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Abstract

Diffusion kurtosis imaging (DKI) is a new model in magnetic resonance imaging (MRI)

characterizing restricted diffusion of water molecules in living tissues. We propose a method for

fast estimation of the DKI parameters. These parameters –apparent diffusion coefficient (ADC)

and apparent kurtosis coefficient (AKC) – are evaluated using an alternative iteration schema

(AIS). This schema first roughly estimates a pair of ADC and AKC values from a subset of the

DKI data acquired at 3 b-values. It then iteratively and alternately updates the ADC and AKC until

they are converged. This approach employs the technique of linear least square fitting to minimize

estimation error in each iteration. In addition to the common physical and biological constrains

that set the upper and lower boundaries of the ADC and AKC values, we use a smoothing

procedure to ensure that estimation is robust. Quantitative comparisons between our AIS methods

and the conventional methods of unconstrained nonlinear least square (UNLS) using both

synthetic and real data showed that our unconstrained AIS method can significantly accelerate the

estimation procedure without compromising its accuracy, with the computational time for a DKI

dataset successfully reduced to only one or two minutes. Moreover, the incorporation of the
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smoothing procedure using one of our AIS methods can significantly enhance the contrast of AKC

maps and greatly improve the visibility of details in fine structures.
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imaging

1. Introduction

Diffusion tensor imaging (DTI) is a non-invasive technique for characterizing the motion of

water molecules in living tissues [1]. It assumes that the random displacement of water

molecules approximately follows a Gaussian distribution. Although DTI has been

successfully applied in many neuroimaging studies, the assumption of a Gaussian

distribution of motion is not strictly accurate because of the effects of tissue microstructure

on the diffusion of water. New methods have been proposed to account for the non-Gaussian

components of this diffusion, such as the Multi-Exponential model [2,3] or the q-space

imaging technique. The Multi-Exponential model assumes that a single voxel may consist of

multiple compartments, and diffusion in each compartment satisfies Gaussian model. The

consolidated diffusions in all these compartments thus results in non-Gaussian phenomenon.

In contrast, the q-space imaging technique makes no assumptions about the number of tissue

compartments, but instead directly evaluates the displacement probability distribution

function of water molecules [4,5].

Jensen and his colleagues recently proposed a new and efficient model, called diffusion

kurtosis imaging (DKI) [6], for studying the non-Gaussian characteristics of water diffusion

in tissue structures [7]. This model makes no assumption about the number of tissue

compartments, and requires less scanning time (approximately 10 min) than does the q-

space imaging. It introduced a kurtosis term into the expression of displacement distribution

to evaluate the deviation from a Gaussian model. This kurtosis coefficient was then

incorporated into a tensor model [8-10]. However, the kurtosis value could be over-

estimated significantly in certain cases, and investigators have developed a method that uses

a framework for estimation of constrained maximum likelihood (CML) with a Rician-noise

model to prevent this from happening [11]. Anyway, compared to conventional DTI indices,

the kurtosis value provides additional information of microstructure complexity in both

white and gray matter, and is more sensitive to the presence of tissue heterogeneity [12-14].

Due to these advantages of the kurtosis term, DKI has been successfully applied to human

studies on aging [15], attention deficit hyperactivity disorder [16], cerebral glioma [17],

epilepsy [18], head and neck cancer [19], and animal models [20].

The DKI model uses conventional diffusion weighted imaging (DWI) data, but it requires

data acquired with no less than 3 different b-values. The key parameters of the DKI model,

including the apparent diffusion coefficient (ADC) and the apparent kurtosis coefficient

(AKC), can be estimated using an unconstrained nonlinear least squares (UNLS) method

[6]. This method performs robustly but usually requires at least ten minutes to complete

processing one single DKI dataset typically containing 30 slices acquired using 6 b-values
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along 30 gradient directions, which is excessively time consuming for clinical applications

in practice. To shorten the processing time, Jensen et al. suggested directly solving the

nonlinear function using 3 b-value data [21], which would allow a dataset to be evaluated in

real time. Unfortunately, this method works only for cases of 3 b-values, and is therefore not

a general solution. Recently, a new method, namely constrained linear least squares (CLLS),

was proposed, achieving a fast speed of computation and comparatively better accuracy

[22]. The CLLS method re-parameterizes the nonlinear function of DKI, and transforms it

into a 2-variable linear problem. However, this approach needs to acquire data along more

than 15 diffusion gradient directions to estimate ADC and AKC tensors, which therefore

requires lengthy acquisition time.

We propose a method for rapid estimation of DKI parameters that uses an alternative

iteration schema (AIS). It calculates ADC and AKC alternatively using a simple calculation

formula and thus significantly reduces the calculation complexity. In addition, it adopts an

iteration framework, which can easily incorporate extra constraints and smoothing

procedures to improve the accuracy and robustness of the estimation. More specifically, the

AIS method estimates ADC and AKC for each gradient direction independently, with each

individual direction using data acquired at multiple b-values. In this algorithm, we first

estimate initial values of the ADC and AKC using data acquired at baseline and two non-

zero b-values from a DKI dataset. Second, we use an iterative framework to calculate these

two parameters alternately until the results converge. Furthermore, we incorporate

constraints and a smoothing procedure in each iteration to ensure the accuracy and

robustness of the estimation (see the Method Section). Thus, we have evaluated three

versions of the AIS method: the original or unconstrained AIS (UAIS, section 2.2), the

constrained AIS (CAIS, section 2.3), and the smoothed and constrained AIS (SCAIS,

section 2.4). In the evaluations, we used both synthetic and real data, against a number of

other methods popularly in use. In a recent study on epilepsy [18], we successfully applied

the proposed method to DKI data and achieved satisfactory results.

2. Method

In this section, we first briefly introduce the conventional UNLS method, discussing its high

computational complexity due to the nonlinearity of DKI. Then we present an assumption

on the nonlinear function that leads to an alternative iteration schema to simplify the

calculation, thereby yielding the UAIS method. In addition, constraints and an additional

smoothing procedure are subsequently incorporated into the iteration framework to improve

the estimation accuracy and precision, resulting in the CAIS and SCAIS methods. Finally,

an overview will be given to elaborate the algorithmic details of the AIS methods.

2.1 The UNLS Method

The DKI model containing the ADC and AKC terms is a nonlinear function:

(1)
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in which D and K denote ADC and AKC, respectively, and b denotes the b-value. S(b) and

S(0) are the signal intensity of DWI data and the baseline measurement without applying

any diffusion gradient, respectively.

Conventional UNLS methods optimize ADC and AKC value simultaneously using

nonlinear curve fitting [6]. The fitting procedure aims to minimize the Euclidean Norm of

difference between S(bn)/S(0) and exp(-bn + 1/6 · bn
2D2K), as shown below:

(2)

where N denotes the total number of b-values involved in nonlinear fitting, and n is the

current index of b-value. In Eq. (2), the 2nd order term of b-value accounts for the main

difference between the DKI and DTI models.

The Levenburg-Marquadt algorithm is commonly used to solve the minimization problem of

the nonlinear cost function [23], namely Eq. (2). However, the calculation of this method

needs iterations and requires a matrix inversion and partial derivatives in each iteration In

addition, the parameters are normally estimated in a voxel-wise fashion. The computational

burden is therefore very heavy for a DKI dataset because of the involvement of a large

number of voxels.

In fact, logarithm can be applied to Eq. (1) for computational efficiency, thus the

minimization turns to be log-nonlinear least squares fitting as follows:

(3)

where wn is a weight for DWI measurement of the nth b-value, and should be set as wn =

S(bn)2 [24].

2.2 The UAIS Method

Considering that avoiding nonlinear fitting may significantly shorten computation time, we

introduce as follows an iterative schema, i.e., the UAIS method, to update ADC and AKC

alternatively and progressively. The nonlinear fitting thus degenerates into a process of

linear fitting.

2.2.1 The Iteration Framework—Supposing that we want to calculate an updated ADC

value from Eq. (3), while a current estimation of the ADC and AKC values have already

been obtained from a previous step, thus the following equation should be satisfied:

(4)
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where Ki denotes AKC calculated from the ith iteration (the previous iteration step), Di+1 is

the new ADC value to be calculated and is the only unknown variable to be estimated in Eq.

(4). However, Eq. (4) is a nonlinear function due to the 2nd order term of Di+1, which is hard

to solve.

We further assume that the Di+1 in the 2nd order term can be approximated by Di.

Consequently, the solution of Di+1 can be greatly simplified. We can do so because the

terms “−bD+(1/6)×b2D2K” in Eq. (3) is essentially a Taylor expansion of ln[S(b)/S(0)] in

the power of b[6] . The 2nd order term of b is theoretically much smaller than the 1st order

term, thus estimation error introduced by replacing Di+1 with Di in the 2nd order term is

comparatively small and can be ignored. Di+1 can thus be estimated simply using a linear

least squares fitting with an explicit analytical solution as follows:

(5)

Now using this newly obtained ADC, we can derive the formula for estimation of AKC in a

similar approach. Again, because AKC only contains linear term, Ki+1 also has an analytical

solution:

(6)

In this iteration schema, ADC and AKC are updated alternatively at each step of the

iteration. A new ADC can be calculated based on the latest values of ADC and AKC in the

previous steps, and a new AKC can be subsequently updated via the currently calculated

ADC. Consequently, the estimation will be alternatively repeated until no significant

difference of both ADC and AKC values is observed between two consecutive iterations.

In contrast to the regular nonlinear fitting, the computational expense of our UAIS is much

lower, although it employs the same cost function. This is because our UAIS method

introduces a simple form of linear calculation in each iteration. The previous work [22]

made an assumption that if the 2nd order term, D2K, can be treated as a linear variable

independent of the 1st order term “D”, then the nonlinear DKI function can be re-

parameterized into a two-variable linear problem, and the iteration will converge. In our

work, we therefore approximate the 2nd order term linearly but in a different way. Taking

the ADC and AKC in the 1st and 2nd order term respectively as two independent variables,

we calculate them alternatively. Thus, in the calculation of ADC, we can approximate the

2nd order term using a pair of ADC and AKC values from a previous iteration which is

based on Taylor expansion, so that the actual role of this 2nd order tem is simply similar to

an independent 1st order term. Moreover, initializing ADC and AKC with descent accuracy

(described in Section 2.2.2) will further guarantee that such approximation is feasible and

practical. We thus can degenerate the nonlinear least squares function into linear least square

functions of two variables. Mathematically, such a linear least squares problem is convex
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and always has a closed-form solution that is unique [25]. This property therefore guarantees

that our iteration process converges.

2.2.2 Initialization—Now let us go back to the issue of how to initialize ADC and AKC

values as the basis for starting the iterative process. The three-points technique proposed in

[14] actually provided an efficient solution to this issue. It directly solves the DKI nonlinear

equation, namely Eq. (1), using DKI dataset based on a subset of the DWI data that requires

data at one baseline and two nonzero b-values. Thus, initial ADC D0 and initial AKC K0 can

be estimated as follows:

(7)

where b1, b2 are the two nonzero b-values. D(1), D(2) are diffusion coefficients calculated by

their individual DWI data at the corresponding b-value:

(8)

This initialization gives a nice approximation of ADC and AKC values that benefits the

convergence process of our method. It also ensures the effectiveness of our approximation

of the 2nd order term as outlined in the last section. Now, we have all the components for

UAIS.

2.3 The CAIS Method

To ensure that the parameters are physically and biologically plausible, we apply constraints

in every iteration step to the UAIS method, thereby making it CAIS. We know that ADC

must be non-negative, which is also demanded by the conventional DTI model [14].

Although AKC can be either positive or negative [7], and in theory the feasible minimum of

AKC is -2, multi-compartment diffusion models and empirical evidence in the brain suggest

a super-Gaussian displacement distribution, indicating that the minimum of AKC should be

zero but not -2 [26], therefore AKC has to be non-negative [22]. Moreover, S(b) is supposed

to be a monotonically decreasing function of the b-value, and the upper boundary of AKC

should be set as [14]:

(9)

2.4 The SCAIS Method

Although these constraints can well confine ADC and AKC within reasonable ranges, they

sometimes are still vulnerable to estimation errors. The principle of the DKI model shows

that the estimation of AKC strongly depends on the accuracy of ADC value. From Eq. (1),

we derive the correlation between AKC and ADC as K = 6(ln(S/S0) + bD)/(b2D2). If the

estimated ADC contains a small error εD (εD ≈0 or D + εD ≈ D), then the transferred error

εk to AKC will be
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(10)

As ADC values are usually in the scale of 1 μm2/ms, εK will be 2.4∼12.0 times as large as

εD at b-value 500∼2500 s/mm2. For smaller ADC values, εK will be even larger. For

example, if the true values of a voxel are ADC = 0.3 μm2/ms and AKC = 2, when noise or

artifacts introduces an error εD = -0.1 μm2/ms, according Eq. (1), the estimated AKC is -3 at

b-value = 2000 s/mm2. Although AKC will be constrained to be non-negative, zero is

definitely not an acceptable result in this case.

To minimize the potential errors as alerted by Eq. (10), we further develop the CAIS method

into the smoothed and constrained AIS (SCAIS) method, which estimates AKC using

smoothed ADC in each iteration step. We simply adopt a 3D Gaussian filter within a 3×3×3

cubic neighborhood. To keep the original spatial resolution and avoid over-smoothing, the

smoothing is not directly applied to ADC. Instead, we calculate a temporary version of the

smoothed ADC map in every iteration only for AKC estimation.

2.5 Overview of the Iteration Schema

In brief, our ultimate alternative and iterative schema can be described as follows:

1. Initialize ADC and AKC

2. REPEAT

3. Update ADC

4. Apply ADC constraint

5. Smooth ADC and get an intermediate version of ADC ( for SCAIS only )

6. Update AKC

7. Apply AKC constraint

8. UNTIL convergence

3. Experiment

We compared our proposed methods with the conventional UNLS method using both

synthetic data and real DKI data. In this comparison, the CLLS and CML methods were also

considered. For a fair comparison, we modified the CLLS method to be capable of directly

calculating ADC and AKC along each independent gradient direction but not using the

tensor models. Moreover, the original CLLS method did not consider any weighting term as

presented in Eq. (3). We thus examined both the original and the weighted versions of the

CLLS methods (CLLS & WCLLS) in our experiments. The names and their abbreviations

of all these methods are listed for readers' convenience (Table 1).

For the algorithm parameters, we used Levenberg-Marquardt algorithm in the UNLS

method and the initial ADC and AKC were set at 0 μm2/ms and 0. In the three versions of

our method, namely UAIS, CAIS and SCAIS, we terminated the iteration processes

whenever the updating differences of the estimated ADC and AKC values became less than
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0.001 μm2/ms and 0.001, respectively. We used a subset of a complete DWI dataset with

two nonzero b-values, including one near 800 s/mm2 and one at the maximal available (2600

s/mm2), to initialize the three AIS methods, which is based on our previous study that

investigated the optimized DKI acquisition parameters and imaging schemas [27]. For the

smoothing procedure in SCAIS, a Gaussian kernel with full width at half maximum (FWHM)

of 1.5 pixels (σ = 0.64 pixel, as FWHM = 2 σ (2Ln2)1/2 ≈2.35482 σ) for synthetic data and 3

mm (σ ≈ 1.27 mm or 1.5 voxels) for real data was used for ADC smoothing. All these

algorithms were implemented in Matlab (http://www.mathworks.com) on a Linux platform

(CPU 1.0 GHz, Memory 8G).

3.1 Experimental Design

3.1.1 Synthetic Data for DKI Model—In the first experiment, we wanted to compare

quantitatively the performance of our iteration schema with that of the conventional UNLS,

CLLS, WCLLS, CML methods. Both constrained and unconstrained versions of these

methods were compared.

A synthetic DWI dataset of 6 b-values (0∼2500 s/mm2) was constructed. This construction

was a procedure reversing the process for parameter estimation. We first created a pair of

2D ADC and AKC maps. The map consisted of 9 columns, in which we set the values of the

ADC and AKC pairs at (0.4, 2.0), (0.5, 1.8), (0.6, 1.5), (0.8, 1,2), (0.9, 1.0), (1.0, 0.9), (1.2,

0.8), (1.8, 0.6), (2.5, 0.4), based on statistics in human data [6]. The order of the columns is

randomized to avoid smooth changes across the borders of the neighboring values in the

phantom, which somehow simulated the structural presentation in real-world human data

(Fig.1). Certainly, each pair of ADC and AKC satisfied the physical and biological

constraints, as outlined in Eq. (9). We then used these ADC and AKC maps to calculate

DWI data basing on Eq. (1), with the baseline signal intensity at 200. In the last step, we

superimposed Rician noise to the synthetic DWI data to mimic the realistic noisy situation in

an MRI system. Because Rician noise originates from independent Gaussian white noise in

real and imaginary channels, we simulated the noise as follows:

(14)

where I0 was the noise-free signal and IN the final noisy signal; and n was the Gaussian

noise with zero mean and standard deviation (STD) σ. We added 5 levels of Rician noise

with the STD ranging from 2 to 10 in both the real and imaginary channels. The

corresponding signal-to-noise ratios (SNR) of the simulated DWI data were thus from 50 to

10.

The ADC and AKC maps were estimated from the currently simulated DWI data using each

estimation method. For quantitative comparison, we evaluated the general quality of the

estimated parameter maps using Root Mean Square Error (RMSE):
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(15)

where Ω is a mask for region-of-interest (in this experiment, the mask simply covered the

whole image), I denotes either the estimated ADC or the AKC map, and u is the

corresponding reference map.

We further evaluated the effect of employing the smoothing procedure in our SCAIS by

comparing it against the CAIS method, which differed only without using the smoothing

procedure. We conducted the evaluation by inspecting their estimation bias (difference

between estimated parameters and its ground truth) and variance of ADC and AKC, which

treats the maps provided by the UNLS method as reference. We consider these two indices

as a complement of RMSE, which would reflect the estimation accuracy and precision,

respectively.

We also inspected the converging speed of our AIS and the conventional UNLS methods.

We recorded after each iteration step the RMSE of the resulting ADC and AKC. The

WCLLS/WULLS and CLLS/ULLS were not included in this comparison because they are

not iterative methods.

Finally, we evaluated the impact of smoothing ADC on estimating AKC, which was only

included in the SCAIS method. The FWHM of Gaussian kernel was set at five different

levels, namely 0.5, 1.0, 1.5, 2.0, 3.0 voxels. To carefully examine the inaccuracy that could

be propagated from the smoothing ADC to AKC, we calculated the residual maps in

addition to quantitative comparisons of the RMSE values of AKC.

3.1.2 Synthetic Data for Bi-Exponential Model—To examine whether exactly the

DKI parameters can be accurately estimated when diffusion deviates from Gaussian model,

we created another synthetic dataset based on bi-exponential model for further evaluation of

the performance of these DKI methods. Bi-exponential model assumed that a single voxel

may consist of 2 compartments, and the diffusion signal decayed by formula S(b) = S(0) (λ

exp(-bD1) + (1-λ) exp(-bD2)), where D1 and D2 are diffusion coefficients in the two

compartments, and λ is a weighting factor of the first compartment.

We constructed the corresponding synthetic DWI dataset of 6 b-values (0∼2500s/mm2) with

a procedure similar to that in the previous section. We first created two ADC maps, one has

a fixed value of 0.5 μm2/ms, and the other contains ADC values increasing from 0.0 to 1.0

(increment 0.05) μm2/ms. λ was set at 0.5. We then calculated DWI data with a baseline

signal intensity at 200, and added 5 levels of Rician noise to the DWI data (SNR from 10 to

50).

Again, we used RMSE values to quantify estimation error of ADC and AKC maps

calculated by each of the methods. The maps calculated from noiseless DWI data using

UNLS method were taken as the ground truth.
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3.1.3 Real Data—In a third experiment, we evaluated the practical performance of our

methods against the UNLS method using real-world human datasets. DKI data from five

healthy volunteers were collected on a 3T Siemens Trio system at East China Normal

University with their written consents and an approval from the local institutional review

board (IRB). Each dataset contained one baseline and 11 DW images at non-zero b-values

ranging from 600 to 2600 s/mm2 with an interval of 200 s/mm2. The maximum and

minimum of b-values adopted here were similar to the recommended values in previous

reports [6,9]. The other parameters were: 12 non-parallel diffusion gradient directions,

number of excitation (NEX) = 2, TR = 5300 (3 participants) / 6100 (2 participants) ms, TE =

110 ms, matrix = 128×128, FOV = 256×256 (4 participants) / 230×230 (1 participant) mm2,

slice thickness = 3mm with no gap, number of slice = 34 (3 participants) / 39 (2 participants)

total scan time 22 min 53 sec (3 participants) / 27 min 22 sec (2 participants). (Note that the

imaging parameters for the 5 participants were slightly different because these were the data

collected in history for different research purposes. We did not redo data collection because

we believe that the variations existing in the datasets could better serve our purpose for

evaluating the performance of the methods under various conditions.) To minimize possible

noise and artifacts, we acquired 8 extra baseline images so that we got a total of 10 baseline

imaging data.

In the preprocessing steps, we first corrected all DWI data for eddy-current induced

distortion using “eddy correct” toolbox of FSL (http://www.fmrib.ox.ac.uk/fsl/), and then

routinely regularized using a 3D Gaussian kernel with FWHM = 3 mm [15,17,22]. Next, we

averaged the 10 baselines and the 2 repetitions of the DWI images, respectively, after they

were spatially coregistered.

A DKI dataset typically contains data acquired at 3 to 6 b-values. We thus constructed

datasets with DWI data of 6, 5, 4 and 3 b-values (in short, 6b, 5b, 4b and 3b) extracted from

the complete datasets (12 b-values) in a similar way as reported [27], which are commonly

used configurations in real clinical studies. The b-values involved in these newly constructed

individual datasets were nearly equally distributed (Table 2).

We first quantitatively and visually compared our UAIS schema with the UNLS method,

using subsets of the DWI data acquired at 4, 5 and 6 b-values. This test inspected how well

the UAIS schema can approximate the UNLS method. Therefore, we calculated their RMSE

values of the ADC and AKC maps for quantitative comparison, which again referenced the

parameter maps estimated from the complete dataset by UNLS as for comparison. In

addition, we also visually compared their corresponding mean diffusion (MD) and mean

kurtosis (MK) maps (calculated by averaging ADC and AKC along all available gradient

directions). Finally, we compared the convergence performance of the two methods. In this

study using real data, we did not quantitatively compare the CAIS and SCAIS methods with

UNLS because we will see in the first experiment that the SCAIS and CAIS methods may

outperform the UNLS method due to the physical, biological constraints and smoothing

procedure. We also visually compared CAIS and SCAIS methods on the AKC and MK

maps.
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3.2 Results

3.2.1 Synthetic Data for DKI Model—The results of the first experiment showed that

our proposed AIS methods performed equally or better than the other methods. The RMSE

values of ADC and AKC maps calculated from most of the methods were very close to each

other, including the constrained methods such as CNLS, WCLLS, CML, CAIS, and their

unconstrained version (Fig. 2), thus our CAIS and UAIS methods showed equivalent

performance as other currently available methods. Furthermore, using the mentioned

smoothing procedure, our SCAIS method achieved lower RMSE in AKC than other

methods at every noise level (Fig. 2). In addition, we also found that the RMSE values of

ADC using CLLS/ULLS were significantly higher than the other methods.

The evaluation of estimation bias and variance showed that the smoothing procedure in

SCAIS significantly improved both the estimation accuracy and precision of AKC (Fig. 3).

For ADC, both SCAIS and CAIS methods achieved accurate results with very small

estimation bias and variance around 0.01μm2/ms and 0.02, respectively (a typical ADC

value is in the scale of 1.0 μm2/ms). Because the differences were almost hardly perceivable,

they were not shown here.

Visual inspection of the ADC and AKC maps agreed with the analyses that the SCAIS was

more robust than other methods under heavier noise for AKC, especially in the region of

low ADC and high AKC (Fig. 4). We did not include CNLS, ULLS, WULLS/WCLLS,

UML, UAIS and SUAIS methods in the visual comparison because we have seen in the

previous RMSE analysis that these methods performed very similarly to that of UNLS,

CLLS, CML and CAIS.

As to computational efficiency, we had to choose not to compare the exact time cost of each

algorithm. Because calculation time strongly depend on implementations of methods,

although we conducted the experiments universally on the same hardware and did find that

our proposed methods CAIS/UAIS/SCAIS/SUAIS cost less than a fraction of second, while

all the other methods cost in the scale of seconds (modified CLLS/ULLS/WCLLS/WULLS),

minutes (CNLS/ UNLS/ UML/CML). Based on our implements, our CAIS/ UAIS and

SCAIS/SUAIS actually took only around 0.3 second.

In addition, the inspection on the convergence performance showed that the estimation error

of all our 3 AIS methods decreased quickly and became comparatively stable within less

number of iterations (generally only 2 ∼ 3 iterations) than the UNLS method in every noise

level (Fig. 5, Rows 2, 3, 4). The UAIS method needed 10 ∼ 12 iterations to converge. While

iteration number decreased to 8 ∼10 when constrains were superimposed (namely CAIS

method, Fig. 5 Row 3), and the number further decreased to 6 ∼ 8 when smoothing was

applied (namely SCAIS, Fig. 5 Row 4).

The evaluation of the impact of the smoothing procedure on AKC maps showed that

smoothing ADC did have direct influence on AKC estimation. The mean RMSE of AKC

thus estimated were 0.3118, 0.2245, 0.1839, 0.1837, 0.1943 when FWHM was set from 0.5

to 3.0 pixels, and the lower RMSE appeared at FWHM in the range between1.5 and 2.0

Yan et al. Page 11

Comput Med Imaging Graph. Author manuscript; available in PMC 2015 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



pixels. The comparison of AKC residual map indicated that when FWHM ≥ 2.0 pixels,

unexpected artifacts (e.g., line-structure) began to appear (Fig. 6).

In general, the SCAIS method appeared to perform the best among all these opponents.

3.2.2 Synthetic Data for Bi-Exponential Model—The results using the bi-exponential

model again confirmed a consistent conclusion as in Section 3.2.1 that in the case of using

the bi-exponential model, our proposed methods (with and without constraints) could still

perform equally or better than the other methods. The RMSE values of ADC and AKC maps

calculated from most of the methods were very close to each other, and our SCAIS method

achieved the lowest RMSE at every noise level (Fig. 7). Again, our CAIS/UAIS and SCAIS/

SUAIS methods took only around 0.01 second, which was by far the fastest ones compared

with all the other methods, based on our experiment implementation and the identical

hardware.

In general, the experiment results using simulated datasets suggested that our proposed

methods indeed can perform equally or better than the other methods that are popularly in

use, but significantly faster.

3.2.3 Real data—The comparison between UNLS and UAIS showed once again that ADC

and AKC maps calculated from these two methods had similar visual appearance (Fig. 8)

and similar RMSE (averaged over 5 volunteers). The RMSE of ADC and AKC calculated

using our UAIS method differed only slightly (difference around 0.01) from those using the

conventional UNLS method in 6b, 5b and 4b cases (Table 2).

The computational time of our UAIS method is less than two minutes, varying with the

number of b-values involved in each combination (Table 2). It took about 116 seconds in 6b

cases and 7 seconds in 3b cases.

The test of convergence speed using these real datasets showed also that our UAIS method

converged quickly and became comparatively stable within less than 6 iterations (Fig. 9).

The CAIS and SCAIS methods also converged very quickly within 3 to 6 iterations. As

predefined in the Experiment Design Section, the iteration terminated whenever the

updating differences of the estimated ADC and AKC values were below a predefined

threshold.

The visual comparison between our three AIS schemas showed that the constraints and

smoothing procedures have significant impacts on the quality of the estimation of kurtosis

maps. We observed unwanted effect of dark band in AKC and MK maps estimated using

UAIS and CAIS methods as well as in the reference map where ADC was low and AKC

high (Fig. 10). In contrast, AKC and MK maps of SCAIS showed no dark-band effect, and

meanwhile significantly enhanced tissue visibility in the AKC map (Fig. 10), making the

details of delicate structures in the brain highly visible (Fig. 11). The additional

computational time for smoothing procedures was limited, taking only an extra of 20 ∼ 40

seconds in total for the datasets we used in this work, depending on the number of iterations

needed to achieve sufficient accuracy.
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4. Discussion

The conventional methods calculate ADC and AKC value using nonlinear curve fitting,

costing huge amount of computational time to achieve adequate accuracy. We propose in

this paper the AIS method family with great efficiency for DKI parameter estimation which

uses an iterative schema to calculate ADC and AKC alternately. It reduces the

computational time to only 1 or 2 minutes for processing one complete DKI dataset of a

real-world brain. The AIS method has three versions. UAIS is the unconstrained AIS

method. Our experiments have shown that UAIS can very well approximate the

conventional UNLS method but with significantly accelerated speed. This high efficiency

attributes to the following three factors: (1) the rapid alternative updating procedure, (2) low

computational cost using linear computation in each iterative step, and consequently (3) the

fast convergence nature of the solution for fast reaching stability.

In addition, by incorporating the constraints and the smoothing operation, our CAIS and

SCAIS methods provide equal or even better accuracy in calculating DKI parameters;

therefore, they are better alternatives readily to replace the conventional UNLS method. We

have seen that our SCAIS method has provided generally the best performance (accuracy,

precision, convergence). In particular, the smoothing procedure in SCAIS can significantly

improve the estimation accuracy and precision of AKC. Due to these advantages, the SCAIS

method can effectively suppress the dark band effect often seen in the DKI maps generated

by conventional methods (Fig. 11), which are not supposed to present and therefore is

actually a born defect of the UNLS method. For example, these dark bands were also

surprisingly reported in the splenium and the genu of the corpus callosum from previous

work when UNLS was employed [22]. Using our real data with a preprocessing step of DWI

data smoothing in addition to eddy-current correction and other routine processing

procedures, the SCAIS method completely removed the dark bands in MK and AKC maps.

Moreover, SCAIS greatly enhances the visibility of the fine brain structures that are usually

invisible in the DKI maps generated by those regular methods (Figs. 8 and 9). These desired

features are extremely useful for subsequent processing steps using the DKI data, such as

image segmentation or DKI-based fiber tracking.

The CLLS method was recently proposed for accelerating DKI estimation [22]. This method

provided another way to degenerate the nonlinear DKI function to a linear one, which treats

the 2nd order term of ADC (containing AKC) in the nonlinear function as one linear

variable. Thus, DKI parameters can be calculated by a linear least squares method with very

high computational efficiency. In the experiments, we have seen that the ADC estimated

from CLLS method has higher estimation error (Fig. 2), which is probably due to

inappropriately weighting the logarithm-transformed term in the cost function Eq. (3).

Compared to other methods, our AIS methods have two major advantages. First, different

from UNLS, CML and CLLS, our method adopts a framework of alternative iteration, and

uses the strong dependency between ADC and AKC values. As discussed in the Method

section, a small estimation error (may originated from noise) of ADC may cause significant

variation in AKC calculation. Therefore, we proposed SCAIS method to smooth ADC map

in each iteration for progressively more accurate estimation of AKC in addition to applying
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biological and physical constraints. The experiments showed that SCAIS method has

successfully improved the quality of MK map. Second, compared to the CLLS method that

demands DKI data along at least 15 gradient directions, our method imposes no mandatory

requirements on the number of gradient directions. It can also be incorporated easily into

other reconstruction models, such as 2nd and 4th order tensor model (for AKC) or spherical

harmonics model, to calculate more robust and valuable quantities.

Moreover, whereas the conventional methods adopt different strategies for treating datasets

acquired with 3 b-values and datasets acquired with more than 3 b-values, our schema uses a

uniform framework in which the 3 b-values dataset is only a special instance that can serve

as a parameter initialization for the subsequent iterations. Therefore, our approach is

relatively more flexible and can be applied to DKI datasets acquired using an arbitrary

number of b-values (certainly, no less than 3) and gradient directions.

One limitation of our method is that it does not calculate the diffusion and kurtosis tensors,

and consequently it will not directly provide those tensor-based quantities, such as the axial

and radial coefficients of diffusion or kurtosis. Nevertheless, the proposed AIS approaches

indeed provide fast and nice approximations to calculate the most frequently used measures,

i.e., MD and MK, simply by averaging ADC and AKC values along all gradient directions,

which may facilitate the real time applications of DKI.

The noise in MRI data is known to be Rician. Using a wrong model may introduce bias in

parameter estimation. However, the noise is Rician only when the data are of SNR < 2.0,

and the Rician noise will reduce to Gaussian when SNR > 2.0 [28]. Therefore, we can

process the noise in DKI using a Gaussian model. In addition, this bias of noise in diffusion

data can be well handled by image denoising methods [29]. In the experiment that inspected

the estimation bias of each method, CML was particularly designed for treating Rician

noise. The result showed that the CML method and the other methods generated very similar

ADC and AKC values even at high noise levels (Fig. 7). This experiment verified that

Rician bias was not an issue in our data.

As shown in the experiment that studied the ADC smoothing effect involved in SCAIS, we

must use an appropriate smoothing kernel. Excessive smoothing will otherwise introduce

extra artifacts into AKC estimation, for example, when FWHM of Gaussian kernel ≥ 2.0

pixels in our case. Thus, we recommend a moderate FWHM at 1.0 to 1.5 pixels or 2 to 3 mm

(for real brain data) to balance between the original imaging noise level and the resulting

artifacts.

Finally, DKI is a young MR diffusion modality and we expect that in the near future many

research and clinical applications would take use of this new modality, as the major MR

scanner manufacturers have recently begun to implant DKI in their new platforms. We also

have made some efforts towards this direction in a clinical study on epilepsy, which have

demonstrated satisfactory results and generated interesting findings [18].
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Figure 1.
A synthetic DKI dataset before noise was superimposed. (Left) Apparent diffusion

coefficient (ADC) maps; (Right) The corresponding apparent kurtosis coefficient (AKC)

maps.
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Figure 2.
A RMSE (root mean square error) comparison of parameter estimation methods using

synthetic DKI dataset. Five levels of noise were added. Estimation methods either without

(upper) or with (lower) constraints were respectively compared. The RMSE of the resulting

ADC (left) and AKC (right) maps showed that our three AIS methods (UAIS, CAIS and

SCAIS) provided similar or better results compared to conventional methods. In particular,

SCAIS performed the best. (Refer to Table 1 for abbreviations of the methods.)
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Figure 3.
A comparison of estimation bias and variance for AKC using synthetic DKI dataset. (a) bias

(difference between estimated map and the ground truth); (b) variance. Compared to CAIS,

smoothing procedure in SCAIS significantly reduced both estimation bias and variance of

AKC, thus achieved better estimation accuracy and precision.
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Figure 4.
A visual presentation of the estimated ADC and AKC maps using noised synthetic DWI

data (SNR = 30). (a ∼ e) are the ADC maps calculated by UNLS, CLLS, CML, CAIS, and

SCAIS, and, (f ∼ j) are their corresponding residual maps (absoluate difference between the

resulting maps and their reference maps); (k ∼ o) are the AKC maps by UNLS, CLLS,

CML, CAIS, and SCAIS, and (p ∼ t) their residual maps. The results (particularly the

residual maps) showed that our SCAIS method (last column) performed more robustly to

noise than other methods, and estimation error of CLLS raised significantly at regions of

high ADC values (left side portion of (g)).
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Figure 5.
The convergence performance of the UNLS method and the three versions of AIS methods

using the synthetic data. Each row displays the results of ADC and AKC calculated from

one particular method (from top to bottom: UNLS, UAIS, CAIS and SCAIS, respectively).

The result showed that all our AIS method converged more quickly than did the UNLS

method. Note these comparisons compared purely the number of iterations without

considering the huge saving of time in each iteration that our methods cost over that of the

UNLS method.
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Figure 6.
An evaluation of smoothing procedure in SCAIS using residual map of AKC. Five levels of

Gaussian kernel FWHM were set at 0.5, 1.0, 1.5, 2.0 and 3.0 pixels. The results showed that

obvious artifacts were introduced in AKC estimation by applying serious smoothing

(FWHM of Gaussian kernel ≥ 2.0 pixels), while using a moderate FWHM at 1.0 ∼ 1.5

pixels may achieve well noise suppression without producing artifacts.
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Figure 7.
A RMSE comparison of parameter estimation methods using synthetic dataset for bi-

exponential model. Estimation methods either without (upper) or with (lower) constraints

was included. The RMSE of the resulting ADC (left) and AKC (right) maps showed again

that our AIS methods provided similar or better results compared to other methods, and

SCAIS performed the best.
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Figure 8.
A typical example of the Mean Diffusion (MD) and Mean Kurtosis (MK) map generated by

the UNLS and UAIS methods based on human data. The MD (first row) and MK (second

row) maps of one volunteer were calculated from a 4b DKI dataset. (a) the reference map

(using 12b DWI data, UNLS); (b) & (c) maps of UNLS method and their corresponding

residual maps; (d) & (e) maps of UAIS and its residual map. The results showed that the

UNLS and UAIS methods generated visually similar MD and MK maps using the 4b

dataset.
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Figure 9.
The convergence property of our UAIS method using real data. The average RMSE of

resulting ADC (Left) and AKC (Right) along all gradient direction were calculated after

each iteration step. The result showed again that our method converged quickly within 4∼5

iterations.
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Figure 10.
A typical example of the MK and AKC maps generated by our AIS methods. The MK map

(first row) and the AKC map (second row) from one typical gradient direction were

estimated from a DKI sub-dataset of 4 b-values, the difference maps of AKC (third row )

were also calculated between the reference map and the map of each individual AIS method.

(a) the reference maps of MK and AKC; (b) maps calculated by UAIS method; (c) maps by

CAIS; (d) maps by SCAIS. The result showed that AKC and MK maps of SCAIS had no

dark band effect, and meanwhile SCAIS enhanced tissue visibility of the structural details in

the AKC and MK maps. Moreover, the difference maps showed that AKC map from SCAIS

was most similar to the reference maps than other two methods. Please note that the

difference contains also voxels where SCAIS had more accurate estimation whereas the

UNLS method generated black band.
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Figure 11.
A comparison of details in MK maps. A region of interest was amplified for better

visualization. (a) the reference map of MD; (b) the reference map of MK, (c) MK calculated

by the UAIS method; (d) MK by CAIS; (e) MK by SCAIS. In the region of the yellow

circle, we can see more structural details in the result by the SCAIS method. In the regions

of yellow ellipse, the SCAIS method fixed the dark band that did not exist in the MD map,

but the other methods failed.
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Table 1

The list of methods for DKI estimation and their abbreviations used in this paper.

Full name Abbreviation

Constrained nonlinear least square / unconstrained nonlinear least square CNLS / UNLS

Constrained linear least square / unconstrained linear least square CLLS / ULLS

Weighted constrained linear least square / weighted unconstrained linear least square WCLLS / WULLS

Constrained maximum likelihood / unconstrained maximum likelihood CML / UML

Constrained alternative iteration schema / unconstrained alternative iteration schema CAIS / UAIS

Smoothed and constrained alternative iteration schema / Smoothed and unconstrained alternative iteration schema SCAIS / SUAIS
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