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Abstract

This paper presents a novel markerless monocular tracking system aimed

at guiding ophthalmologists during external eye surgery. This new tracking

system performs a very accurate tracking of the eye by detecting invariant

points using only textures that are present in the sclera, i.e., without using

traditional features like the pupil and/or cornea reflections, which remain

partially or totally occluded in most surgeries. Two known algorithms that

compute invariant points and correspondences between pairs of images were

implemented in our system: Scalable Invariant Feature Transforms (SIFT)

and Speed Up Robust Features (SURF). The results of experiments per-

formed on phantom eyes show that, with either algorithm, the developed

system tracks a sphere at a 360o rotation angle with an error that is lower

than 0.5%. Some experiments have also been carried out on images of real

eyes showing promising behavior of the system in the presence of blood or

surgical instruments during real eye surgery.
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1. Introduction

The story of eye tracking begins in the last few years of the 19th century,

when Louis Emile Javal [1] explained that ocular movement while reading is

not continuous but is rather a sequence of short stops (fixations) and rapid

movements (saccades). The first optical eye-tracking device was developed in

1901 by Dodge and Cline [2]. Some years later, Charles H. Judd [3] developed

a camera that recorded ocular movement. This record permitted a detailed

study of the movements of the eye using individual frame analysis. In the

1970s several researchers carried out very important studies using optical

cameras [4, 5]. However, it is in the 1980s when eye tracking began to be

used in Human Computer Interaction (HCI), thus marking the beginning of

computer eye tracking.

The different computer eye-tracking methods that exists today can be

classified into two main paradigms depending on the method used to per-

form the tracking: electro-oculography (EOG) [6, 7, 8, 9, 10, 11] and video-

oculography (VOG). EOG computes the eye position by measuring the poten-

tial difference between the cornea and the most internal choroid layer (known

as Brunch’s membrane). However, this method has low accuracy and high

sensitivity to external artifacts. On the other hand, VOG incorporates an

optical camera to obtain images which allow the eye position/movement to

be more accurately determined.

There are differences among the various VOG-based systems, which are
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related to the number of cameras, the type of illumination, the observed eye

structures, and the gadgets used to fix the camera position regarding the eye

position. To obtain the eye position, most of the VOG systems use one (or

a combination) of the following three methods:

• Purkinje images [12, 13, 14, 15, 16]: this method computes the eye

position as being the difference between the first and the last Purkinje

image position. The first Purkinje image is the reflection of an infra-red

(IR) source from the cornea surface, and the last Purkinje image is the

reflection of that same IR source from the inner layer of the crystalline.

• Dark pupil and bright pupil [17, 18, 19]: in bright pupil, the eye is

illuminated with a source of IR light that is placed very near the camera

axis. In dark pupil, the eye is illuminated with a source of IR light that

is placed away from the camera axis.

• PCCR Vector [17], [20, 21, 22]: in this method, the vector between the

pupil center and the first Purkinje image (PCCR vector) is used as the

only element to compute the line of sight.

However, even though some of these systems have enough accuracy to

be used for eye tracking in guided eye surgery, all of them have the same

drawback: they use the pupil and/or cornea reflections to perform the eye

tracking. This is a problem in guided external eye surgery since these eye

components are partially or totally occluded in most of these surgeries. For

this reason, a new eye-tracking approach that uses other natural features of

the eye has been developed and is presented in this paper.
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This work presents an economical markerless optical system that can be

used as a very precise tracking system of the eye position. The aim of this

eye-tracking system is to guide ophthalmologists during external eye surgery.

This eye-tracking system uses natural features of the eye and allows the

registration of pre-surgical images and real images of the patient’s eye during

surgical interventions where the pupil cannot be used as a natural tracking

marker. Of all of the possible applications, two are worth mentioning:

• Surgical guidance in the treatment of the tumor of the fundus in those

cases in which the pupil disappears from the field of view and the

backlight pupil cannot be used in tumor localization.

• Ophthalmological guidance in the non-invasive treatment of retinal de-

tachment by using a digital microscope, which increases the accuracy

of the intervention.

To the authors’ knowledge, this is the first time that a markerless optical

tracking method that is not based on pupil tracking is proposed for use in

external eye surgery, which is a great novelty in this field.

2. Materials and methods

In this work, a software application was developed in order to prove that

optical eye tracking can be performed using a monocular system, that uses

natural features of the eye, eliminating the need for especial illumination

sources or external marks. For this application, the eye was modeled as a

sphere with random marks which in turn modeled natural features of the eye.

This artificial eye was focused on by a simple camera (Canon MV600) that
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Figure 1: Hardware configuration to validate the monocular optical eye tracking. The eye

is modeled as a sphere with random marks which in turn model natural features of the

eye.

was connected to a PC-Computer via a FireWire digital connection. Figure

1 shows the hardware configuration used.

The developed software has the structure shown in Figure 2. The func-

tionality of the software components can be summarized in three components:

camera calibration, sphere localization, and rotation computation. The fol-

lowing subsections describe each software component in detail.

2.1. Camera calibration

This module calculates the intrinsic and extrinsic parameters of the cam-

era and the radial and tangential distortion parameters. The distorsion pa-

rameters allow the aberrations caused by the camera lens to be corrected.

These aberrations must be corrected because they can distort the obtained
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Figure 2: Software module structure. The software includes the following processes: Cam-

era calibration (detailed in Section 2.1), Sphere localization (detailed in Section 2.2), Move-

ment detection (detailed in Section 2.3.1), Invariant point detection (detailed in Section

2.3.2), and Calculation of rotation (detailed in Section 2.3.3).

images, which constitutes a source of error.

2.1.1. The camera model

The camera was asumed to be as a standard perspective camera. In

this kind of camera, the transformation between 3D real world coordinates

(M = (x, y, z) expressed in Euclidean space coordinates), and 2D image

space coordinates (m = (u, v)) can be modeled as shown in Eq. 1:

sm̃ = PM̃ (1)

where s stands for a scale factor, m̃ and M̃ stand for the corresponding

homogeneous coordinates of m and M, and P stands for the projection

matrix.

The projection matrix P can be written as shown in Eq. 2:
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P = K[R|t] (2)

where K stands for the matrix of the intrinsic parameters of the camera

and [R|t] stands for the 3x4 matrix of the external parameters of the camera,

which correspond to a Euclidean transformation from the world coordinate

system to the camera coordinate system. R represents the 3x3 rotation

matrix and t is a column vector that represents the translation.

The K matrix of intrinsic parameters can be written as shown in Eq. 3:

K =


αu γ u0

0 αv v0

0 0 1

 (3)

where u and v stand for the image axes and αu and αv are the cor-

responding scale factors of u and v. These alpha values are computed as

αu = f ·mu and αv = f ·mv, where mu and mv are scale factors that relate

pixels to distance and f is the focal length in terms of distance. c = [u0, v0]

stands for the intersection point of the optical axis and the image plane, and

γ stands for the obliquity between the u and v image axes, which is 0 when

u and v are orthogonal (which is usual in real images).

A camera is calibrated when all its internal parameters are known. How-

ever, in real cameras, the distortion parameters must also be known. The

distortion can be modeled as a 2D image deformation. In this case, con-

sidering ŭ = [ŭ, v̆]T as the coordinates of a pixel in a distorted image and

x̆ = [x̆, y̆]T as its normalized coordinates, they can be related as shown in

Eq. 4:
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ŭ = u0 + αvx̆

v̆ = v0 + αvy̆ (4)

The image distortion caused by the camera lens is composed of two differ-

ent distortions: radial distortion and tangential distortion. Radial distortion

has a much greater effect than tangencial distortion. For this reason, most

calibration algorithms ignore tangential distortion and relate the coordinates

of non-distorted and distorted images as shown in Eq. 5:

x̆ = x+ dxradial

y̆ = y + dyradial (5)

where x = (x, y) stands for the non-distorted image coordinates, dxradial

stands for the radial distortion in the x axis direction, and dyradial stands for

the radial distortion in the y axis direction. These radial distortions can be

approximated as shown in Eq. 6:

dxradial = (1 + k1r
2 + k2r

4 + . . .)x

dyradial = (1 + k1r
2 + k2r

4 + . . .)y (6)

where r = ‖x‖ and ki stand for the coefficients of the radial distortion. In

the experiments described in this work, the order used to correct the radial

distorsion of the camera was 3 (only k1 and k2 coefficients were computed)

because the values of the ki were almost zero for coefficients of higher order.
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2.1.2. Calibration Method

Using the proposed camera model, an auto-calibration photogrammetric

method was programmed in order to obtain the intrinsic and extrinsic param-

eters of the camera. This camera calibration method is similar to the method

proposed by Zhang in [23] and it was implemented using the OpenCV library.

The sequence of steps needed to calibrate the camera can be summarized as

follows:

1. An image pattern must be used for calibration: in our case, it was a

chessboard.

2. Pictures of the pattern must be taken by the camera in different posi-

tions and orientations.

3. Some characteristic points of the image (in our case, the corners of the

chessboard) must be detected in the images captured in step 2.

4. The intrinsic and extrinsic parameters of the camera can be calculated

from these characteristic points.

5. These parameters can be used to obtain the radial distortion.

6. Finally, all values must be refined by minimization.

2.2. Sphere Localization

To localize the sphere in an image captured by the camera, the developed

software executes three sequential steps:

1. A pre-processing step: this process transforms the input image I into

an output image I’ where it is easier to localize the sphere.

2. A localizing step: in this step, the software tries to localize the sphere

in the pre-processed image.
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3. A post-processing step: this process approximates the computation of

the center and the radius of the real 3D sphere taking into account the

perspective distortion from the sphere image.

The following subsections describe these steps in more detail.

2.2.1. Pre-processing

The developed algorithm uses the color information contained in the in-

put image I for pre-processing. To perform this pre-processing efficiently, the

input image color is expressed in HSV (Hue, Saturation, and Value) space

color. The robustness of this pre-processing is increased by using 20 con-

secutive frames of the sphere images. This makes the pre-processing more

independent of the presence of objects with a color similar to the one of the

sphere and of variations in the illumination.

In this step, each one of the 20 frames is transformed by the following

sequence of processes:

• Transformation to the HSV color space. The cameras usually take

images in RGB color space (decomposing the light spectrum in the

Red, Green and Blue channels). In this phase, the input images are

transformed from RGB space to HSV space where it is easier to process

them.

• Extraction of the Value channel. The V channel contains the infor-

mation about the brightness of the image. Therefore, it is the best

channel to detect the presence of the white sphere. This is the basis

for processing steps that follow.
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• Simple process of image pixels. In this step, the difference between the

sphere and the background pixels is maximized. To do this, the image

obtained in this step Ir is three times the difference between the V

channel of the image and the inverse of this V channel.

• Thresholding. In order to isolate the pixels belonging to the sphere, a

threshold ε is applied to the Ir image. The result is a binary image Ib

where:

Ib(u, v) =

 1 ifIr(u, v) > ε

0 otherwise
(7)

All the pixels set to 1 in Ib potentially belong to the sphere. The

threshold value ε was chosen as 2/3 · (max − min), where max and

min stand for the maximum and the minimum brightness of the image

Ir that results from the previous processing.

• Close morphological filter. The Close morphological filter eliminates

the black noise (isolated pixels set to 0) of the image Ib. The objective

is to leave the sphere as clean as possible in order to facilitate the

computation of the radius and the center of the sphere. The number

of Close operations depends on the width of the marks present on the

sphere surface. Five iterations of close filter were determined to be the

ideal number to erase the black noise of the sphere.

• Sphere border localization. Once the black noise of the image is reduced,

the border of the largest image object (the sphere) is extracted.
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Figure 3: Images that correspond to different phases of the preprocessing step: (a) V

component of the HSV color space; (b) the result of difference maximization between

sphere and background pixels; (c) thresholding and morphological filter; (d) sphere border

localization.

• Insertion of the resulting image in the sphere buffer. The algorithm

accumulates the sphere edges obtained in the previous step in a single

buffer called the sphere buffer. The sphere buffer is an image that

has the same size as the original image I. This buffer accumulates the

resulting images from the previous step.

When the preprocess ends, the algorithm has accumulated 20 sphere im-

ages in the sphere buffer. The brightest pixels in this buffer are those that can

be considered the approximated sphere border. These pixels are extracted

using a second threshold that results in a binary image I’ with 1 for the bor-

der pixels of the sphere and 0 for the rest of the pixels. Figure 3 shows a set

of images that correspond to different phases of the preprocessing step.
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2.2.2. Sphere Localization

Once the border of the sphere has been approximated by the preprocessing

step, the algorithm proceeds to localize the real position of the sphere. To

perform this localization, the three algorithms that theoretically best meet

the problem requirements were implemented to be analyzed: Hough’s circles

[24], Camshift [25], and the moment method [26].

To determine the best localization method, an analysis of both localiza-

tion error and computational cost was performed for the three methods. The

process that was used to compute the localization error compared the real

center and the radius of the sphere with the computed center and the radius

based on the results of the localization method. The results showed that the

moment method had the lowest error and the lowest standard deviation. In

addition, the moment method was almost two times faster than the other two

methods. As a consequence, the moment method was the method selected

for the sphere localization.

2.2.3. Refining Parameters

Once the sphere is localized in the 2D image, a sphere retro-projection

must be performed in order to obtain the 3D sphere reconstruction. To

do this, the perspective deformation induced by the camera model must be

corrected. The perspective deformation increases with the proximity of the

sphere to the camera and the deviation of the sphere center from the image

center. The effect of perspective deformation is an elliptic view of the sphere

in spite of its circular appearance. This ellipse is obtained by comparing

each possible ellipse (of center (Cx′, Cy′) and main radius (Rh,Rv)) with the

sphere localized in previous steps. An XOr pixel by pixel operation was used
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to compare the localized sphere, and an image mask was constructed from the

ellipse parameters to be considered. The ellipse parameters that minimize the

XOr function were the parameters selected to perform the retro-projection

of the sphere.

To retro-project the sphere, the coordinates of the points localized in the

extremes of the largest main radii of the ellipse must be obtained. Those

coordinates are (Lxi, Lyi, f) and (Lxd, Lyd, f), where f stands for the z co-

ordinate of the projection plane (to facilitate understanding of the process,

Figure 4 shows the retro-projection process in 2D). All points are referenced

with respect to a coordinate system that is centered in a camera whose

x and y axes are parallel to the x and y axes of the plane and the coor-

dinate z is perpendicular to the projection plane. The extreme points of

the ellipse mentioned above are not at the same distance from the camera.

To retro-project these points, we must draw them at the same distance d

from the camera on the lines defined by the points (Lxi, Lyi, f), (0, 0, 0) and

(Lxd, Lyd, f), (0, 0, 0). The retro-projected points are (LX ′i, LY
′
i , LZ

′
i) and

(LX ′d, LY
′
d , LZ

′
d), and they can be used to compute the real center of the

sphere (Cx′, Cy′, Cz′) as the midpoint of the line segment connecting these

retro-projected points.

Given the retro-projected sphere, the real coordinates (Px′, Py′, P z′) of a

point on the sphere surface can be computed from the coordinates (Px, Py, f)

of the projected points on the localized sphere surface in the image. These

retro-projected points are the ones that are used to track the sphere rotation.
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Figure 4: Sphere retro-projection in 2D. The image shows the camera (triangle), the

projection plane (horizontal line), the back-projection rays (which go from the camera to

the projection plane), the center of projections (the small square on the projection plane),

and the sphere.

2.3. Rotation computation

Once the sphere is localized and retro-projected, the algorithm proceeds

to detect its movement. In this phase, the algorithm is always testing whether

or not the sphere has a significant movement. If a significant movement is

detected, the algorithm takes two sets of invariant points: one set in the

image before starting the movement and another set when the movement

has finished. Afterwards, the algorithm obtains correspondences between

the two sets of points. These correspondences allow the sphere rotation to

be computed and, therefore, the sphere movement to be tracked.

2.3.1. Movement detection

To optimize the movement tracking, the movement detection process that

is programmed in the algorithm only activates the invariant point detection
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when the movement exceeds a certain threshold. This movement is detected

by using an estimator of the optical flow that is based on the Lucas-Kanade

proposal [27]. This algorithm assumes that the optical flow is constant

around the pixels from the area of interest. When the flow speed vector

is obtained in a sequence of images, the algorithm determines that one ob-

ject (in our case, the sphere) has moved when the modulus of the speed

vector exceeds a threshold. In this case, the algorithm computes the in-

variant points, the correspondences, and the sphere rotation based on these

correspondences.

2.3.2. Computing invariant points

The techniques to obtain the invariant points from an image use local

descriptors. Local descriptors search information about a localized area from

an image (like textures around a point of interest) and define a codification

method which is invariant to illumination, changes, and affine transforma-

tions. The implemented algorithm searches for these invariant points in two

images where the object of interest has moved. Once these points are local-

ized in both images, it obtains pairs of points that match in both images,

which allow the object transformation to be computed. The most widely

used current algorithms in computing invariant points and their correspon-

dence between pairs of images are: the Scalable Invariant Feature Transforms

(SIFT) [28] and the Speed Up Robust Features (SURF) [29]. In the litera-

ture, there is a large number of papers that compare SIFT and SURF, for

example [30] and [31]. The following conclusions were extracted from these

two works: SIFT detects more points than SURF, SIFT is a little slower

than SURF, and SIFT is a little more accurate than SURF. To measure the
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effectiveness of these two algorithms in eye tracking, both algorithms were

implemented in our system.

2.3.3. Tracking the sphere rotation

Once the correspondences between two sets of points P1 and P2 are cal-

culated (each of which is detected on the sphere surface in two consecutive

images I1 and I2, respectively), the relative rotation performed by the sphere

from image I1 to the image I2 can be approximated. To do this, two matri-

ces, M1 and M2, were constructed containing the set of points P1 and P2,

respectively, as shown in Eq. 8:

M1 =


x1 y1 z1

x2 y2 z2
...

...
...

xn yn zn

 ; M2 =


x′1 y′1 z′1

x′2 y′2 z′2
...

...
...

x′n y′n z′n

 (8)

These matrices are ordered by point matches, in other words, the row i

of matrix M1 stores the point coordinates contained in the set of points P1

that matches the point coordinates contained in the set of points P2 that is

stored in the same row i of matrix M2. The correspondence between M1 and

M2 can be written as shown in Eq. 9:

M2 = RM1 (9)

where R stands for the rotation matrix that contains the unknowns that

must be obtained by solving Eq. 9. As is easily deduced, Eq. 9 is an overde-

termined system of linear equations that is solved using the method proposed
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by Kabsch [32]. This method, which is based on the calculation of the covari-

ance of both matrices M1 and M2, performs the decomposition in eigenvalues

of this covariance matrix and finally computes R. To do this, at least four

correspondences are necessary. However, quite a few more correspondences

are recommended in order to increase the robustness of the calculations. In

the experiments shown in this paper, we observed that 10 was the minimum

number of correspondences that significantly decreased the error, and, there-

fore, it is the minimum number of correspondences required to be able to

compute the rotation matrix.

3. Results

The accuracy of the implemented tracking methods using both algo-

rithms, SIFT and SURF, were analyzed by performing a set of experiments

which consisted of tracking 15 spheres of 20 mm of radius in rotations about

the Y axis. These rotations were performed assuming an orthogonal refer-

ence system centered in the sphere, the XZ plane parallel to the table that

supports the system, and the Y axis perpendicular to the table plane (see

Figure 1). The computer that was used to perform all the tests presented in

this paper was a PC DELL with Intel R©CoreTMi7 860 of 2.80 GHz, NVIDIA

GeForce 310 graphic card of 512 MB, and WindowsTM7 Operating System.

To measure the accuracy, the tracking methods were tested by tracking

the spheres at a 360-degree rotation about the Y axis. In these experiments,

the first captured image was used to determine whether or not the system

reached the target rotation of 360 degrees. To detect this, the current im-

age was compared with the initial image. If both images were equal, then a
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Figure 5: Error mean and standard deviation for SIFT and SURF tracking. The sphere

radius used was 20 mm.

complete rotation of the sphere had been performed. Figure 5 shows the me-

dian, the 1st and 3rd quartile, and the maximum and minimum of the errors

produced by each tracking method (based on SIFT or on SURF algorithm)

in mm of the arc length. The accuracy of the two methods was proved since

the maximum error was below 0.6 mm for both methods; however, a slightly

higher error was observed for the method based on the SURF algorithm.

Therefore, taking into account that the radius of the sphere was 20 mm, the

committed error was under 0.5%. This means that both tracking methods

had enough accuracy to be considered as tracking methods in guided external

eye surgery.

To measure the effectiveness of the two methods, analyses were made

of the ability of the two tracking methods to localize invariant points and

to establish correspondences between points on the sphere surface in two

temporal consecutive images. The results of these analyses are shown in

Table 1, which shows the mean of localized descriptors, the mean temporal
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cost in localizing these descriptors, the mean temporal cost in localizing

correspondences between points, and the maximum angle that can be tracked

between these two consecutive images.

Table 1: Effectiveness of the tracking methods.

using SIFT using SURF

Localized descriptors 966.6 1049.3

Time required to localize descriptors (s) 0.693 0.130

Time required to localize matches (s) 0.340 0.237

Maximum angle of tracked rotation (◦) 27 37

The results of the analysis of the accuracy of the two tracking methods

showed a slightly higher error for the method based on the SURF algorithm

(see Figure 5). However, Table 1 shows that the SURF-based method was

faster than the SIFT-based method. In our implementation, the SIFT-based

method could compute almost 2 rotations per second compared to the 4

rotations per second that were computed by the SURF-based method. Table

1 also shows that the SURF-based method detected more correspondences

than the SIFT-based method. However, the SIFT-based method detected

the invariant points and their matches more accurately, which allowed the

tracking method based on the SIFT algorithm to perform more accurate

sphere tracking than the SURF-based method. Therefore, the SIFT-based

method was the method chosen for the final implementation.

In a second experiment, the system for tracking eye movement was tested

on a computer-generated eye (see Figure 6). The variable to analyze was the
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Figure 6: Example of movement tracking on a synthetic eye: the rotation was 10 degrees

about the X-axis, 8 degrees about the Y-axis, and 0 degrees about the Z-axis; the detected

rotation was 9.98 degrees about the X-axis, 7.93 degrees about the Y-axis, and 0.03 degrees

about the Z-axis. The number of matches used was 76.

error in computation of the eye rotation angle when this eye had an unre-

stricted rotation axis. Table 2 shows the summary of 15 random rotations

about the X-axis and Y-axis. The rotations were restricted within the inter-

val between -27 and 27 degrees, which is the maximum rotation angle that

the tracking algorithms can detect for two consecutive images (see Table 1).

Table 2 shows that the system had a very low error when tracking the sphere.

Table 2: Errors in 3D synthetic eye tracking. These correspond to 15 random rotations

about the X-axis and Y-axis. The errors are measured in degrees.

AXIS X Y Z

Mean 0.0344 0.0279 0.0749

Variance 0.0012 0.0004 0.0073

On the other hand, in real cases, tracking the eye in external eye guided
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Figure 7: Successive images of eye surgery

surgery has two major problems that have to be overcome: variations in

texture of the sclera surface during surgery and the presence of surgical in-

struments in the image of the eye. The first problem is due to the presence

of blood which may appear during the dissection of the conjunctiva of the

eye. This blood partially covers the sclera and masks the vascular tree of

the sclera, which could hinder the location of common invariant points be-

tween successive eye images. The second problem may appear when surgery

elements (like sutures, suture needle, episcleral plates, etc.) are interposed

between the camera and the eye. This could partially mask the eye and it

might confuse the algorithm in locating invariant points. To check the ro-

bustness of the algorithm with respect to these problems, a final experiment

was designed to track real eye movement during eye surgery. Figure 7 shows

different successive images during the eye surgery. As Figure 8 shows, our

algorithm was capable of detecting more than 70 invariant points in each

image and more than 30 correct correspondences between two consecutive

eye images. This application to a real case again shows the potential of this
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Figure 8: Invariant points and matches detected in consecutive images in the presence of

surgical elements and blood.

tracking method for use in guided external eye surgery.

4. Discussion

The conclusions presented in Section 3 with regard to the SIFT and SURF

analyses are similar to those obtained by previous authors (Section 2.3.2).

The choice between the two algorithms will depend on what the main concern

is in your problem. SIFT detects more points than SURF (i.e., it is a little

more accurate), but it is a little slower than SURF. In our problem, the

results have demonstrated that the error committed by the two algorithms

is low enough to allow the use of either one in the tracking of eye movement.

Finally, SIFT was chosen for our case because it was slightly more accurate.

Nevertheless, SURF might also be used if speed is the main concern.

As mentioned at the end of Section 2, the minimum number of correspon-

dences that should be used to obtain an acceptable error on eye phantoms
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is 10. For the real case analyzed (images of eyes with blood and surgical

instruments present), the number of correct correspondences was 30 (three

times higher than the minimum needed). Even though it is true that the

methodology still requires thorough testing on real cases, these initial results

are very promising and encourage us to study the application of the tracking

method on real cases.

Furthermore, the fact that the tracking system is based on a monocular

optical system allows direct application to the surgical environment without

adding expensive and excessive technological equipment. It is only neces-

sary to connect the surgeon’s digital microscope to a computer that has the

developed tracking software installed. However, despite the potential appli-

cability of the developed algorithm, some improvements should be made in

the future.

5. Conclusions

This paper presents a novel algorithm that is able to track any spherical

markerless object. The tracking is performed using only the texture of the

object surface without any special reference (like pupils in eyes). If the eye

is considered to be a sphere and its sclera vascular tree is considered to be

the object surface texture, the results show that the developed algorithm

has enough effectiveness and accuracy to be used in guided eye surgery. In

addition, the results of the experiments demonstrate that our algorithm has

promising behavior even with the presence of blood on the sclera and with

the interposition of surgical instruments between the eye and the camera.

This highlights the potential of our algorithm for tracking movements of
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the eye during real surgeries. Our ongoing research is focused on hardware

configuration that will allow the use of stereo cameras in eye tracking to

better localize the sphere.
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