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Abstract
Radiation dose has raised significant concerns to patients and operators in modern x-ray computed
tomography (CT) examinations. A simple and cost-effective means to perform a low-dose CT
scan is to lower the milliampere-seconds (mAs) as low as reasonably achievable in data
acquisition. However, the associated image quality with lower-mAs scans (or low-dose scans) will
be unavoidably degraded due to the excessive data noise, if no adequate noise control is applied
during image reconstruction. For image reconstruction with low-dose scans, sinogram restoration
algorithms based on modeling the noise properties of measurement can produce an image with
noise-induced artifact suppression, but they often suffer noticeable resolution loss. As an
alternative method, the noise-reduction algorithms via edge-preserving image filtering can yield
an image without noticeable resolution loss, but they often do not completely eliminate the noise-
induced artifacts. With above observations, in this paper, we present a sinogram restoration
induced non-local means (SR-NLM) image filtering algorithm to retain the CT image quality by
fully considering the advantages of the sinogram restoration and image filtering algorithms in low-
dose image reconstruction. Extensive experimental results show that the present SR-NLM
algorithm outperforms the existing methods in terms of visual inspection, noise reduction,
contrast-to-ratio measure, noise-resolution tradeoff and receiver operating characteristic (ROC)
curves.

Keywords
CT; low-dose; sinogram restoration; non-local means; image filtering

1. Introduction
Radiation dose has raised significant concerns to patients and operators in modern x-ray
computed tomography (CT) examinations and minimizing radiation dose is one of the major
endeavors in CT fields [1, 2]. A simple and cost-effective means to perform a low-dose CT
scan is to lower the milliampere-seconds (mAs) as low as reasonably achievable in data
acquisition. However, the associated image quality with lower-mAs scans (or low-dose
scans) will be unavoidably degraded due to the excessive data noise, if no adequate noise
control is applied during image reconstruction [3, 4].
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Up to now, for radiation dose reduction in CT examinations, various techniques including
optimized scan protocols and auto-mAs control have been reported [5, 6], and many image
reconstruction algorithms with noise-induced artifacts suppression have been explored [7–
9]. Extensive studies have shown that for noisy data from low-dose scan, statistical iterative
reconstruction (SIR) methods, by modeling the noise properties of the measurements and
imposing adequate regularization within image reconstruction, can achieve a performance
superior to other existing methods in terms of noise reduction and noise-resolution tradeoff
[10–14]. However, a critical problem in SIR is the high computational burden due to the
multiple re-projection and back-projection operations during image iterative reconstruction.
To overcome this, restoring the ideal sinogram data from acquired noisy one and
reconstructing the CT image from the estimated ideal sinogram data is an interesting
alternative strategy with computational efficiency and noise-induced artifacts suppression
[15–20]. One typical example is the penalized weighted least-squares (PWLS) algorithm
[19, 21, 22], which can be derived from the Gaussian statistics of original sinogram data.
However, the sinogram restoration algorithms often suffer noticeable resolution loss
especially in the case of constant noise variance over all the sinogram data [21]. In an
approach different from above mentioned SIR and sinogram restoration algorithms, many
sophisticated linear/nonlinear noise-reduction algorithms via edge-preserving image filtering
have also been investigated for low-dose CT image noise reduction without remarkable
resolution loss [23–25]. Meanwhile, the noise in low-dose CT image is nonstationary and its
distribution is usually unknown, which indicates that designing an edge-preserving image
filter is a difficult task. Recently, a previous normal-dose scan induced non-local means
(ndiNLM) image filter was proposed for addressing the problem of a conventional edge-
preserving image filter by exploring the redundancy information from the reference image
under the non-local means criteria [26].

In this study, inspired with the ndiNLM algorithm in low-dose CT image restoration [26],
we present a sinogram restoration induced non-local means (SR-NLM) image filtering
algorithm to retain the image quality by taking advantage of both the sinogram restoration
and non-local means image filtering algorithms in low-dose CT image reconstruction.
Specifically, for the present SR-NLM algorithm, the penalized-weighted least-squares (KL-
PWLS) algorithm in the Karhunen-Loéve (KL) domain [19] was used for estimating the
ideal sinogram from the low-dose noisy one and the non-local weights in weighted average
operation were calculated according to the FBP image reconstructed from the KL-PWLS
estimated sinogram. Qualitative and quantitative evaluations were carried out on the
simulation and patient data in terms of cross profile, noise reduction, contrast-to-ratio
measure, noise-resolution tradeoff and receiver operating characteristic (ROC) curves.

The remaining part of this paper is organized as follows. In section 2, the KL-PWLS
algorithm for CT sinogram restoration, non-local means (NLM) and ndiNLM algorithms for
image filtering are presented, respectively, and then the proposed SR-NLM image filtering
algorithm is described in details. In section 3, experimental results are reported. Finally, the
discussion and conclusion are given in sections 4 and 5, respectively.

2. Materials and Methods
2.1. Overview of the KL-PWLS algorithm for CT sinogram restoration

Wang, et al proposed the KL-PWLS algorithm to de-correlate data signals along nearby
projection views for CT sinogram restoration by employing the KL transform [19]. In this
study, the adapted KL transform with dimension 3×3 was first applied to account for the
correlative information of continuous data sampling along nearby views of the sinogram
data. Let y̑ and y denote the KL transformed components and the corresponding original
sinogram data in the spatial domain. Then, in the KL domain, the PWLS criterion can be
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used to estimate the l-th KL component p̑l of ideal sinogram data from the l-th KL
component y̑l of original sinogram data by minimizing the following objective function [19]:

(1)

where Σ̑l is the diagonal variance matrix and can be estimated from the variance  of the
original sinogram data yi,k at each bin i and view k [19]. The scalar β is a hyper-parameter,
dl is the eigenvalue of the l-th KL basic vector, and Ȓ(p̑l) is the penalty term. Based on our
previous analyses [27, 28], the original sinogram data y has a unique property which can be
expressed by a relationship between the sample mean and variance:

(2)

where Ii0 is the incident x-ray intensity along the projection path i,  is the variance of the
electronic background noise, and ȳi,k is the sample mean of yi,k estimated by neighborhood

averaging with a 3×3 window in this study. In modern CT systems, the parameters Ii0 and 
can be measured as part of the standard routine calibration operation [27]. In addition, the
penalty term Ȓ(p̑l) can be defined as [19]

(3)

where Si indicates the two nearest neighbors of the i-th pixel in the KL domain along the 1-
D bin direction. In this study, the parameter w̑(i, j) is equal to 1 for the two neighbors.

For minimizing the PWLS objective function (1), a modified iterative Gauss-Seidel (GS)
update algorithm can be used in the KL domain [19,29]. After all the projection views have
been treated by the KL-PWLS strategy, the CT image can be reconstructed by using the FBP
algorithm from the estimated sinogram data.

2.2. Overview of the non-local means algorithm
The non-local means (NLM) algorithm was originally proposed by Buades et al [30] for
image de-noising, which has been successfully applied to medical image restoration such as
low-dose CT image restoration [26] and magnetic resonance image restoration [31].
Mathematically, the discrete version of their NLM algorithm can be expressed as follows:
Let D be a discrete grid of pixels and μ={μi | i ∈ D} be a noisy image. The restored intensity
NLM(μi) at the pixel i by the NLM algorithm is the weighted average of all the pixel
intensities in the image μ and can be expressed as follows

(4)

where μj is the original image intensity at the pixel j and w(i, j) is the weight assigned to μj
in the intensity restoration at the pixel i. The weight w(i, j) depends on the similarity
between the pixels i and j, and satisfies the conditions of 0 ≤ w(i, j) ≤ 1 and Σj∈D w(i, j) =1,
which can be expressed as follows
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(5)

where Z(i) is a normalizing factor, i.e., . The terms Vi
and Vj denote two local similarity neighborhoods (named patch-windows) centered at the
pixels i and j, respectively. The term μ(Vi):={μk, k ∈ Vi} denotes the vector of
neighborhood image intensity restricted in the patch-window Vi. The notation ||•||2,a denotes
a Gaussian-weighted Euclidean distance metric between two similarity patch-windows,
where a represents the standard deviation of Gaussian function. The parameter h is a
smoothing factor controlling the decay of the exponential function in equation (5). In the
implementation, to reduce the computational burden, the search-window is often confined to
an appropriate non-local neighborhood Ni (< D) (termed the search-window) centered at the
pixel i [26].

2.3. Overview of the ndiNLM algorithm
Since a normal-dose CT image scanned previously may be available in some clinical
applications such as CT perfusion imaging and CT angiography, the previous normal-dose
scan can provide a reference image to construct more reasonable non-local weights than
those used in the original NLM algorithm for low-dose CT image restoration. With this
observation, the ndiNLM algorithm was proposed recently by our group [26], which can be
expressed as follows

(6)

(7)

where  is the roughly registered previous normal-dose image aligned with the low-dose

objective image μld.  is the normalizing factor.
The subsets Vi and Ṽj̃ denote two similarity patch-windows centered at the pixel i in the

image μld and at the pixel j̃ in the reference image , respectively. Ñi represents the

search-window centered at the pixel i in the reference image .

2.4. Description of the SR-NLM algorithm for low-dose CT image filtering
The proposed sinogram restoration induced non-local means (SR-NLM) algorithm adapts
the ndiNLM algorithm to exploit more reasonable similarity information in the FBP image
reconstructed from the KL-PWLS restored low-dose sinogram data, instead of the FBP
image reconstructed from the original low-dose sinogram data. Specifically, the SR-NLM

algorithm contains four major steps: (a) direct FBP image reconstruction ( ) from the
original low-dose sinogram data; (b) sinogram restoration using the KL-PWLS algorithm

and FBP image reconstruction ( ) from the KL-PWLS restored sinogram data; (c)

non-local weights construction using the images  and ; and (d) non-local
weighted average using the calculated non-local means weights. In the following
subsections, we describe the steps (c) and (d) in detail.
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2.4.1 Non-local weights construction—Due to the suppressed noise and artifacts in

the image , see figure 2(b), non-local weights can be better calculated from the

image , instead of the low-dose image  itself, to improve the non-local
weighted average. Hence, similar to the form in equation (7), the proposed non-local
weights can be written as:

(8)

where  is the normalizing factor. The
subsets Vi and V̂ĵ denote two similarity patch-windows centered at the pixel i in the image

 and at the pixel ĵ in the image , respectively. N̂i represents the search-window

centered at the pixel i in the image .

2.4.2 Non-local weighted average—After the construction of non-local weight ŵ(i, ĵ)
according to (8), the present SR-NLM image filtering algorithm can be executed via non-
local weighted average operation as follows

(9)

2.5. Parameter selections in the SR-NLM algorithm
For the present SR-NLM algorithm for low-dose CT image restoration, four parameters will
be determined, i.e., the sizes of the search- and patch- windows, i.e., N̂i, Vi and V̂ĵ, the value
of the smoothing parameter h, and the value of the penalty parameter β for the KL-PWLS
sinogram restoration.

2.5.1 Selection of the search- and patch- windows—In this study, through extensive
experiments by quantitative measures and visual inspection with comparison to the ideal
phantom or normal-dose image, we found that a 21×21 search-window N̂i is adequate for
effective noise-induced artifact suppression while retaining computational efficiency. In the
implementation, the similarity of two patch-windows was measured by the conventional
Euclidean distance and its effectiveness with a 5×5 similarity patch-window (Vi and V̂ĵ) has
been fully evaluated in the experiments.

2.5.2 Selection of the smoothing parameter—Generally, the smoothing parameter h
in equation (5) is a function of the standard deviation σ of the image noise, and h2 =ασ2 may
be a good choice where α is a free scalar parameter. It is known that the noise distribution of
the low-dose CT image is not stationary and usually unknown, and determining the standard
deviation σ of the low-dose images is not a trivial task. Meanwhile, for the SR-NLM

algorithm, because the noise and artifacts in the image  have been significantly

suppressed,  as a reference image can be used to estimate the noise level of the

image . Thus, the smoothing parameter h can be determined with h2 = 2τσ̄2 |N̂i|

wherein σ̄ denotes the standard deviation of the image  and is estimated by using the
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reference image . |N̂i| denotes the size of the search-window N̂i. The parameter τ is a
scale factor.

2.5.3 Selection of the penalty parameter—For the KL-PWLS algorithm, the penalty
parameter β in equation (1) controls the relative contributions of the two terms, i.e., the data-
fidelity term and the penalty term. Generally, the penalty parameter β can be determined
through an empirical, subjective, and time consuming trial and error process [32]. In this
study, extensive experiments illustrated that the value of β within the range from 100 to
1000 was proper for both the KL-PWLS and SR-NLM algorithms.

Moreover, we adapted the NLM algorithm in equation (6) with a modification on its
nonlocal weights, i.e., h2 = 2τσ2 |Ni|, to consider the size of the search-window centered at

pixel i. The standard deviation σ of the image  was estimated via a robust median
estimator [33]. Through extensive experiments, we found that the sizes of search- and patch-
windows with 21×21 and 5 ×5 were also proper for the original NLM algorithm. In addition,
the scale factor τ for the NLM and SR-NLM algorithm was determined by a trial-and-error
fashion for visually appealing results in comparison to the ideal phantom or normal-dose
image.

3. Results
In this section, we evaluate the present SR-NLM algorithm for low-dose CT image filtering
using both computer simulations and patient data.

3.1. Computer simulations
Computer simulations were performed on three digital phantoms as shown in figure 1, i.e., a
modified 2D clock phantom [34], a slice of XCAT phantom [35] and a 2D modified Shepp-
logan phantom [19]. The modified clock phantom consists of a circular water background
with the diameter of 28.0 cm and eight circular inserts with varying contrast (C1: +30%, C2:
−7%, C3: −15%, C4: +85%, C5: −30%, C6: +7%, C7: +15%, and C8: −85%). Each insert
center with the diameter of 2.8 cm is located 9.0 cm from the center of the field of view
(FOV). The slice of the XCAT phantom with human anatomies with a tumor lesion (contrast
of +15%) was used for visual evaluation of anatomy structures. The modified Shepp-logan
phantom, used for the receiver operating characteristic (ROC) study, contains a low-contrast
small lesion as indicated by the arrow in figure 2(c). The density of the lesion is 1.5% above
the background density and the radius of the lesion is 3.0 mm. We chose a geometry that
was representative for a mono-energetic fan-beam CT scanner setup, and used a circular
orbit to acquire 1160 views over 2π. The number of channels per view was 672 and the
detector cell spacing was 1.407 mm. The detector arrays were on an arc concentric to the x-
ray source with a distance of 1040.0 mm. The distance from the rotation center to the x-ray
source was 570.0 mm. All the reconstructed images were represented by 512×512 array size
with 0.625 mm pixel size. We obtained each projection datum along a ray through the
phantom based on the known densities and intersection lengths of the ray with the geometric
shapes of the objects in the phantom. Similar to the work of La Rivière et al [20], after the
noise-free sinogram data ŷ were calculated, the noisy transmission measurement I were
generated according to the statistical model of pre-logarithm projection data and can be
described as follows

(10)
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where I0 is the incident x-ray intensity and  is the electronic background noise variance. In

the simulations, I0 and  for the clock phantom were set to be 5.0×104 and 11.0,

respectively; I0 and  for the XCAT phantom were set to be 1.0×105 and 11.0, respectively;

and I0 and  for the Shepp-logan phantom were set to be 2.0×105 and 11.0, respectively.
Finally, the noisy sinogram data y were calculated by performing the logarithm
transformation on the transmission data I.

3.2. Clock phantom study
The images of the clock phantom reconstructed by four different methods are shown in
figure 2. Figure 2(a) shows the conventional FBP image with ramp filter reconstructed from
the original sinogram data. Serious noise and artifacts can be observed. Figure 2(b) shows
the standard FBP image reconstructed from the KL-PWLS restored sinogram data with β =
400. We can see that the noise and artifacts have been significantly suppressed, but the
resolution of image is noticeably lost as comparison with the FBP image in figure 2(a).
Figure 2(c) shows the FBP image restored by the original NLM algorithm with τ =5.6×10−3.
It can be seen that the artifacts still exist and some artifacts around the high-attenuated
region (i.e., ROI C4) are slightly enhanced due to the nature of NLM algorithm for structure
preserving. The result from the SR-NLM algorithm with β =400, τ =1.4×10−3 is shown in
figure 2(d). We notice that the present SR-NLM algorithm achieves noticeable gains over
the other two algorithms in terms of both artifacts suppression and edge preservation. To
further illustrate the gains of the present SR-NLM algorithm, zoomed images of eight ROIs
(region of interest), marked by the symbol Ci (i=1,2,…,8) in figure 1(a). Figure 3 draws the
horizontal profiles through the center of both bone insert (C4) and the dark insert (C5) in the
reconstructed images corresponding to figure 2. It can be observed that the present SR-NLM
algorithm produces a closer profile to the true one especially in the edge region as indicated
by an arrow in figure 3. The profile comparisons further reveal that higher low-contrast
detestability and noticeable edge-preserving can be achieved by the present SR-NLM
algorithm as comparison with other two algorithms.

3.2.1 Noise reduction—In order to evaluate the performance of the present SR-NLM in a
more quantitative manner, the peak signal-to-noise ratio (PSNR) and normalized mean
square error (NMSE) merits were used in this study. They are defined as:

(11)

(12)

where μ(k) represents the intensity value at the pixel k in the image μ, μphantom (k)
represents the intensity value at the pixel k in the ideal phantom image, and K denotes the
number of image pixels. max(μphantom ) represents the maximum intensity value of the ideal
phantom image. Table 1 shows the PSNRs and NMSEs of the reconstructed images by four
different algorithms. It can be seen that the gains from the SR-NLM algorithm are noticeable
compared to those from the other three algorithms in terms of the PSNR and NMSE
measures. In other words, the SR-NLM algorithm can yield higher noise reduction than the
other three algorithms in low-dose CT image filtering.
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3.2.2 Contrast-to-noise ratio measure—Since a low-contrast region is of interest in
the CT imaging, we selected two ROIs indicated by the boxes (named ROI 1 and ROI 2) in
figure 1(a) for the calculation of the contrast-to-noise ratio (CNR). The CNR is defined as:

(14)

where μROI is the mean of the pixels inside the ROI, and μBG is the mean of the pixels in the
background region. The terms σROI and σBG are the standard deviations of the pixel values
inside the ROI and the background, respectively. In this study, the size of each ROI was set
to be 20 × 20. Table 2 shows the CNRs of the reconstructed images by four different
methods, respectively. It can be seen that for the high-contrast region of ROI 1, the
difference of CNRs from four algorithms is not obvious, while for the low-contrast region of
ROI 2, the gains from the SR-NLM algorithm are noticeable compared to the other three
algorithms.

3.2.3 Image-similarity metric—To assess the similarity between the reconstructed and
original images, the universal quality index (UQI) was used in our study [36]. Given the
aligned ROI within the reconstructed and original images, the associative mean, variance
and covariance over the ROI can be calculated as:

(15)

(16)

where M denotes the number of pixels in the ROI. The UQI can be written as:

(17)

where μ and μphantom denote the reconstructed and ideal phantom images. The UQI value
ranges between 0 and 1 and it more closer to 1 indicates the more similarity between the
reconstructed and ideal phantom images. Figure 4 shows the UQI values of eight regions
indicated by the squares with the symbol Ci (i=1,2,…,8) in figure 1(a) from the
reconstructed images by four different algorithms. It can be seen that the gains from the SR-
NLM algorithm are noticeable compared to those from the other three algorithms in terms of
the UQI measure in eight regions.

3.2.4. Noise-resolution tradeoff—In order to evaluate the resolution of the
reconstructed images, the noise-resolution tradeoff was studied in this study. In the
calculation, the image resolution was analyzed by the edge spread function (ESF) along the
edge of the inserts (C1 and C4) as indicated by two lines in figure 1(a). Assuming that the
broadening kernel of the central horizontal profile at edge is a Gaussian function with
standard deviation σb, the ESF can be described by an error function (erf) parameterized by
σb. After fitting the horizontal profile to the error function, the parameter σb can be obtained.
Finally, we used σb to calculate the full-width at half-maximum (FWHM), which reflects the
resolution of reconstructed image. The noise level of reconstructed image was characterized
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by the standard deviation of the uniform regions with the size of 20 × 20 in the background
near the inserts C1 and C4.

For the SR-NLM algorithm, through varying the penalty parameter β of the KL-PWLS
algorithm from 100 to 1000 under the scalar parameter fixed with τ =1.5×10−3, we obtained
the associated noise-resolution tradeoff curves as shown in figure 5(a) and (c). It can be seen
that the resolution of the insert C4 from the SR-NLM algorithm is robust for the sinogram
smoothed strength of the KL-PWLS algorithm (corresponding to the value of β), while the
resolution of the insert C1 from the SR-NLM algorithm decreases as the sinogram smoothed
strength of the KL-PWLS algorithm increases. In addition, after selecting a standard
deviation level, the SR-NLM algorithm can achieve better image resolution than the KL-
PWLS algorithm. The results further demonstrate that the performance of the SR-NLM
algorithm does not heavily depend on the smoothing strength of the KL-PWLS algorithm in
terms of noise-resolution measures. On the other hand, by varying the scalar parameter τ
from 5 × 10−4 to 1×10−2 for the SR-NLM algorithm under the penalty parameter fixed with
β = 200, we obtained the associated noise-resolution curves as shown in figure 5(b) and (d).
As a comparison, the noise-resolution curve of the NLM algorithm with the varying scalar
parameter τ from 1×10−3 to 5 ×10−2 was included. The results demonstrate that two
algorithms have similar curve shape and the present SR-NLM algorithm yields a slightly
better performance than the NLM algorithm in the high contrast region. But, it is worth to
note that the resolutions of the inserts C1 and C4 from the SR-NLM algorithm are more
sensitive to the parameter τ than the parameter β. In other words, the NLM and SR-NLM
method have similar performance at the lower noise level in low-dose CT image restoration.

3.3 XCAT phantom study
Figure 6(a) shows the FBP image with ramp filter reconstructed from the original low-dose
sinogram data. Figure 6(b) shows the FBP image reconstructed from the KL-PWLS restored
sinogram data with β = 200. It can be seen that the noise and artifacts have been significantly
suppressed while the detailed structure information is noticeably lost in comparison with the
ground-truth as shown in figure 1(b). Figure 6(c) shows the FBP image filtered by the
original NLM algorithm with τ =1.3×10−2. It can be seen that the artifacts are still noticeable
due to the nature of NLM algorithm for structure preserving, which is consistent with the
result of the clock phantom study. Figure 6(d) shows the result from the present SR-NLM
algorithm with β = 200, τ =1.3×10−2. We notice that the present SR-NLM algorithm can
achieve significant gains relative to those of the other two algorithms in terms of both the
noise-induced artifacts suppression and image edge preservation.

3.4 ROC study
The ability of an observer to detect an abnormality is one generally accepted method for
monitoring the performance of a medical imaging system or procedure. Using an observer
study, a variety of pairs of true positive fraction (TPF) and false positive fraction (FPF) are
calculated through changing the confidence threshold of an observer, and then a ROC curve
can be fitted from the calculated TPF and FPF values [37,38]. In this study, to eliminate the
intra human observer variation, the channelized Hotelling observer (CHO) [39] was adapted
to generate scores for each reconstructed image by different methods. Specifically, the
noise-free sinogram data of the modified Shepp-logan phantom with the lesion and the
original phantom without the lesion were simulated, respectively. A total of 500 noisy
sinogram data were generated from each noise-free sinogram by adding noise according to
equation (10). The associative rating scores for each image were generated by the CHO
algorithm [39], which were subsequently analyzed using the CLABROC code [38] resulting
in four pairs of FPF and TPF for each reconstruction method. Finally, these four pairs were
then fitted by a ROC curve using the binormal model. Figure 7 shows the ROC curves from
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three different methods. The area under the three curves is 0.9791 for the SR-NLM
algorithm, 0.9515 for the KL-PWLS algorithm, and 0.7934 for the NLM algorithm. The
one-tailed p-values between each pair of two algorithms are all less than 0.005, which
indicates that the difference between these three methods is statistically significant.

3.5. Patient study
To further evaluate the effectiveness of the present SR-NLM algorithm for low-dose CT
image filtering, a patient scan was scheduled with patient consent for a thorax CT study
needed for medical reasons. All sinogram data were acquired with the 16-slice Siemens CT
scanner in a cine mode with a protocol of 20 mAs and 120 kVp, which was just one-tenth of
the routine x-ray exposure radiation scanned with a protocol of 200 mAs and 120 kVp.

Figure 8 shows the reconstructed images by four different algorithms. It can be seen that the
results from the KL-PWLS, NLM, and SR-NLM algorithms have noticeable gains relative
to those from the direct FBP algorithm as shown in figure 8(a) in terms of the noise and
artifacts suppression. Similar to the results in the simulation studies, serious streak artifact
have been successfully suppressed in the FBP image reconstructed from the KL-PWLS
algorithm restored sinogram data, as shown in figure 8(b). But obvious artifacts exist in the
FBP image restored by the NLM algorithm as shown in figure 8(c). As shown in figure 8(d),
the present SR-NLM algorithm can not only successfully suppress the noise-induced
artifacts but also achieve a noticeable image resolution preserving as comparison with the
KL-PWLS and the NLM algorithms. To further illustrate the difference of all the
reconstructed images, one vertical profile along a central line through a bony structure (as
indicated by the line located at the left in figure 8(a)) and another vertical profile along a
central line through a trachea and lung structure (as indicated by the line located at the
center in figure 8(a)) are plotted in figure 9, respectively. The results demonstrate that the
present SR-NLM algorithm can obtain slightly better edge-preserving than the KL-PWLS
and NLM algorithms. In addition, to quantitatively evaluate image quality, we calculated the
local signal-to-noise ratio (lSNR) of three local regions with the size of 20 × 20 as indicated
by three squares in figure 8(a). The lSNR is defined as the ratio of the mean and standard
deviation of the intensity in each local region. Table 3 lists the associative lSNRs of three
local regions. It can be observed that the gains from the SR-NLM is remarkable compared to
the other three methods in terms of the noise-induced artifacts suppression and the lSNR
measurements.

4. Discussion
The original NLM algorithm is performed as a non-local weighted average through the
intensity similarity calculation between the patches within the neighborhood of the
concerned pixel and does not depend on the spatial proximity to the concerned pixel.
Conceptually, the averaging weights can be interpreted as a probability distribution with
normalization to unity and is always positive. The act of optimizing the non-local weights to
remove noise is crucial for the NLM algorithm. Up to now, several methods have been
proposed with aiming at yielding optimized non-local weights [26,31,40]. In this paper, we
also provided an alternative strategy, named the SR-NLM algorithm, to design the non-local
weights for low-dose CT restoration based on our previous work [26]. The experimental
results in section 3 have shown that the gains of the SR-NLM algorithm are remarkable
compared to the original NLM algorithm in terms of noise-induced artifacts reduction and
noise-resolution curve measure.

The non-local weights of the SR-NLM algorithm were calculated by incorporating the FBP
image reconstructed from the KL-PWLS restored sinogram data. The gains of the KL-
PWLS with reducd noise-induced streak artifacts were also evaluated and validated for the
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SR-NLM algorithm in section 3. In the implementation, other projection data restoration
algorithms with reducing noise-induced streak artifacts can also be adapted into the SR-
NLM algorithm, such as the ATM filtering [3] in the sinogram domain and the Poisson-
likelihood based algorithms [20, 41] in the transmission domain.

A critical problem in our approach is determining the parameters. Usually, these parameters
were determined through an empirical, subjective, and time consuming trial and error
process [26,32]. In this work, as described in section 2.5, we also determined the parameters
empirically for the SR-NLM algorithm in a trial-and-error fashion by quantitative measure
and visual inspection with comparison to the ideal phantom or normal-dose image. In the
practical applications, all the parameters should be determined adaptively, but this is a really
difficult task. As suggested by a reviewer, for the present SR-NLM algorithm, exploring
some kind of methodology including a heuristic one for the parameters selection would be a
useful and interesting topic.

5. Conclusion
In this study, we proposed a sinogram restoration induced non-local means (SR-NLM)
image filtering algorithm for CT image restoration with low-mAs scans based on our
previous studies [19,25,26,28,29]. The SR-NLM algorithm takes the advantage of the fact
that the KL-PWLS algorithm can yield an image with noise-induced artifacts suppression
and the NLM algorithm can obtain an image with resolution preservation. The experimental
results as presented in section 3 have demonstrated that the gains from the present SR-NLM
algorithm are remarkable compared to the original NLM and KL-PWLS algorithms in terms
of quantitative measurements and visual inspection.

Among future research directions, we think it could be worth exploring strategies to
optimize the parameters in different applications. We also plan to work on possible
extensions of the present method to different sinogram restoration strategies such as the
ATM filtering [3] and the Poisson-likelihood based algorithms [20, 41] in the transmission
domain.
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Figure 1.
Three digital phantoms used for computer simulation studies. (a) the modified clock
phantom contains eight inserts with varying contrast (C1: +30%, C2: −7%, C3: −15%, C4:
+85%, C5: −30%, C6: +7%, C7: +15%, and C8: −85%). Eight ROIs marked by larger
squares allow comparison of zoomed images. ROI 1, ROI 2 and background region
indicated by small squares allow comparison of the contrast-to-noise ratio. The lines along
the edges of the inserts (C1 and C4) allow comparison of the noise-resolution tradeoff; (b)
the image of one slice of XCAT phantom with a lesion (contrast of +15%) as indicated by a
square. Two ROIs marked by two squares allow visual inspection comparison of zoomed
images; and (c) the modified Shepp-logan phantom with a low-contrast small lesion
(contrast of +1.5%) as indicated by the blue arrow.
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Figure 2.
The clock phantom images reconstructed by different methods and eight zoomed regions
indicated by the marks with C1 to C8 in figure 1(a). (a) the conventional FBP image with
ramp filter reconstructed from the original sinogram data; (b) the standard FBP image
reconstructed from the restored sinogram data by the KL-PWLS algorithm with β = 400 ; (c)
the conventional FBP image restored by the original NLM algorithm with τ =5.6 ×10−3; and
(d) the reconstructed FBP image restored by the present SR-NLM algorithm with β = 400, τ
=1.4 ×10−3. All images are displayed with same window.
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Figure 3.
The horizontal profiles through the center of bone insert (C4) and the dark insert (C5) in the
reconstructed clock phantom images corresponding to figure 2.
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Figure 4.
The UQIs of eight regions indicated by the squares with the symbol Ci (i=1,2,…,8) in figure
1(a) from the reconstructed images by four different algorithms.
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Figure 5.
The noise-resolution tradeoff curves. (a) the noise-resolution tradeoff curves of the insert C4
from the KL-PWLS and SR-NLM algorithms; (b) the noise-resolution tradeoff curves of the
insert C4 from the NLM and SR-NLM algorithms; (c) the noise-resolution tradeoff curves of
the insert C1 from the KL-PWLS and SR-NLM algorithms; and (d) the noise-resolution
tradeoff curves of the insert C1 from the NLM and SR-NLM algorithms. The noise-
resolution tradeoff curves shown in (a) and (c) were obtained by varying the penalty
parameter β from 100 to 1000 and those shown in (b) and (d) were obtained by varying the
scalar parameter τ from 5×10−4 to 1×10−2.
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Figure 6.
The XCAT phantom images reconstructed by different methods. (a) the conventional FBP
with ramp filter reconstructed image from the original low-dose sinogram data; (b) the
standard FBP reconstructed image from the restored low-dose sinogram data by the KL-
PWLS algorithm with β = 200 ; (c) the conventional FBP image restored by the original
NLM algorithm with τ =1.3 ×10−2 ; and (d) the reconstructed FBP image restored by the
present SR-NLM algorithm with β = 200, τ =1.3×10−2. All images are displayed with same
window. The ROIs indicated by the red squares are zoomed in to display the image details.
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Figure 7.
The ROC curves from three different methods.
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Figure 8.
The patient study scanned with a protocol of 20 mAs and 120 kVp. (a) the conventional FBP
image reconstructed with ramp filter from the original sinogram data; (b) the standard FBP
image reconstructed from the restored sinogram data by the KL-PWLS algorithm with β =
1000 ; (c) the conventional FBP image restored by the original NLM algorithm with τ =7.7
×10−4; and (d) the FBP image from by the present SR-NLM algorithm with β =1000, τ =1.7
×10−3. Three ROIs indicated by squares allows comparison of the local signal-to-noise ratio.
The line through a bony structure and the red line through a trachea and lung structure allow
comparison of profiles. All images are displayed in the same window.
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Figure 9.
The vertical profiles (a) along a central line through a bony structure as indicated by the line
located at the left in figure 8(a) and vertical profiles (b) along a central line through a trachea
and lung structure as indicated by the line located at the center in figure 8(a).
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Table 1

The PSNRs and NMSEs of the reconstructed images by four different algorithms.

Methods FBP KL-PWLS NLM SR-NLM

PSNR (dB) 29.63 35.48 37.85 38.88

NMSE (1e-3) 8.485 2.205 1.280 1.008
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Table 2

CNRs of the reconstructed images by different algorithms.

Methods FBP KL-PWLS NLM SR-NLM

CNR (ROI 1) 1.957 1.995 1.994 1.999

CNR (ROI 2) 0.786 1.463 1.776 1.918
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Table 3

The lSNRs of three local regions as indicated by three squares in figure 8(a).

Methods FBP KL-PWLS NLM SR-NLM

lSNR (ROI 1) 11.72 123.25 474.24 690.49

lSNR (ROI 2) 8.77 103.11 488.14 709.49

lSNR (ROI 3) 8.75 77.98 175.69 636.02

Comput Med Imaging Graph. Author manuscript; available in PMC 2013 September 19.


