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Abstract

Neuroimaging has played an important role in non-invasive diagnosis and differentiation of

neurodegenerative disorders, such as Alzheimer's disease and Mild Cognitive Impairment. Various

features have been extracted from the neuroimaging data to characterize the disorders, and these

features can be roughly divided into global and local features. Recent studies show a tendency of

using local features in disease characterization, since they are capable of identifying the subtle

disease-specific patterns associated with the effects of the disease on human brain. However,

problems arise if the neuroimaging database involved multiple disorders or progressive disorders,

as disorders of different types or at different progressive stages might exhibit different

degenerative patterns. It is difficult for the researchers to reach consensus on what brain regions

could effectively distinguish multiple disorders or multiple progression stages. In this study we

proposed a Multi-Channel pattern analysis approach to identify the most discriminative local brain

metabolism features for neurodegenerative disorder characterization. We compared our method to

global methods and other pattern analysis methods based on clinical expertise or statistics tests.

The preliminary results suggested that the proposed Multi-Channel pattern analysis method

outperformed other approaches in Alzheimer's disease characterization, and meanwhile provided

important insights into the underlying pathology of Alzheimer's disease and Mild Cognitive

Impairment.
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1. Introduction

Neuroimaging data are a rich source of information on brain anatomy and physiology.

Neuroimaging has been a fundamental component of the neurological disorder diagnosis,

and also plays an important role in therapy assessment and disease progression monitoring.

Due to the large size of current 3D neuroimaging data, it is difficult to quantitatively analyze

the volumetric images for computer-aided-diagnosis (CAD) and clinical-decision-support

(CDS) [1–3]. Therefore, researchers usually extract features from the neuroimaging data to

efficiently represent them without losing important information.

Various studies on identifying the most discriminative disease-related brain features have

been reported. A thorough review of all these studies is beyond the scope of this paper. For

interested readers, more details of these studies can be found in several reports [4–12].

These features can be roughly divided into two groups, global and local features. Global

features that treat all of the brain regions with no distinction were commonly used. For

example, Qian et al. [4] designed a neuroimaging retrieval system with four 3D feature

descriptors based on 100 brain Magnetic Resonance Imaging (MRI) studies. Unay et al. [5]

proposed a retrieval system for MRI data based on local binary patterns incorporating spatial

context information. Ramírez et al. [6] employed Support Vector Machine (SVM) combined

with a casting votes technique in their study specifically for early diagnosis of Alzheimer's

disease (AD) based on Single Photon Emission Computed Tomography (SPECT).

However, the neurodegenerative disorders usually affect certain brain regions associated

with memory or motor functions. We could use these disease-specific patterns to enhance

our understanding of AD pathology and facilitate the neuroimaging analysis. Many

researchers took advantage of such disease-related pathological pattern by analyzing a set of

brain region of interest (BROIs) instead of the whole brain. There are two ways to select

BROIs. The first is based on the known pathology of the disorder. Wang et al. [7,8] recently

investigated the surface and shape features on MRI data, using multivariate tensor-based

morphometry (mTBM) and spherical harmonics (SPHARM) shape analysis pipeline,

respectively. Only ventricles and hippocampus regions were selected in their studies. Batty

et al. [9] used a predefined knowledge-based mask to segment the five BROIs from the brain

and further extracted the Gabor wavelet features for retrieval using 2-[18F]fluoro-2-deoxy-d-

glucose (FDG) with Positron Emission Tomography (PET). We have previously proposed a

set of disease-oriented masks (DOMs) based on the literature [10–16] and adaptively

modified them with t-maps [17]. The second approach to BROI selection is to apply certain

pattern analysis techniques on the whole brain and then select the BROIs based on a

significance metric or test statistics. Zhang et al. [18] selected a set of BROIs in their study

based on the cost sensitive variance score (CostVS) derived from SVM. The PET

measurements of the regional average cerebral metabolic rate of glucose consumption

(CMRGlc) [19] were used to calculate the CostVS. Heckemann et al. [20,21] employed the
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two-one-sided-test (TOST) to evaluate the discriminative power of the BROIs based on the

regional volume loss using MRI.

Both types of BROI selection approaches were reported to improve the analysis

performance by using BROIs instead of whole brain. However, the resultant BROI sets of

these studies were not optimally defined and there were several issues that needed to be

addressed. The first is that most of the findings were based on single-center studies with

small populations [4–6]. Potentially biased conclusions could be drawn based on such

single-center populations. In our previous studies, we investigated several advanced feature

descriptors, i.e., 3D-GLCM [22], 3D-DCvT [23], 3DGabor [24], and vcLPB [25], based on a

small dataset of 209 subjects with 11 subtypes of dementia. Voxel-wise t-test was carried

out to refine the predefined DOMs. This method achieved better performance than using

conventional DOMs, but this better performance might be specific to our dataset and better

performance on other datasets could not be guaranteed. The second problem is the

drawbacks of individual pattern analysis techniques. Most researchers used the t-test

[7,8,15,20,21] or SVM [16,18] to detect the disorder sensitive regions, but neither t-test nor

SVM supported multi-group analysis and they also ignored the correlations between

different features. Another issue is the disorder diversity. It is crucial to understand what

brain functional regions are involved in distinguishing the disorders from each other, as well

as distinguishing the patients with disease (‘patients’) from the normal aging control

subjects (NC) who also showed slightly reduced metabolism in certain regions highly

related to age. If the dataset contains multiple disorders or progressive disorders, it is

difficult to reach a consensus on what brain regions could best distinguish different disorders

from each other and also from the normal controls. We could understand this issue by

looking at two extreme cases: an overlarge pattern comprising the degenerative patterns of

all individual disorders might have a negative impact on distinguishing the patients from

normal subjects due to the involvement of many non-disorder-specific regions, whereas a

small pattern of associated regions with high agreement by all disorders might decrease the

discriminative power between disorders since the abnormalities exist in the same regions. In

addition, since neurodegenerative disorders, such as AD, are usually progressive, the

degenerative patterns at different progressive stages would be different. AD is an

irreversible neurodegenerative disease that results in a loss of mental functions due to loss of

brain tissue. As the disease progresses, it robs the patients of their memory, and eventually,

overall mental and physical function, leading to death. Mild Cognitive Impairment (MCI)

differs from AD and normal age-related memory change. People with MCI have ongoing

memory problems but not to the point where their impairment interferes significantly with

daily activities. MCI can represent a pre-symptomatic status of AD, conferring a high

conversion rate of 16% to AD per annum [26]. A pattern of hypo-metabolism in

Hippocampus and Posterior Cingulate Cortex was reported in a study on MCI [27], whereas

whole brain was affected in more severe AD [12–15]. The pathological pattern analysis for

multiple and progressive disorders has been recognized as a central research area to advance

our understanding the AD and MCI pathology.

To address the abovementioned issues, in this paper, we proposed a Multi-Channel analysis

approach to analyze the hypo-metabolism patterns of AD and MCI. The innovation of our
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proposed approach is that it could integrate the multiple patterns derived from different

patient groups using different analysis tools. We investigated a variety of pattern analysis

approaches and applied them in parallel to analyze a multi-center dataset of 369 participants.

The integrated results of individual analyses were then used to characterize AD and MCI

patients. Several advanced feature descriptors were also investigated in this study to further

improve its performance.

The paper is organized as follows. In Section 2, we will elaborate the proposed Multi-

Channel pattern analysis approach and also detail data acquisition, pre-processing, feature

extraction and performance evaluation methods used in this study. In Section 3, a multi-

phase workflow of experiments will be introduced, together with the preliminary results

from each phase of experiments. The findings from the results will be discussed in Section

4. Finally, we will conclude in Section 5.

2. Materials and methods

2.1. Study design overview

The design of this study is shown in Fig. 1. We first obtained the neuroimaging data of 369

participants from a public multi-center neuroimaging repository, the Alzheimer's Disease

Neuroimaging Initiative (ADNI). The data were then pre-processed by spatial normalization,

brain functional region segmentation, and gray-tone correction. Both global and local

features could be extracted from the pre-processed data, and our focus is local feature

extraction. To address the issues discussed in Section 1, we designed the Multi-Channel

analysis framework, which could overcome the deficiencies of individual pattern analysis

methods and meanwhile highlight the most discriminative brain regions. We used the

features derived from the proposed Multi-Channel framework to characterize AD and MCI

patients, and compared its performance with global methods and other local feature selection

methods.

2.2. Data acquisition

Data used in the preparation of this article were obtained from the Alzheimer's Disease

Neuroimaging Initiative (ADNI) database (adni.loni.ucla.edu). The ADNI was launched in

2003 by the National Institute on Aging (NIA), the National Institute of Biomedical Imaging

and Bioengineering (NIBIB), the Food and Drug Administration (FDA), private

pharmaceutical companies and non-profit organizations, as a $60 million, 5-year public–

private partnership. The primary goal of ADNI has been to test whether serial MRI, PET,

other biological markers, and clinical and neuropsychological assessment can be combined

to measure the progression of MCI and early AD. The identification of sensitive and specific

markers of very early AD progression is intended to aid researchers and clinicians to

develop new treatments and monitor their effectiveness, as well as lessen the time and cost

of clinical trials. The Principal Investigator of this initiative is Michael W. Weiner, MD, VA

Medical Center and University of California – San Francisco. ADNI is the result of efforts

of many co-investigators from a broad range of academic institutions and private

corporations, and subjects have been recruited from over 50 sites across the U.S. and

Canada. The initial goal of ADNI was to recruit 800 adults, ages 55–90, to participate in the
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research, approximately 200 cognitively normal older individuals to be followed for 3 years,

400 people with MCI to be followed for 3 years and 200 people with early AD to be

followed for 2 years. For up-to-date information, see www.adni-info.org.

To achieve more reliable region-wise pattern analysis and also to extract robust features

from the functional regions, accurate registration with MRI data is desired to compensate the

low resolution of PET data. Therefore, the recruited subjects should have both FDG-PET

and T1-weighted MRI images. 369 subjects from the ADNI baseline cohort met with our

requirements, and were consequently selected in this study.

2.3. Pre-processing

All ‘raw’ PET data were converted to the ADNI format with same voxel size of 1.5 mm3

and a uniform resolution of 8 mm full width at half maximum resolution [26]. The PET

images were further aligned to the corresponding MRI image using FSL FLIRT [28], as

shown in Fig. 2 – Step 1. We then nonlinearly registered the MRI images to the ICBM 152

template [29], using the NREG algorithm [30,31] provided in Image Registration Toolkit

(IRTK) [30]. IRTK works in a coarse-to-fine manner with isotropic control point spaces

ranging from 12 mm to 1.5 mm in 4 octaves. Fig. 2 – Step 2 shows an example of nonlinear

registration using IRTK. Finally, the resulting registration coefficients were applied to warp

the aligned PET image into the template space, as shown in Fig. 2 – Step 3. After the PET

images were registered to the ICBM template, we visually checked all registered PET

images and found 17 of them had morphometric distortions that could not be corrected.

Therefore, we excluded these distorted images in this study and downsized the database to

352 subjects. The participants include 85 patients with AD, 181 subjects with MCI and 86

NCs. Automatic labeling of 83 brain regions was achieved in the template space using the

multi-atlas propagation with an enhanced registration (MAPER) approach [21]. The atlas

data required for MAPER comprising of 30 T1-weighted MRI images acquired from the

National Society for Epilepsy at Chalfont, UK. The segmentation protocols were described

by Hammers et al. [32]. The voxel-wise CMRGlc parameters were estimated based on raw

uptake values of PET data [17]. To eliminate gray-tone variations between individual scans,

we further normalized the CMRGlc parameters using the mean value of the cerebellum,

which is spared in AD and MCI.

2.4. Multi-Channel neurodegenerative pattern analysis

Pattern analysis could be carried out between different group pairs using different analysis

tools. We refer to each combination as a channel, and all channels are parallel to each other.

Multi-Channel analysis could provide complementary information to individual single

channel analyses. Therefore, in this study, we developed a Multi-Channel analysis algorithm

to depict the neurodegenerative patterns for AD and MCI. We first divided the ADNI dataset

into three groups based on their diagnoses, and then designed 10 parallel channels to analyze

the neurodegenerative patterns on all possible group-pairs. Finally, individual channels

voted on all brain regions to select the most discriminative regions. Table 1 shows the

combination of the group pairs and the analysis techniques, including the Two-One-Sided-

Test (TOST), SVM and Elastic Net (EN). In this study, we selected mean CMRGlc value of

each brain region as the observation values to carry out the Multi-Channel analysis, as it is
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simple and effective in capturing brain metabolism patterns and has been widely used in AD

and MCI diagnosis [10,13,15,18,33–36].

We first designed three channels (CH_1, CH_4, CH_7) based on the classic TOST on

AD/NC group pair, MCI/NC group pair, and AD/MCI group pair, respectively. TOST is a

classic statistical test in inference [37] and arguably the most commonly used test in

neurodegerative pattern analysis [7,8,15,20,21]. In a TOST, a given null hypothesis of

equivalence, H0, will be rejected when the p-value of the test statistic is smaller than a user-

defined threshold. In this study, we set the threshold as 0.05. The feature variables with

significance test statistics were outputted into one vector as the analysis result.

Another 3 channels (CH_2, CH_5, CH_8) were designed with SVM for same group pairs

as TOST. SVM is widely used in classification and regression [38]. When SVM is used with

the linear kernal to classify two groups of data, the hyperplane slopes on each dimension

could be used as the feature weights. Given a training set of feature-diagnosis pairs (xm, xm),

m = 1, . . ., M where xm ∈ RN and ym ∈{−1,1}M, the SVM solves the problem:

(1)

subject to ym(wT xm + b)≥1 − ξm; ξm≥0.

In this study, SVM based pattern analysis was performed in two steps. Firstly, we conducted

a 10-fold cross validation on the three-category classification using the LIBSVM [39] to

obtain the best estimate of C. When C was decided (C = 8 in this study), we then solved the

problem in Eq. (1) using CVX, a package for specifying and solving convex programs [40].

Among all the regions, we selected the regions with larger weights than the upper quartile of

the weight distribution.

We further designed 4 channels (CH_3, CH_7, CH_9, CH_10) using EN. EN is a well

established feature selection algorithm solving the problem:

(2)

where y is the response vector of M observations, X is the matrix of M feature vectors, X =

{x1, . . ., xm, . . ., xM}T, λ is a positive regularization parameter, and β is the vector with same

dimension as xm. EN introduced l1 and squared l2 penalty of β, which could encourage

grouping effect on feature variables and remove the limitation on the number of selected

features. These characteritics make EN very suitable for studies with a large number of

observations and a small number of features, or correlated features [41]. The ADNI data

used in this study are suitable for EN since the number of patients is much larger than the

number of features/brain regions, and the brain regions were highly correlated. Another

characteristic of EN is that it can be used for multi-categorical feature selection, which is not

supported by TOST and SVM. Therefore, we performed EN-based analysis on three group

pairs and also on the whole database with multiple classes. In this study, the weight of λ1/λ2

was set as 0.5. With no need to predefine the number of results or a statistic threshod for any

hypothesis, EN is able to select the features automatically.
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Ten channels were set up in parallel. We finally integrated the outputs from individual

channels for each brain functional region as:

(3)

(4)

where vc,n is the output of the nth region in the cth channel, and

(5)

This Multi-Channel scheme allowed the individual channels to vote on each brain region,

and set higher values on the feature variables recognized by more channels [34]. The votes

of each brain region in this study, were highly correlated with the brain structure's

discriminative power.

2.5. Feature extraction

As mentioned in Section 2.4, regional CMRGlc parameters are very simple and effective in

capturing patterns of brain hypo-metabolism and we used them as the basic features and

fused them into a N-element vector:

(6)

where xm is the mth image in the database, N is the number of selected regions, and xm,n is

the average CMRGlc parameter in the nth region. For a whole brain based method, the

feature vector has N = 83 elements. To clarify, region-wise mean CMRGlc parameters were

used in Multi-Channel analysis to select the most discriminative brain regions; they were

also used as basic features in AD and MCI characterization.

We further investigated three advanced feature descriptors and extracted more sophisicated

features incorporated in the Multi-Channel analysis method. The advanced features were

used to improve the characterization performance. All of the advanced feature descriptors

we used were specific for 3D data, since current neuroimaging data are usually collected in

3D format and 3D feature descriptors are superior to 2D feature descriptors in capturing the

spatial variations on volumetric neuroimaging data. We have verified the superiority of 3D

feature descriptors vs. their 2D counterparts in previous work [22–24]. The advanced

features based on spatial transforms were applied to each selected brain regions with a

bounding box where the non-related regions were filtered out using the zero-padding

technique.

We extracted 14 Haralick texture features [42] based on the 3D Gray Level Co-occurrence

Matrices (GLCMs). GLCM is widely used in texture analysis since it is capable of capturing
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the spatial dependence of voxel intensities in local neighborhood in an image. In this study,

the d parameters for GLCM algorithm were set as three steps (1, 3, and 5 voxels).

We further extracted the frequency features based on 3D Gabor wavelets and 3D discrete

curvelets, since they both performed well in general. Gabor wavelets could offer the optimal

simultaneous localization of both spatial and frequency information [43].

Different from Gabor wavelets, the Discrete Curvelet Transform (DCvT) is more sensitive

to the curvature features along the lines and boundaries [44]. A 3D curvelet can be defined

by a scale parameter j, an orientation parameter l, and a translation parameter k. The 3D

discrete curvelet bank was defined as having the same scale and bandwidth parameters as

the 3D Gabor wavelet bank. More implementation details could be found in our previous

studies [22–24].

2.6. Performance evaluation

We used the query by example paradigm in this study, and adopted the leave-one-out cross-

validation on the whole database. The similarity between any two feature-vectors was

calculated by the normalized mutual information [45].

We evaluated the performance using the mean average precision (MAP), i.e.:

(7)

where q is the index of the query, Q is the total number of queries, k is the rank in the

sequence of retrieved image, Kq is the number of total retrieved image for the query, pq(k) is

the precision at cut-off k in the result list, relq(k) is the relevance score of the kth retrieval

result given the query, and Tq is the number of relevant images associated with the query. In

this study, MAP is implemented slightly different from the classical way, since the group

sizes of AD and MCI do not match. We assume that there are at least 5 relevant cases exist

for each query, therefore we set the Tq = 5 for all the queries. We also used elastic relevance

criteria in this study, based on fact that MCI usually represents the transition state of a NC to

AD. Therefore, we set the relevance criteria as follows:

a. if the query is AD and the retrieval result is normal, or vise versa, then the

relevance score is 0:

b. if the retrieval result is from the same group of query, than the relevance score is 1:

c. for other scenarios, we set the relevance score as 0.25:
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To verify the effectiveness of the proposed method, we compared it to the global method

and other local methods, including the baseline method with whole brain features, the DOM

method with 40 preselected regions as listed in Table 2 based on literature [10–16], and

three state-of-the-art feature selection methods, i.e., TOST, SVM and EN, which were

equivalent to the single channels in our Multi-Channel framework. Same features and

evaluation metric were used across all methods.

3. Experiments and results

This section is divided into three subsections. Section 3.1 describes the pattern analysis

experiments (Phase 1) and demonstrates the derived patterns of each single channel

approaches and our proposed Multi-Channel approach. Section 3.2 describes the

optimization experiments (Phase 2) on identifying the most discriminative regions of the

brain based on the results from Phase 1 experiments. To validate the effectiveness of the

selected brain regions, we carried out a further series of validation experiments (Phase 3)

using the advanced features, as described in Section 2.5. The design of the Phase 3

experiments and the preliminary results were shown in the Section 3.3.

3.1. Multi-Channel pattern analysis

The pattern analysis experiments were carried out in 10 parallel channels in this phase

(Phase 1), as described in Section 2.4. Table 2 shows the selected BROIs and their final

voting scores of Multi-Channel analysis. The 40 BROIs based on literature studies [10–16]

were also listed for comparison. Diverse patterns were derived from different channels

providing complementary information to each other. CH_1, CH_2 and CH_3 recoginized

the Hippocampus, Posterior Cingulat Gyrus, Parietal Lobe as the sensitive regions to

distinguish AD from NC. Few regions were identified to distinguish MCI from NC by

CH_4, CH_5 and CH_6. Specificly no regions were selected by Elastic Net (EN) for

MCI/NC group pair. CH_7, CH_8, and CH_9 showed strong agreement on Parietal Lobe.

The pattern derived from multi-class EN analysis in CH_10 includes 18 regions spreading

around the Hippocampus, Amygdala, Cingulate Gyrus, Parietal Lobe. These findings were

consistent with known AD pathology. However, we also found the AD tended to affect the

Temporal Pole, Brainstem, Subgenual and Pre-subgenual Frontal Cortex. Fig. 3 illustrates

the patterns for all channels expected for the MCI/NC pair.

Multi_CH captured all regions detected by CH_1 to CH_10, thereby showing a more

spreading pattern. Furthermore, Multi_CH could depict the discriminative power of

individual regions on a more objetive basis, for more votes on a certain region means

stronger agreement among different channels in distinguising the disorders from each other

or the NCs. The pattern of Multi_CH involved more functional brain regions when

compared to the patterns of individual single-channel analyses, and the pattern's contrast

was remarkably increased, too.

3.2. Supervised pattern optimization

Multi-Channel pattern analysis identified the disorder sensitive regions, but resulted in an

overlarge pattern containing 67 brain regions with at least 1 vote from these single channels,
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as shown in Table 2. However, a considerable number of these brain regions were supported

by very few channels. For example, 19 out of the 67 brain regions were recognized by single

channels. Such regions are undesirable as they might be caused by biased group size or the

drawbacks of the pattern analysis algorithm, and hence decrease the characterization

performance.

To optimize the pathological pattern derived from Multi-Channel analysis in neuroimaging

characterization, we developed a learning-based pattern optimization approach, which tested

a set of feature selection criteria and helped to find the optimal subset of the brain regions in

the Multi_CH pattern. We first sorted the brain regions according to analysis result, and

then carried a series of retrieval experiments to characterize the AD and MCI subjects using

subsets of the 67 brain regions. The subset was selected in a ‘many to few’ manner based on

the regions’ votes. We designed 6 experiments in this phase (Phase 2). Regions with votes

larger than 1 were selected in experiment 1; regions with votes larger than 2 were selected in

the experiment 2; and so on.

The results of Phase 2 experiments were shown in Fig. 4, compared with the Baseline,

DOM-based, TOST, SVM, and EN methods. The best performance achieved when 21

regions were selected with the selection threshold of 4 for both AD and MCI, as highlighted

in Table 2. Overall, DOM did not enhance the AD and MCI characterization. DOM-based

method outperformed the baseline method on AD by 0.3%, but did not match baseline

performance on MCI with a decrease of 1.9%. The reason for the conflicting performance

on AD and MCI is that the DOM contains too many brain regions. On the one hand, the

DOM might have a negative impact on distinguishing AD subjects from NCs due to the

involvement of many MCI related regions. On the other hand, DOM also helps to

distinguish MCI cases from AD cases since many AD related regions might not have an

impact on MCI cases. Single pattern analysis methods, i.e., TOST, SVM and EN, were not

robust in AD and MCI characteriation. EN, taking the feature correlation into account, could

always achive better result than TOST and SVM. However, none of them could achieve

better performance than the Multi-Channel method when the vote threshold was set to 4.

3.3. Validation with advanced features

To validate the effectiveness of the derived pathological pattern, we employed several

advanced feature descriptors as discussed in Section 2.5 to extract various features from the

selected regions for analysis, and compared the performance to baseline and DOM-based

methods.

Tables 3 and 4 show the performances for AD and MCI when using different features,

including (a) the region-wise average CMRGlc parameters, (b) 3D-DCvT coefficients, (c)

3D-Gabor coefficients and (d) Haralick features from 3D-GLCM. The optimized Multi-CH
based pattern could facilitate the characterization of AD and MCI, compared to baseline and

the DOM-based method. The best performance (measured by MAP) was achieved by 3D-

Gabor at 56.3%, strikingly improved the baseline retrieval by 13.3%. 3D-GLCM and 3D-

DCvT also have comparable performance as 3D-Gabor, and all these three features could

better characterize AD subjects than the average CMRGlc parameters. The retrieval of MCI

subjects, on the other hand, was less impressive. The advanced features on the selected
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regions did not lead to better characterization than the baseline or DOM-based method. On

the contrary, advanced features combined with Multi-CH patterns resulted in even worse

performance than the baseline performance in MCI. In particular, the 3D-Gabor had the

poorest performance at 61.47%, which was 11.7% lower than the baseline. However, Table

4 shows an increase of MAP based on the Multi_CH pattern using the average CMRGlc

features, which was 1.6% higher than the baseline method and 3.1% higher than DOM-

based method. Average CMRGlc features also achieved the best retrieval accuracy of MCI

at 76.2%, and outperformed DCvT by 14.7%, Gabor by 6% and GLCM by 6.9%. Therefore,

we could conclude that the pattern derived by the proposed Multi-Channel analysis approach

overcomes the drawbacks of DOM and could enhance the characterization for AD and MCI,

and the improvements were striking when the most suitable features were extracted, i.e.: the

average CMRGlc parameters for MCI, and 3D-Gabor coefficients for AD.

4. Discussion

ADNI Dataset

The dataset comprised 352 subjects from the ADNI baseline FDG-PET database; more than

50% were diagnosed with MCI; ~25% were diagnosed with AD; and the others were NCs.

The disparity of the group sizes means there is a tendency to retrieve more MCI subjects;

therefore MCI has a higher retrieval rate than AD. To reduce the negative impact of the

large number of MCI subjects, we added a constraint when evaluating the retrieval

performance with MAP. We retrieved a fixed number of relevant subjects for all queries,

instead of the real number of relevant subjects. We set this number as 5 for this work.

Multi-Channel Analysis

Some brain regions with strong discriminative power might not be detected due to the limits

of single channel analyses. For example, SVM failed to detect Lingual Gyrus across all

group pairs (CH_2, CH_5 and CH_8), and TOST failed to detect the Left Posterior

Cingulate (CH_1, CH_4 and CH_7), although these regions are known as sensitive regions

for AD and MCI. Another example is the MCI/NC group pair (CH_4, CH_5 and CH_6)

where few brain regions were detected. The proposed Multi-Channel analysis, on the other

hand, could compensate for the drawbacks of single channel analyses by integrating the

analysis results from individual channels, and meanwhile highlighting the brain regions with

strong agreement among many channels thus generating a more reliable and discriminative

pattern. There are many ways to integrate single channel analysis results, and we adopted a

voting scheme in this study due to its simplicity and effectiveness. However, this voting

scheme does not take into consideration the correlation between individual channels, which

may result in redundant information. Therefore, our proposed Multi-Channel analysis

approach could be further optimized.

Supervised Pattern Optimization

Multi-Channel generated an over extended pattern, which consisted of 67 brain regions in

this study. To further optimize the neurodegenerative pattern, we tested a set of feature

selection threshold and finally identified 21 brain regions with the most discriminative

power. The Multi-Channel analysis results were consistent with other studies on
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Hippocampus, Cingulate Gyrus, Temporal Lobe, Parietal Lobe, but also suggested some

new AD and MCI biomarkers, i.e., Temporal Pole, Brainstem, Subgenual and Pre-

subgenual Frontal Cortex. Some sub-cortical regions, such as Nucleus Accumbens, were

also detected as sensitive regions to AD and MCI. Further investigation will be required to

verify if they were caused by inaccurate registration or acquisition procedures.

Feature descriptors

The proposed Multi-Channel pattern analysis approach greatly benefits the characterization

for AD and MCI. However, the characterization required careful selection of the features to

describe different groups of subjects. The average CMRGlc features were very simple

features requiring no higher-order calculations, and could measure the metabolic rate of

brain regions. It was the most suitable feature descriptor for MCI, because the functional

changes measured by CMRGlc for MCI subjects were moderate. However, the anatomical

changes in MCI were hardly noticeable. We further divided the CMRGlc parameters by the

mean value of whole brain intensity to remove the gray tone differences. However, for

severe AD, the CMRGlc would decrease on a whole brain basis, and gray tone correction

might alleviate the imaging differences between severe AD and NC subjects. Therefore,

such CMRGlc parameters with gray tone correction may not be suitable for severe AD cases

and can only be applied in non-severe AD or MCI subjects. However, if the patients are so

severe, we don not need any analysis to make a diagnosis. The advanced feature descriptors,

on the other hand, were more suitable to describe AD patients, since anatomical changes

began to manifest after AD onset and other features except for the metabolic rate should be

applied. GLCM could extract the texture features, whereas Gabor filters and DCvT could

capture the boundary and curvature features. Gabor filters convolved with a Gaussian kernel

function to localize the impulse responses in both spatial and frequency domain. In this

study, we found the average CMRGlc features achieved highest performance for MCI

retrieval at 76.2%, and 3D-Gabor coefficients exceeded all other features in AD retrieval

with a MAP of 56.3%.

5. Conclusions and future works

In this work we developed a Multi-Channel neurodegenerative pattern analysis approach for

characterization of the AD and MCI patients. The main advantage of our algorithm is its

capability to overcome the drawbacks of individual analysis techniques on various group

pairs. We further optimized the pattern by a supervised thresholding method, and

consequently 21 brain regions were selected as the most discriminative biomarkers for AD

and MCI. Our findings were congruent with established knowledge about pathological

progression in AD and MCI, and also suggested that Temporal Pole, Brainstem, Subgenual

and Pre-subgenual Frontal Cortex and Nucleus Accumbens, might also have a role in AD

and MCI diagnosis. We evaluated the proposed algorithm by applying the derived pattern on

the 352 subjects from the ADNI baseline FDG-PET dataset with various advanced feature

descriptors. Our algorithm achieved the highest performance in AD and MCI retrievals,

compared to the whole-brain based method and the DOM-based method.

For future work, the impact of gray tone correction on AD will be investigated. In addition,

we will further verify our Multi-Channel analysis approach using advanced feature fusion
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techniques. We also hope to investigate the role of Diffusion Tensor Imaging (DTI) in the

differentiation of AD and MCI within our Multi-Channel pattern analysis framework.
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Fig. 1.
Study design schematic.
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Fig. 2.
PET registration onto the template space.
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Fig. 3.
The 3D patterns derived from single channel and Multi-Channel analyses. The brain images

were generated using 3D Slicer (version 4.1) [46]. The MRI image, acquired from a normal

subject at ADNI, was used for illustration purposes only.
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Fig. 4.
The MAP for AD and MCI characterization compared to DOM and Baseline methods.

Single analysis approaches were also compared. (a) Feature Optimization for AD. (b)

Feature Optimization for MCI.
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Table 1

Confusion table of10 channels; digits in the table represent the channel index.

Group Pair TOST SVM EN

AD/NC 1 2 3

MCI/NC 4 5 6

AD/MCI 7 8 9

D/MCI/NC n/a n/a 10
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Table 2

The voting results for all 83 brain functional regions by Multi-Channel analysis. The first half regions are

disease-specific regions and included in DOMs. The second part regions are generally considered spared by

AD pathology.

Region index Brain functional region label (right, left) MultiXH scores

DOM regions: 40 regions based on literatures

(1.2) Hippocampus (R, L) (6,5)

(3,4) Amygdala (R, L) (3, 6)

(5,6) Anterior temporal lobe (R, L) (1,0)

(7,8) Anterior temporal lobe, lateral part (R, L) (0,3)

(9,10) Parahippocampal and ambient gyri (R, L) (4,1)

(11,12) Superior temporal gyrus, posterior part (R, L) (2,4)

(13.14) Middle and inferior temporal gyrus (R, L) (6, 4)

(15,16) Fusiform gyrus (R, L) (2, 2)

(20,21) Insula (R, L) (0, 0)

(24, 25) Cingulate gyrus, anterior part (R, L) (0, 2)

(26. 27) Cingulate gyrus, posterior part (R, L) (4, 5)

(30, 31) Posterior temporal lobe (R, L) (2, 1)

(32. 33) Inferiolateral remainder of parietal lobe (R, L) (6, 5)

(54, 55) Anterior orbital gyrus (R, L) (2, 1)

(60, 61) Postcentral gyrus (R, L) (2, 1)

(62. 63) Precuneus included in superior parietal (4, 4)

gyrus (R, L)

(68, 69) Medial orbital gyrus (R, L) (0, 2)

(70, 71) Lateral orbital gyrus (R, L) (1,2)

(72, 73) Posterior orbital gyrus (R, L) (2, 2)

(82, 83) Superior temporal gyrus, anterior part (R, L) (1,2)

Non-DOM regions: 43 regions spared by AD pathology

(17,18) Cerebellum (R, L) (1,1)

19 Brainstem (unpaired) 4

(22, 23) Lateral remainder of occipital lobe (R, L) (0, 3)

(28, 29) Middle frontal gyrus (R, L) (2, 0)

(34, 35) Inferiolateral remainder of parietal lobe (R, L) (1,1)

(36, 37) Caudate nucleus (R, L) (2, 2)

(38, 39) Nucleus accumben (R, L) (2, 4)

(40, 41) Thalamus (R, L) (1,0)

(42, 43) Pallidum (R, L) (1,2)

44 Corpus callosum (unpaired)

(45, 46) Lateral ventricle apart temporal horn (R, L) (0, 4)

(47, 48) Lateral ventricle, temporal horn (R, L) (3, 3)

49 Third ventricle (unpaired) 0

(50, 51) Precentral gyrus (R, L) (1,1)
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Region index Brain functional region label (right, left) MultiXH scores

(52, 53) Straight gyrus (R, L) (0, 0)

(56, 57) Inferior frontal gyrus (R, L) (1,1)

(58, 59) Superior frontal gyrus (R, L) (0, 0)

(64, 65) Lingual gyrus (R, L) (3, 2)

(66, 67) Cuneus (R, L) (0, 1)

(74, 75) Substantia nigra (R, L) (2, 5)

(76. 77) Subgenual frontal cortex (R. L) (6, 6)

(78, 79) Subcallosal area (R, L) (3, 4)

80, 81) Pre-subgenual frontal cortex (R, L) (6, 1)
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Table 3

The AD patient characterization performance (MAP ± standard deviation, %) of feature descriptors.

Extraction Feature

Regional CMRGlc 3D-Gabor 3D-DCvT 3D-GLCM

Baseline 43.48 ± 15.44 43.00 ± 12.08 43.71 ± 13.20 45.26 ± 12.75

DOM 43.75 ± 17.42 46.59 ±11.30 46.53 ± 12.55 33.48 ± 08.36

Multi-CH 46.69 ± 17.25 56.32 ± 08.72 51.63 ± 16.85 48.05 ± 17.21
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Table 4

The MCI patient characterization performance (MAP ± standard deviation, %) of feature descriptors.

Extraction Feature

Regional CMRGlc 3D-Gabor 3D-DCvT 3D-GLCM

Baseline 74.63 ± 15.07 73.18 ± 15.17 72.11 ± 14.05 70.19 ± 13.99

DOM 73.10 ± 14.86 71.69 ± 12.98 71.83 ± 14.33 71.18 ± 25.01

Multi-CH 76.20 ± 15.32 61.47 ± 06.15 70.25 ± 11.87 69.27 ± 16.43

Comput Med Imaging Graph. Author manuscript; available in PMC 2015 September 01.


