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Abstract

The widespread use of CT imaging and the critical importance of early detection of epidural 

masses of the spinal canal generate a scenario ideal for the implementation of a computer-aided 

detection (CAD) system. Epidural masses can lead to paralysis, incontinence and loss of 

neurological function if not promptly detected. We present, to our knowledge, the first CAD 

system to detect epidural masses on CT scans. In this paper, spatially constrained Gaussian 

Mixture Model (GMM) and supervoxel-based method are proposed for epidural mass detection. 

The detection is performed on the Gaussian level or the supervoxel level rather than the voxel 

level. Cross-validation on 40 patients with epidural masses on body CT showed that the 

supervoxel-based method yielded a significant improvement of performance (82% at 3 false 

positives per patient) over the spatially constrained GMM method (55% at 3 false-positives per 

patient).

1. Introduction

Masses in the epidural space of the spinal canal can cause discomfort, pain and even 

paralysis by compressing the spinal cord and nerve roots. Moreover, the presence of an 

epidural mass within the spinal canal is a strong predictor of metastatic disease. A 

retrospective study of 337 patients at the Mayo Clinic, for instance, revealed that 20% of all 

cases of spinal epidural metastases presented as the initial manifestations of malignancy [1]. 

Given the importance that early indicators of malignant cancers hold in the radiology 

community, the absence of a body of work on computer aided detection (CAD) of spinal 

canal lesions within the intradural and extra-dural space is quite surprising.

A CAD system designed to detect epidural masses within the constraints of the CT modality 

could prove invaluable. While confirmation of epidural tumors is almost always made using 

magnetic resonance imaging (MRI), due to its higher anatomic resolution and sensitivity to 

alterations of the central nervous system tissue, most patients will have received an 

examination using CT images. CT imaging remains the most prevalent radiologic modality 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Comput Med Imaging Graph. Author manuscript; available in PMC 2017 July 19.

Published in final edited form as:
Comput Med Imaging Graph. 2014 October ; 38(7): 606–612. doi:10.1016/j.compmedimag.2014.04.007.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



as it is rapid (current generation can take less than 1 minute), cost-effective, and can image 

over a large body area, effectively localizing many types of soft tissue tumors. Automated 

detection of an epidural mass is very challenging because of its low contrast to normal soft 

tissue in the spinal canal. Even a radiologist may fail to detect an epidural mass in CT scan, 

especially when the patient is being examined for unrelated symptoms. Figure 1 shows an 

example of a subtle epidural mass on the CT scan that is detectable as a slightly hyper-

attenuating region (Fig. 1(a)) when the image is viewed using an appropriate soft-tissue 

window width and level. The patient cohort examined in this study had an MRI confirming 

the presence of an epidural mass (Fig. 1(b)) within a month after the mass was detectable on 

a CT scan, a duration that could drastically affect patient outcome when concerning 

progressive disease.

A vast majority of tumors that encroach on the epidural spaces originate from the 

intravertebral foramina or the vertebral bodies surrounding the spinal canal [2]. In other 

words, the masses always extend contiguously from the radiopaque bony regions of the 

spine into the soft tissue and can be discriminated as a tissue exhibiting attenuation 

intermediate between bone and normal spinal canal soft tissues. In this work, two methods 

are implemented individually for epidural mass detection. (1) Spatial information is 

incorporated into conventional intensity based Gaussian mixture model (GMM) as a 

spatially-constrained GMM [3] for mass detection. A large number of Gaussians is used per 

class in the spinal canal to capture the local spatial feature. The intensity of a tissue is 

considered a global feature and is modeled by parameters linking all associated Gaussians. 

In this way, the mass detection is performed on the Gaussian level rather than on the voxel 
level. (2) Supervoxels or regions produced by bottom-up segmentation have better spatial 

support compared to voxels. Therefore a supervoxel-based mass detection is proposed and 

the detection is performed on the supervoxel level rather than on the voxel level. The 

performance of two methods are evaluated and compared. To our best knowledge, this work 

is the first computer aided detection of epidural mass on CT scans. A previous version of 

this work has been published [4].

2. System Description

This section presents the details of all the components of our mass detection system. The 

following is a summary of the steps taken by the system for each CT scan.

1. Region of interest (ROI): spinal canal is segmented and refined (Sect. 2.1) as the 

ROI of epidural mass detection.

2. Mass candidate generation: two methods are implemented individually, spatially 

constrained GMM (Sect. 2.2.1) and supervoxel (Sect. 2.2.2).

3. Rules for mass: three rules are used for early rejection of false positives (Sect. 

2.3).

4. Classification: features are computed and selected for support vector machine 

(SVM) classification (Sect. 2.4).
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2.1 Region of Interest

First, initial spine segmentation and localization is achieved by simple thresholding and 

region growing. We apply a threshold of 200 HU to mask out the bone pixels. A connected 

component analysis is conducted on the bone mask and the largest connected blob in the 

center of the image is retained as the initial spine segmentation.

The spinal canal links all vertebrae into a column. On a 2D slice, the spinal canal appears to 

be a low intensity oval region surrounded by vertebral structures. We apply a watershed 

algorithm to detect the potential spinal canal regions. The watershed regions surrounded by 

bone pixels are recorded as potential candidates for the spinal canal.

Then, a directed graph searching algorithm [5] is applied to find the longest path of potential 

spinal canal candidates, which is the spinal canal in our case. A four-part vertebra model was 

then used to locate the vertebral bodies, spinous processes, and left/right transverse 

processes, with rib structures used to separate vertebral segments.

Finally, curved planar reformations were then employed to segment the spinal canal, using 

the centerline as a backbone. More details about spinal canal segmentation can be found in 

our previous work [6].

The segmentation of the spinal canal, however, suffers from the ambiguity in discriminating 

between hyper-attenuating bony and spinal lesion regions within the canal. As a result, many 

cases under-segment the region of interest within which we expect to detect epidural masses. 

To contend with this complication, we use a snake [7] to refine the segmentation so that it 

covers the entire spinal canal. The spinal canal segmentation and refinement are 

demonstrated in Figure 2.

2.2 Mass Candidate Generation

2.2.1 Gaussian Level Detection—Intensity based K-Means clustering (k=4) is used for 

initial classification of tissues in the spinal canal. Selecting four different classes allowed us 

to delineate classes representative of normal intradural soft tissue, hypo-attenuating fatty 

tissue and vasculature, epidural masses, and the partial volume between the bone and soft 

tissue.

The spatially constrained GMM framework was modified from a method [3] employed to 

detect multiple sclerosis lesions from MRI images of the brain. To accommodate the spatial 

feature, we model an image as if its voxels were drawn independently from a mixture of 

many Gaussians:

(1)

where x is the 3D position information included in the spatial vector (spatial parameters), 

I(x) is the intensity vector (intensity parameters) associated with the voxel in position x, n is 

the number of Gaussians components in the mixture model, μi and Σi are the mean and the 

covariance of the ith Gaussian components fi, and αi is the ith mixture coefficient. The 
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spatial feature is incorporated into the probabilistic model. Each Gaussian component in the 

spatially constrained GMM represents a probabilistic model for a specific small area in the 

CT image, therefore n≪k. Each Gaussian component is linked to a single tissue class and all 

the Gaussian components related to the same tissue class share the same intensity 

parameters. Assuming the intensity and spatial features are uncorrelated, we have

(2)

π(i)is the tissue that is linked to the ith Gaussian component,  and  are the spatial 

mean and covariance of the ith Gaussian component, and  and  are intensity mean 

and variance of class π (1 ≤ π ≤ 4) to which the ith Gaussian component belongs. Therefore, 

the Gaussian component fi can be written as:

(3)

The main advantage of the spatially constrained GMM is to combine local spatial features 

with a global intensity feature, which makes it much more robust to noise than intensity 

based methods. The four tissue classes generated from the K-Means clustering served as the 

initialization for our GMM framework. Small clusters (<20 voxels) were defined as under-

representative of the associated tissue class. From the remaining clusters, 1/20 voxels were 

selected as center of Gaussian components (Fig. 3(c)) in eq. (1). Each voxel within the 

cluster was then linked to its nearest Gaussian center. The component coefficient αi was then 

initialized as the number of voxels in ith Gaussian component divided by the total number of 

voxels of all n Gaussian components.

After applying EM for estimation of the spatial and intensity parameters of each Gaussian, a 

Maximum-APosteriori (MAP) criterion was used to return the final label of the class. As a 

result, four classes are updated. Figure 3 shows the classification by K-Means (Fig. 3(b)) and 

GMM (Fig. 3(d)).

2.2.2 Supervoxel Level Detection—The advantages of employing supervoxels for mass 

detection are three fold: 1) supervoxels have better spatial support then voxels; 2) it 

significantly reduces the computation burden; and 3) supervoxels have more reliable 

statistics than voxels or Gaussian components of GMM.

To generate supervoxel representations, we apply the efficient graph-based segmentation 

technique [8] to oversegment the spinal canal into homogeneous regions. The graph-based 

supervoxel technique groups neighboring voxels based on their intensity differences, so that 

similar voxels are more likely to be grouped together. We specify the minimal region size in 

the supervoxel segmentation to be 40 voxels. There are about 1000 supervoxels within each 
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spinal canal (see Fig 4(b) for examples of produced supervoxels). Each supervoxel is 

represented by the mean and standard deviation of voxel intensity within the supervoxel. The 

supervoxels with high standard deviation (i.e. non-reliable homogenous regions such as 

partial volume region between two classes) are discarded from the future analysis.

K-Means clustering is then applied to the supervoxels with k=3 (normal soft tissue, hypo-

attenuating fatty tissue and vasculature, and epidural masses). Figure 4(c) shows the K-

Means clustering result of those qualified supervoxels within the spinal canal.

2.3 Rules for Early Rejection of False Positives

After the Gaussian level or supervoxel level mass candidates generation, a rule based system 

can be used for early rejection of false positives. A Gaussian or supervoxel for which all 

these conditions hold, is labeled as epidural mass. A rule set used in this work is the 

following:

1. Class: the detected Gaussian component or supervoxel should be in the epidural 

mass class.

2. Contrast: the CT intensity of detected mass usually has enough contrast 

compared to its nearby normal soft tissues, i.e. MassCT-SoftTissueCT > th HU. 

th=40HU was used in our study.

3. Location: the detected mass should touch the boundary of spinal canal.

The first two rules reflect the general appearance of the epidural mass. The third rule 

incorporates contextual information by reflecting our expectation to find masses in the 

boundary of spinal canal. Note that at this point decisions are made at the Gaussian level or 

supervoxel level rather than the voxel level. The detected epidural masses are used for 

feature computation and classification.

2.4 Feature Computation and SVM

A comprehensive collection of texture features from the mass detections were computed in 

this work. Haralick Gray-Level Co-occurrence Matrix (GLCM) features [9] are widely used 

for analyzing image texture. The co-occurrence matrix stores the co-occurrence frequencies 

of the pairs of gray levels, which are configured by different distances and directions. We 

calculated the co-occurrence matrices for 4 offset distances and 13 directions on multiple 

planes, yielding 52 matrices for each mass detection. We then calculated 12 features from 

the matrix, including energy, entropy, correlation, contrast, variance, sum of mean, inertia, 

cluster shade, cluster tendency, homogeneity, maximal probability, and inverse variance. 

Thus, each detected mass has 624 Haralick GLCM features. We also extracted the volume of 

the masses, histograms of oriented gradients [10] and local binary patterns [11] features. 

Finally, an SVM committee [12] is employed for classification. The method involved 

bootstrap aggregation of features into seven SVM committees to improve on selection of 

features and avoid overfitting.
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3. DataSet

The patient population consisted of patients who received a chest, abdomen, and pelvis CT 

scan within 1 month before or after receiving an MRI confirming the presence of an epidural 

mass. A cohort of 40 patients (27 scans with IV contrast and 13 without IV contrast; 23 

patients with epidural masses and 17 control patients; 25 scans from General Electric, 9 

from Siemens and 6 from Philips scanners), with a total of 42 epidural masses confirmed as 

visible in the CT images by radiologists, were examined in this study. The inter-slice spacing 

was 5–7 mm (90–150 slices), and the voxel spacing within an axial slice was in the range 0.7 

– 0.9 mm (512×512 pixels). The detected epidural mass was marked as true-positive if the 

overlap between the detected mass and the mass demarcated as ground truth by a radiologist 

is more than 10% of the ground truth.

4. Results

The detection performance was evaluated using ten-fold cross-validation. The free response 

receiver operating characteristic (FROC) curves of the detection performance by using 

spatially constrained GMM and supervoxel are compared in Figure 5. We get a sensitivity of 

55% at 3 false positives per patient on average for spatially constrained GMM method. We 

achieve a sensitivity of 82% at 3 false positives per patient on average for the supervoxel 

method (Fig. 5(b)). The difference in the methods was statistically significant (p=0.02) at the 

aforementioned operating points as determined using Fisher’s exact test [13].

The FROC curves of the detection performance on different sizes of masses are shown in 

Figure 6. The mass size is represented by the area of spinal canal occupied by the mass in 

2D (axial slice which has maximal mass). For the spatial constrained GMM (Fig. 6(a)), the 

system achieved a sensitivity of 72% at 2 false positives per patient for large masses and a 

sensitivity of 40% at 2 false positives per patient for small masses. For the supervoxel 

method (Fig. 6(b)), the system achieved a sensitivity of 87% at 2 false positives per patient 

for large masses (occupied area ≥30% of spinal canal area) and a sensitivity of 61% at 2 

false positives per patient for small masses (occupied area between 5% and 30% of spinal 

canal area).

Figure 7 shows examples of true and false positive and false negative detections. Three 

masses are missed because there is not enough contrast with the nearby normal soft tissue. 

Beam hardening artifacts, disk bulging, and ligaments are the most common false positives 

which have similar appearance with epidural masses.

This CAD system is computationally efficient. The spinal canal segmentation takes about 2 

minutes, mass candidate detection is about 1 minute, feature computation and classification 

take around 1 minute.

5. Discussion

In this work, spatially constrained GMM reported about two times as many false positives as 

the supervoxel method. For example, Figure 8(a) shows the false positives (disc bulging and 

ligament) generated from both GMM and supervoxel methods. The false positives (partial 
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volume between bone and normal soft tissue) generated from the GMM method only are 

shown in Figure 8(b) and (c). The main reason is because supervoxels have more reliable 

statistics than voxels or Gaussian components of GMM. These false positives were 

eliminated by subtracting supervoxels with high standard deviation of voxel intensity.

The false positive detections of our CAD system were mainly due to beam hardening 

artifacts in the upper thoracic level, intervertebral disk bulging or herniation to the epidural 

space, and hypertrophied ligamentum flavum (Fig. 7). The beam hardening artifacts in the 

upper thoracic level is well known and not avoidable. The bulging disk is an extension of 

disc out of its space as a part of normal aging process. The herniated disc is caused by 

protrusion of inner cartilage of the disc outside (i.e. epidural space) through a crack in the 

outer layer of the cartilage. These two conditions are space occupying lesions but they are 

not soft tissue masses. There are no significant density or texture differences between soft 

tissue masses and disc bulging/herniations. The differentiation between hermiated disc and 

epidural mass is based on defining the anatomic level of the abnormality as being at the level 

of the intervertebral disc or not. The ligamentum flavum is a thin ligament within posterior 

portion of the spinal canal and connects the laminas of two adjacent vertebras. Hypertrophy 

of this ligament is a degenerative condition and usually associated with facet joint 

hypertrophy and degenerative disc diseases.

The clinical significance of this work is that epidural masses are, in our experience, 

frequently missed as inadequate attention is paid to the spinal canal on routine body CT 

image interpretation. As epidural masses can be a first sign of malignancy or cause pain, 

paralysis or loss of function, it is important to detect them. For each patient, a radiologist 

needs to review all the axial CT images to detect epidural lesions. This step is required for 

each case even when the patient’s diagnosis or symptoms are unrelated. Several there are a 

hundred images or more, this step is time consuming. The CAD can be run prior to the 

radiologist’s review taking about 5 minutes of processing time and generates only a few 

images for the radiologist to review. Thus, our CAD system can potentially shorten the time 

spent for assessing epidural masses. In clinical practice, it will be useful if the CAD system 

detects ≤ 10 candidate lesions per patient with 90% sensitivity. The CAD system in the 

current study reaches this level of accuracy and may be applicable to clinical practice. This 

CAD system may reduce the incidence of missed epidural masses, although this would need 

to be demonstrated in a clinical trial.

6. Conclusions

We present the first CAD system to detect epidural masses in the CT imaging modality. 

Spatially constrained GMM and supervoxel-based methods are introduced and compared for 

the mass detection. The detection is performed on the Gaussian level or supervoxel level 

rather than the voxel level. The supervoxel-based method is more accurate and efficient than 

the spatially constrained GMM. We envision our CAD system could be used to direct the 

attention of a reader to a mass even when the reader is not primed for its detection.
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Fig. 1. 
A L4 level anterior epidural mass on CT (a) and MRI (b) results in spinal canal compromise.
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Fig. 2. 
Epidural mass (a) is not fully included in initial segmentation of the spinal canal (b), but is 

fully included in the refined canal segmentation (c).
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Fig. 3. 
(a) Epidural mass (arrow) on CT confirmed by MRI. (b) K-Means clustering result (soft 

tissue in brown; fat in yellow; epidural mass in blue; partial volume between the bone and 

soft tissue in green). (c) Centers of Gaussian components (black dots) in the mixture model. 

(d) Clustering after spatially constrained GMM.
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Fig. 4. 
Example of supervoxels and 3-class classification. (a) Epidural mass (arrow). (b) 

Supervoxels representation of spinal canal. (c) K-Means clustering result of supervoxels (3 

classes: soft tissue in blue; fat in green; epidural mass in yellow).
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Fig. 5. 
10-fold cross validation FROC of two methods. Before (a) and after (b) early rejection of 

FPs.
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Fig. 6. 
(a) FROC comparison on different sizes of masses (both supervoxel and spatially 

constrained GMM methods). (b) FROC comparison on different sizes of masses (supervoxel 

method). Large masses occupied ≥30% of spinal canal area. Small masses occupied between 

5% and 30% of spinal canal area.
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Fig. 7. 
Detection examples. 1st row: TP detections. 2nd row: missed epidural masses. 3rd row: FP 

detections (beam hardening artifacts, disk bulging, and ligament from left to right).
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Fig. 8. 
(a). False positives (disc bulging and ligament) from both GMM and supervoxel methods. 

(b, c). False positives (partial volume between bone and normal soft tissue) from the GMM 

method only.
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