewing frustum of the endoscope, as given by our calibration pro-
cess, and checking if the registered 3D model of the liver, as tracked
by Polaris, is inside of it. As a binary, symbolic property, it can be
directly handled in OWL, without any conversion from the subsym-
bolic to the symbolic domain. In this case the tumor is assumed to
be immobile, or at least that its movements are negligible in the
context of this assistance function. The performance of the system
degrades gracefully with this approach. If the position of the tumor
change only slightly the visualization will appear and disappear
when the tumor is close to the viewing frustum (instead of exactly
on the border), thus only slightly impeding the usefulness of the
visualization.

The phase “treatment of diseased structures” is characterized
by proximity of anatomical structures and appropriate instruments
such as tumors and scalpels. If any sharp instrument is near a vital
structure, e.g. a blood vessel, this structure is assumed to be endan-
gered and a “risky situation” is detected. All other situations are
considered to belong to the phase of “safe situations”. Due to the
taxonomy, all the possible cases are not represented explicitly. For
the recognition of “risky situations”, it is sufficient to look for “vital-
structures” “near” “sharp-instruments”. This encompasses all cases
with specific instruments, whether they are scissors or scalpels. An
example of the resulting ABox representation, is shown in Fig. 1.

Collection of training data. In order to collect training data, a sur-
geon performed tasks common to liver and gallbladder surgeries
on the phantom. The positions of the surgical instrument were
recorded using the NDI Polaris tracking system. The corresponding
annotation, i.e. the classification to “near”, “medium” and “far” was
announced verbally by the surgeon and input into the system by the

click of a button in the GUI of the recording software by an assistant.
All data samples collected from this moment on were considered to
have the same label until the surgeon announced a new one and the
assistant changed the settings accordingly. This method of on-line
annotation leads to noisy data. There is a short delay between the
announcement of the new label and the adjustment by the assis-
tant. Also, there are cases where the instrument briefly leaves the
intended distance range of the current label without the surgeon
announcing it. Both effects lead to smeared boundaries between
labels where similar values are recorded with different labels at dif-
ferent times. Therefore, the processing algorithms of this data must
be able to deal with noisy data. On the other hand, the collection
of data can be performed very quickly. In fact, the whole process
to record the annotated samples took less than 3 min, once the
experimental setup was ready. The 1244 resulting training samples,
consisting of tuples with numerical measurements, a timestamp
and the corresponding labels, were used for training purposes and
contained no semantic information about instruments, anatomical
structures or surgical phases, but merely (subsymbolic and sym-
bolic) distance information. An excerpt of this process is shown in
Fig. 3.

Collection of evaluation data. The evaluation set was collected
by having the same surgeon perform typical tasks found in
minimally-invasive liver surgeries using two optically tracked
instruments. This set, in contrast to the training set, consists of
tuples with numerical distances, annotated surgical phases, instru-
ments, anatomical structures and timestamps. The annotation was
done manually by a medical expert with our own software tool. It
contains occurrences of all phases considered, spread over 14,605
evaluation samples. The virtual phantom consisted of a liver with
several tumors and vital structures as shown in Fig. 3. Additionally,
the whole process was partitioned in four aforementioned phases.

Evaluation process. In order to get insights on the effectiveness
of our system, we used the data from the evaluation set, excluding
the information about the current phase, as input to our situation
interpretation system, which was trained using the training data.
Using timestamps, the recorded values were played back, in
real-time, and regarded as sensor results. At a rate of about 1 kHz,
the currently recognized phase was compared to the annotated
one. In this way, the system’s assumption about the current phase
was constantly checked against the ground truth given by the
annotation. The rate of phase recognitions is 2 Hz on average. This



179 
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Fig. 4. Learned membership values. 

allows us to consider real-time requirements of the system in the 
evaluation. Ifthe system eventually recognizes the phase correctly, 
but takes too long to do so, the period of false recognitions will be 
accurately recorded at a high temporal resolution (of 1kHZ) until 
the systems assessment again matches the ground truth. 

Plausibility of the frazy sets. For the evaluation, we collected 
1244 training samples in two repetitions of the procedure and 
used all tllree approaches to learn the corresponding fuzzy sets. 
The results are shown in Fig. 4. As can be seen, all three offer plau­
sible, yet differing results. The Basyian approach with Gaussians 
yields to clean membership values. This is due to the fact that 
the shape of the function is highly restricted; the only degrees 
of freedom to be defined by the training data are the parame­
ters for the Gaussians. On the other end of the spectrum lies the 
Bayesian approach with Histograms. Here, only few assumptions 
about the shape of the function are made. This allows for a greater 
flexibility but also increases the need for more data. Similarly, the 
evidence-based approach allows a high degree of flexibility, at the 
cost of higher requirements for training data. In comparison to 
the Bayesian approach with Histograms, the resulting function is 
smoother due to the underlying Gaussian curves. 

Recognition rate. For the evaluation, the evaluation samples were 
played back to the system, which was to determine the current 
phase. The system's assertion was periodically compared to the 
annotated phase. The recognition rate was computed as the ratio of 
the number of times in which the phase was recognized correctly 
and the total amount of checks made. The phase "searching for tar­
get structures" was omitted from the evaluation, as it does not rely 
on the fuzzy sets. It is activated whenever the target structure is out­
side of the endoscope's viewing frustum and behaved, according to 
the participants of the study,just as expected. Overall a recognition 
rate of over 93% using the evidence-based approach, 94% using the 
Bayesian approach with Gaussians and 97% with histograms was 
reached. 

4.1.3. Evaluation of the visualization 
To evaluate the visualization, the system was presented to four 

medical experts in the same experimental setup as used in the 
phantom evaluation shown in Fig. 2. After a brief demonstration, 
tlley used the system on their own. Their reactions were recorded 
and they were interviewed afterwards. The feedback concerning 
the alignment of the endoscope toward the target structure was 
very favorable. The visualization is clear and concise without taking 
away focus from the clinician or disturbing the view on the patient. 
The display ofthe resection margin was also received well. It was 
suggested to add a better visualization of possible overlaps between 
vital structures and the resection margin. Particularly emphasized 
was the usefulness of vital structures being displayed only once 
they are actually endangered, since it lowers the informational 
load on the surgeon. As a possible improvement, it was suggested 
to augment the cutting trajectory with the corresponding cr -slices. 

Overall, the visualizations in conjunctions with their context -aware 
management were considered useful in the proposed 
setting. 

4.2. Laparoscopic cholecystectomy on a pig liver 

In contrast to the phantom evaluation, the focus of this part 
emphasizes the medical merits of the system. We used a pig liver 
to perform a selected section of a cholecystectomy using context­
aware visualization to assist the process. The goal was to visualize 
risk structures in the triangle of Calot such as the common hepatic 
duct and the common bile duct. After the experiment, we inter­
viewed the surgeon. 

Experimental set11p. For the trial, we used the following exper­
imental setup. A box trainer by Karl Storz (Tuttlingen) was fitted 
with a special underlayment of acrylic glass because the original, 
metallic one causes artifacts in cr scans. Furthermore, we installed 
a common earth electrode which was connected to the laparoscopic 
tower Fig. S(a).As preparation of the liver, the hepatoduodenalliga­
ment was dissected proximally to the duodenum. Contrast medium 
diluted with water (1 :1) was injected in the common bile tract 
Then the common bile duct was ligated and the liver was put over 
the earth electrode Fig. S(b ). The caudal part of the liver containing 
the gallbladder was exposed, just as in a real surgery. Subsequently 
tile fundus of the gallbladder was sutured with the soft part of the 
cover. In doing so, a constant tension was created. Therefore, the 
organ was largely immobile throughout this procedure. After that, 
a cr scan was made ofthe Liver in the box trainer Fig. S(c). After­
wards the liver, the gallbladder with the cystic duct, the common 
bile duct and the common hepatic duct were segmented with MITK 
(24). A Polaris tracker was affixed on the box trainer and registered 
using rigid registration methods. 

Situation interpretation and assistance functions. For this evalua­
tion, we defined a different set of phases and assistance functions. 
The main goal was to address the special challenges of the dissec­
tion of the cystic duct, namely to avoid injuries to vital structures. 
Firstly, the cystic duct may only be cut, if it was clipped beforehand. 
Otherwise, severe complications can occur. Secondly, the hepatic 
duct must not be cut under any circumstances. 

The first phase to be recognized is therefore the endangerment 
of the hepatic duct by a sharp instrument. It is recognized by check­
ing ifthe relation "near" holds between the respective instances in 
tile ABox. For the cystic duct, we introduced a new Boolean attribute 
"clipped" which is set to true, if a clipping action was observed 
at this organ. We can differentiate between the phase "safe situa­
tions" when a sharp instrument is near a clipped cystic duct and 
"risky situations" when a sharp instrument is near an unclipped 
one. In the later case a warning is issued by displaying an AR over­
lay on the vital structure. For the recognition of clipping, we use a 
simple heuristic: a clipping action is assumed, if a suitable instru­
ment is observed near a clipable anatomical structure. Since we do 
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Fig. 5. (a) Underlayment and a common earth, (b) inserted pig liver, (c) CT scanning of the box trainer, and (d) execution of the experiment.

Fig. 6. (a) Unaugmented view on the liver, (b) display of the gallbladder, (c) display of risk structures, and (d) visualization of both structures.
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not account for soft tissue deformation, all distance measurements
rely on the positions defined by the preoperative CT scans and rigid
registrations of the box trainer and the instruments. This is justi-
fied by the fixation of the organ using a suture, as described in the
experimental setup. The visualizations are shown in Fig. 6. Note
that a left and right hepatic duct with early separation are present
and the cystic duct inserts in the right hepatic duct as a variant to
normal anatomy.

Execution of the surgical procedure. An endoscope, tracked using
Polaris, was inserted in the box trainer. With inserted scissors, we
initially approached the triangle of Calot to find the location of
the risk structures such as the common hepatic duct, the common
bile duct and the structure of interest, the cystic duct. Consider-
ing the visualization, we dissected the cystic duct. By approaching
the scissor to the unclipped cystic duct a warning visualization
was displayed. Subsequently the scissors were exchanged with the
clip. The clip was moved near to the common hepatic duct which
depicts a potential risk situation so that the common hepatic duct
was visualized. Then the clip was exchanged for the scissors. They
were brought closer to the clipped cystic duct which is not consid-
ered risky and therefore was not visualized. The execution of the
procedure is illustrated in Fig. 5(d).

Interview. According to the interview conducted after the trial,
our system helped to dissect the triangle of Calot quickly and
safely, without damaging the common hepatic duct or the com-
mon bile duct. The context-aware visualization was described as a
very useful tool to support the surgeon by detecting life threat-
ening situations during the operation. Also mentioned was the
advantage of the explicit knowledge representation so that sur-
geons can understand and anticipate the system behavior and thus
put more trust in it. The interview confirmed that the AR visual-
izations help with perception of depth, even in their simple form.
Suggestions of photo-realistic rendering additions such as real-
istic shadows or lighting effects were dismissed, as the simple
visualizations add less visual complexity to the scene. The place-
ments of the virtual overlays were still regarded as satisfactory
although they only relied on CT-Data and rigid tracking without
compensation for soft tissue movements. The visualizations were
considered as intuitive, with their meaning and intent easily com-
prehensible. Overall, it was confirmed that the considered section
of the surgery can be performed faster and easier, compared to
an execution without assistance. However, as an improvement,
it was suggested to reduce the opaqueness of the visualization
of risk structures because otherwise visualizations may cover the
underlying anatomy completely and thus can complicate surgical
evaluation. Also there was a short, yet noticeable delay in the dis-
play of the endoscopic images as the system first had to process and
augment them. This was somewhat discomforting for the surgeons
used to a faster, almost instant display of the images. But overall,
the delay was still considered acceptable.

5. Discussion

The evaluation showed the feasibility and use of ontology-
based situation interpretation for laparoscopy in a clinical scenario.
With a phase recognition rate of over 93%, the recognition process
showed satisfactory results in the phantom experiments. Although
there is some information loss involved, the discretized computa-
tional model in the ABox leads to a much clearer representation of
the situation in the OR and allows for the use of logical inference
mechanism and discrete reasoning over real-valued data. Most
false recognitions occurred for distances that fall into the bound-
ary between two sets, especially between “near” and “medium”.
In these cases, the correct predicate was not always chosen which
ultimately led to false recognitions. This problem can be solved by

adding an additional set between “near” and “medium” to better
capture the transition. Other false recognitions occurred when an
appropriate instrument was near a tumor just by chance, without
the surgeon actually doing any work on the diseased structure. The
system then falsely assumed the structure was being worked on.
Future work will include Case Based Reasoning to capture such
variations. Due to the nature of the errors, the system is suitably
accurate, in the confines of the experimental setup. As for the differ-
ences between the three approaches, it can be said that the Bayesian
approach with Histograms and the evidence-based approach have
the distinct advantage of being able to approximate any distribu-
tion. However, they also require more training samples to restrict
the numerous degrees of freedom. The Bayesian approach with
Gaussians makes assumptions about the underlying distribution,
therefore limiting the degrees of freedom as well as its flexibility
at the same time. The process to generate training samples can be
done in a matter of minutes (less than 3 min in our evaluation) and
only takes negligible amounts of disc space (37 kB for the 1244 sam-
ples used in the presented evaluation). Therefore, it is feasible to
record such samples for each surgeon and customize the system
individually.

The membership values are intuitive representations of their
respective lingual concepts. As described in [21], the membership
values can be regarded as belief values, denoting the degree to
which classifications can be trusted. Based on the observed sam-
ples, high values for a given measurement x mark high confidence
that x actually belongs to the fuzzy set at hand. Low values mean
that there is no or little reason to believe so. It has to be noted that
this is not equivalent to the statement that x does not belong to
the set. It rather states that the system has not enough information
to make the distinction. This behavior of the algorithm is desirable
since it allows for safe classifications with a high degree of confi-
dence. The system can also be implemented in a way that refuses
to map measurements to predicates if the belief values are too low.
This event occurs if the given value falls in a range which is not
sufficiently represented in the training set.

Surgeons found the visualizations to be sufficiently clear as not
to distract them from their work. Due to the context-awareness,
visualizations only appear when needed and are inactive most
of the time. This allows the surgeon to operate freely, while still
receiving assistance when necessary.

In this work, we only considered phases which can be recog-
nized using distance measurements. Future work will focus on
expanding the system to use further, more sophisticated sensors.
Integration of image processing algorithms to analyze endoscope
images in order to recognize instruments or events like bleedings is
planned, as well as the integration of the status of surgical devices,
e.g. Thermoflator or Endomat. Also preoperative measurements
from medical imaging devices are to be considered and integrated
into the system. With the addition of new sensors, more phases
can be recognized and further assistance can be granted to the sur-
geon. While the basic structure and the underlying algorithms will
stay the same, the system’s usefulness and ability to understand
and assist in more complex situations will grow. The goal is to use
all information that is available, while relaying only a minimal, yet
relevant and sufficient fraction of it to the surgeon.

In the case of the cholecystectomy using the pig liver, the organ
was fixed and sewed to the top of the box trainer and therefore
widely immobile. In doing so, we were able to largely avoid prob-
lems introduced by soft tissue movement. While such operating
techniques are not always an option, the evaluation shows the
possibility of obtaining enough situational information to provide
context-aware assistance, such as approximate distances, even
with the soft tissue deformation problem still being unsolved. For
initial registrations of preoperative images from CT or MRI, we
seek to employ our in-house developed methods, as described in
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[25,26]. These types of algorithms will be used to generate input for
the situation interpretation in various interventions, even when
the soft tissue problem cannot be dealt with using specialized
operating techniques. Furthermore, by using soft computing meth-
ods, namely fuzzy logics, to analyze the incoming data, we have
achieved enough robustness to produce useable result even with
distorted distance information provided by imperfect soft tissue
tracking. In addition to registering techniques, methods described
in [27] can be used to identify instruments and surgical activities
via image analysis algorithms.

6. Conclusion

We presented a system which offers context-aware AR
visualization for laparoscopic surgeries. By mapping numerical
measurement to logical predicates, we created a computational
model of the current scene, described as an ABox in OWL. The
model was interpreted in real-time to recognize certain phases
which occur during operations. The system was evaluated both in
a phantom experiment and in a cholecystectomy using a pig liver
in a surgical simulator, showing an overall recognition rate of over
93%. However, the training and evaluation data originated from the
same person. It would be interesting to evaluate the differences
between several surgeons to see whether customized fuzzy sets
are necessary for individual surgeons or if it is possible to use a
single representation for everyone. Also, the surgical phases con-
sidered in this study are rather simple and lend themselves to be
expressed using rules. Further research will focus on more complex
phases and extensions to our systems necessary to accommodate
them.

By combining learning mechanisms and rule-based systems, the
problem was solved with limited need for labeled training samples
and simple rules. Due to machine learning techniques, the diffi-
culty of extracting tacit knowledge from experts concerning the
interpretation and classification of real-valued measurements was
avoided.

Our context-aware system acts as an intelligent assistant with
a certain kind of understanding for the situation and the medi-
cal background of the procedure. The surgeon should no longer be
obliged to take care of the AR system but rather the system adapts
its behavior to him. This high degree of integration into existing
workflows allows surgeons to focus on the intervention itself and
less on the management of the assistance system. We believe that
this is an important step in raising acceptance for AR systems and
ultimately bringing them into clinical application.
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