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Abstract

Segmentation of diseased liver remains a challenging task in clinical applications due to the high 

inter-patient variability in liver shapes, sizes and pathologies caused by cancers or other liver 

diseases. In this paper, we present a multi-resolution mesh segmentation algorithm for 3D 

segmentation of livers, called iterative mesh transformation that deforms the mesh of a region-of-

interest (ROI) in a progressive manner by iterations between mesh transformation and contour 

optimization. Mesh transformation deforms the 3D mesh based on the deformation transfer model 

that searches the optimal mesh based on the affine transformation subjected to a set of constraints 

of targeting vertices. Besides, contour optimization searches the optimal transversal contours of 

the ROI by applying the dynamic-programming algorithm to the intersection polylines of the 3D 

mesh on 2D transversal image planes. The initial constraint set for mesh transformation can be 

defined by a very small number of targeting vertices, namely landmarks, and progressively 

updated by adding the targeting vertices selected from the optimal transversal contours calculated 

in contour optimization. This iterative 3D mesh transformation constrained by 2D optimal 

transversal contours provides an efficient solution to a progressive approximation of the mesh of 

the targeting ROI. Based on this iterative mesh transformation algorithm, we developed a semi-

automated scheme for segmentation of diseased livers with cancers using as little as five user-

identified landmarks. The evaluation study demonstrates that this semiautomated liver 

segmentation scheme can achieve accurate and reliable segmentation results with significant 

reduction of interaction time and efforts when dealing with diseased liver cases.
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I. Introduction

Liver cancer is the third most common cause of death from cancer worldwide [1], and liver 

is the most common metastatic spread sites of cancers after the lymph nodes, which have 

been found in 30-70% of patients who are dying of cancer [2]. With the technical advances 

of computed tomography (CT), hepatic CT scanning has become one of the major routinely-

used clinical imaging modality in cancer diagnosis, staging, and treatment evaluation 

because of the relatively low cost and wide availability [3]. Segmentation of liver in CT 

images is crucial for liver-related clinical applications. However, accurate and reliable liver 

segmentation continues to be a challenging task especially for diseased livers because of the 

deformation of the liver shape caused by large tumors, the complexity of the diseased liver 

pathologies, the variability of image presence of different hepatic diseases (such as 

hypodense or hyperdense lesions), and the fuzzy boundaries between liver and the adjacent 

organs (such as heart and stomach). Therefore, liver segmentation attracts continuously 

researchers' attentions in medical imaging and graphics community [4, 5].

Numerous automated, semi-automated and interactive methods for liver segmentation have 

been developed, including statistical shape model [6-8], atlas matching method [9-11], 

deformable model [12, 13], level-set method [14-17], and other hybrid methods based on 

user-interaction [18], graph-cut [19], region-growing [20], machine-learning [21], etc. With 

regard to segmentation accuracy and reliability, there is a clear tendency that interactive 

methods outperform semi-automated methods, which in turn outperform fully automated 

approaches. However, user interaction time and efforts tend to have a reversed tendency: 

interactive segmentation of a liver on CT images is labor-intensive, time-consuming and 

prone to inter-operator variability. Clinical applications seek an accurate and reliable 

segmentation method for diseased livers with minimum amount of required user 

interactions.

The technique challenges of the segmentation of diseased livers result from the high inter-

patient variability in liver shapes, sizes and pathologies as well as the longitudinal intra-

patient variability. It is not uncommon that cancers and metastases change the liver size and 

deforms the liver shape, and thus result in a very large range of variations among patients. 

Figure 1 demonstrates the inter-patient variability in shapes and sizes of diseased livers from 

patients with cancers or metastases. The sizes of livers vary significantly with more than 

four times of difference. More importantly, the shapes of livers show substantial difference 

caused by cancers or metastases or treatments: 1) liver shapes may be bended or twisted or 

deformed severely due to the growing or shrinking of tumors; 2) different hepatic lobes may 

be shrunk or expanded extraordinarily; and 3) tumor tissues show substantially different CT 

intensity compared to normal liver parenchyma. This inter-patient variability makes the 

modeling of a statistic shape for liver segmentation an extreme challenging task. To deal 

with the complex shape variations of diseased livers, sparse shape composition model [22] 

and auto context multi-atlas model [23] were proposed to handle errors or outliers of statistic 

models and preserve local details for different shapes of liver. These atlas-based or shape-

prior-based automatic methods require learning from available shapes of segmented livers, 

which may be itself a difficult task.
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As long as fully-automated segmentation methods fail to produce satisfactory segmentations 

on these diseased cases, certain amounts of user interaction are still required. Deformable 

models offer the essential options of interactive control over the segmentation process via 

interactive manipulating of a deformable surface [24]. Traditional mesh deformation 

methods simulate the mechanism behavior of a surface by minimizing the stretching and 

bending energies of the surface, such as active geometric deformed models [25] and active 

contour models or snakes [26]. However, one limitation of these energy-based mesh 

deformable methods is that the difference between the initial mesh and resulting mesh must 

be sufficiently small, which may turn out a large amount of interactive manipulations. 

Motivated by the deformation transfer model [27], which transfers the mesh deformation 

using deformation gradients instead of local energies, mesh may be deformed efficiently 

using a small set of targeting points while allowing accurate detail-preserving interactions.

In this paper, we proposed a multi-resolution mesh segmentation algorithm, called iterative 

mesh transformation, that deforms the mesh of a region-of-interest (ROI) in a progressive 

manner by iterations between mesh transformation and contour optimization. The initial 

constraint set for mesh transformation can be defined by a very small number of targeting 

vertices, namely landmarks, and progressively updated by adding the targeting vertices 

selected from the optimal transversal contours calculated in contour optimization. This 

iteration between 3D mesh transformation and 2D transversal contours optimization 

provides an efficient solution to a progressive approximation of the targeting ROI mesh with 

minimum user interactions. By using this iterative mesh transformation algorithm, we 

developed a semi-automated image segmentation scheme for diseased livers with cancers. 

This scheme can effectively segment the diseased livers with cancers using as little as five 

user-identified landmarks. It achieves accurate and reliable segmentation results when 

dealing with these diseased liver cases, and reduces significantly the interaction time and 

efforts. The resulting 3D liver mesh provides the meta-data for quantitative image analysis 

of diseased livers in different clinical applications.

The major contributions of the proposed method are twofold.

• Technical contributions: Diseased livers tend to have high inter-patient variability 

of shapes and sizes, which makes the modeling of a statistic shape for liver 

segmentation an extreme challenging task. The transformation optimization in 

iterative mesh transformation provides an effective solution for the global 

approximation of a diseased liver, which is superior to those of energy-based mesh 

deformation that tends to converge to a local boundary caused by the 

inhomogeneity in diseased regions. On the other hand, the transversal contours 

optimization provides the local refinement for detecting the precise boundaries of a 

liver. As a result, the combination of 3D transformation optimization and 2D 

contour optimization provides an accurate and efficient technical solution for the 

segmentation of diseased livers.

• Clinical contributions: Manual contouring remains the major clinical procedure for 

segmentation of diseased livers with pathologies, which is labor-intensive, time-

consuming and prone to inter-operator variability. The proposed iterative liver 

segmentation scheme is easy-of-use and reduces the interaction effort as little as 
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five user-identified landmarks. It takes in average 5 minutes to segment a diseased 

liver case, which is more efficient than most of existing liver segmentation 

methods. The accuracy and running time have been evaluated by the MICCAI 

cases as well as the real clinical cases collected in our institute.

II. Method

A. Mesh Segmentation Model

Let I(v) denote the pixel value at a vertex v = [x,y,z]T ∈ R3 in a CT volume, where R3 is 3-

dimensional (3D) Euclidean space. A mesh can be defined as a 3-tuple M = (V,E,Z), where 

V is a vector of vertices, E is a set of edges connecting two vertices, Z is a set of faces 

defined by a closed set of edges, in which a triangle face has three edges. A mesh 

segmentation is defined as an optimization process that deforms an initial mesh (such as a 

polyhedron) under certain constrains for segmentation of a ROI, which can be represented as 

an evolution process Λ(θ) = (M0,Mθ, Ω), where M0 is the initial mesh, Mθ is the resulting 

ROI mesh, Ω is the constrain set, and θ is the steps of evolution.

Figure 2 illustrates the mesh evolution in the segmentation of a sphere, in which the initial 

mesh M0 is defined as an icosahedron. During each evolution, a triangle face is decomposed 

into four smaller triangle faces by adding a middle point on each edge of the triangle (see 

point D on edge AC in Figure 2(a)). The corresponding targeting vertex of the newly-added 

middle point is the boundary point on the sphere surface (see point D1 in Figure 2(b)). Mesh 

segmentation is a very effective way to approximate the surface or boundary of an object, 

because the number of faces increases in an exponential manner during the evolution. Table 

1 lists the properties of the meshes at each step of evolution. The vertices set of Mθ contains 

all the vertices of Mθ−1.

Without the loss of generality, we may assume that the targeting ROI is a closed region and 

thus can be represented by a 2-dimensional (2D) manifold, aka a boundary surface. This 

assumption indicates that the segmented ROI is locally homeomorphic to a 2D Euclidean 

space (such as a plane), and thus its boundary surface can be modeled by a triangle mesh. 

Considering the fact that a sphere is a 2D manifold and is homeomorphic to the boundary 

surface of a targeting ROI, the homeomorphic theory states that there is a continuous one-to-

one mapping between these two surfaces, as indicated below:

If X and Y are homeomorphic, there exists a mapping ψ: X → Y that satisfies the 

following criteria: (1) ψ is a one-to-one correspondence, (2) ψ is continuous, and 

(3) ψ−1 is continuous.

If such a mapping ψ exists, we can transform a sphere mesh MSphere to the ROI mesh MROI 

by using ψ defined by a set of transformations between MSphere and MROI. Therefore, mesh 

segmentation is defined as a multi-resolution mesh optimization process by using an 

objective function subject to a set of correspondence constraints (Ω):

(1)
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where  is the approximation of the ROI mesh MROI after the evolution of θ times, f is 

the objective function of the transformation optimization defined on mesh Mi, wi is the 

weight of f(Mi). Constraint Ω is a set of known correspondence between the sphere mesh 

MSphere and the ROI mesh MROI.

The weights in Equation (1) control the “level-of-detail” (or granularity) of deformation at 

different resolutions of the resulting mesh. In general, w0 controls the coarsest or overall 

deformation and wθ does the finest deformation for detail preservation. Rigid organs tend to 

have larger value of w0 and smaller value of wθ, whereas flexible ones employ smaller value 

of w0 and larger value of wθ. In our study, θ is set to 5, which indicates the number of 

vertices of the resulting mesh of a liver is 10242 (θ = 5). w0∼w5, are set to 0.1, 0.1, 01, 0.2 

and 0.5, respectively. These values were estimated empirically based on the flexibility of a 

liver.

B. Mesh Transformation

The homeomorphic assumption indicates that a local boundary of a ROI can be mapped to a 

local surface of a sphere if the local boundary is small enough. By dividing each transversal 

slice of a ROI into n sectors, as illustrated in Figure 3, we may establish the mapping 

correspondence ψ between the sphere surface and a ROI boundary when the sector is 

divided small enough. It results in a continuous one-to-one mapping between the ROI 

boundary point ( ) and the sphere mesh vertex ( ).

Let Vs and VROI be the vertex set of a sphere surface and a ROI boundary respectively, and 

the mapping function ψ be a linear transformation. We may represent  as the 

transformed vertex of :

(2)

where  is the vertex of the initial sphere mesh,  is the vertex of the ROI boundary, 

T is a 3×3 affine transformation matrix, and D is a translation vector.

Considering the geometric continuity during a mesh deformation, we assume that the four 

vertices v1∼v4 around an edge Ei in a mesh share the same affine transformation T and 

translation D, as shown in Figure 4(a). Thus,  can be represented below:

(3)

By eliminating D in Equation (3), the affine transformation T for the edge Ei between VS 

and VROI can be determined by Equation (4):
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(4)

where both TROI and TS are 3×3 matrix, 

, and 

.

Because all initial vertices are defined on a sphere, any four vertices  around an edge 

Ei are non-coplanar and thus [TS]−1 always exists. Therefore, the transformation matrix 

T(Ei) for an edge Ei represented by Equation (4) is a linear function of the unknown 

coordinates of four deformed vertices , i=1∼4, as illustrated in Figure 4(a). This 

indicates that the mapping ψ between VS and VROI is a function of unknown vertices 

and can be represented by a linear combination of T(Ei), where Ei is an edge in the edge set 

of all the triangles that share the vertex of .

C. Mesh Objective Function

The objective function f(Mi) in Equation (1) is formed by the weighted sum of three types of 

constraints: smooth constraint (CS) deforming constraint (CD) and distance constraint (CL):

(5)

where wS, wD, wL are the weights of the corresponding constraints.

The smooth constraint CS is so defined that the transformation matrix T(Ei) (see Equation 

(4)) for three edges of a triangle face should be as equal as possible. In specific, for each 

triangle face Zi in a mesh M, as shown in Figure 4(b and c), CS is defined below:

(6)

where Z(M) indicates the triangle face set of mesh M, Zi is the ith face, T(Ej) and T(Ek) are 

the transformation matrix of edge Ej and Ek in the triangle Zi respectively,  is the 

Frobenius norm of a matrix.

The deforming constraint CD transforms the vertices ( ) of the mesh as close as possible 

to the targeting vertices ( ) of a ROI:

(7)
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where Ω is the set of known vertex correspondence between the sphere mesh and the object 

boundary of a ROI.

Targeting vertices are known boundary points of a ROI, which may be established by the 

user-identified landmarks of the ROI Vlandmark, the segmented neighboring organs such as 

Vchest (for liver segmentation), and the selected contour points Vcontour on optimal 

transversal contours. For our application of liver segmentation, we can define 

.

In order to maintain the shape regularity of a triangle and prevent the mesh from drastic 

deformation, we add the distance constraint CL for maintaining the minimum signed 

distance change before and after deformation:

(8)

where E(M) indicates the edge set of mesh M, V(Ei) is a set of end points of edge Ei, i.e., v1 

and v2 are two end points of an edge Ei.

The weights in Equation (5) balance three deformations applied to each triangle: wS and wL 

are smoothing terms in which wS controls the continuity of transformations among adjacent 

triangles and wL controls the shape regularity of a triangle; wD is a positive term which 

controls the transformation between mesh vertices and the targeting vertices, i.e. the 

detected boundary points. In our study, we set wS = 1, wD = 100 and wL = 1. The large value 

of wD implies the strong preservations of the known boundary vertices.

D. Mesh Optimization

Based on Equation (1), mesh segmentation is an optimal process for minimizing the 

objective function by searching a new set of unknown vertices VROI. Because all the vertices 

in the resulting deformed mesh Mθ = (V, E, Z) are independent, Equation (1) can be 

represented by a vector-valued system of  which includes all 

vertices of meshes M0∼Mθ. In addition, because T(Ei) is a function of  (see Equation 

(4)), all constrains in the objective function f form a second order polynomial of , i.e., f 
can be represented by a linear system:

(9)

where N*(*=S, D, L) is the total number of items in Equation (6), (7) and (8), Aξ is a N* × n 

sparse coefficient matrix and Bξ is a N column vector.

Therefore, the object function f in Equation (5) can be reformed to a system of linear 

equations of variable vector VROI. Because function f has a representation of a sparse 

Lu et al. Page 7

Comput Med Imaging Graph. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



matrix, we may use the sparse LU factorization [28] to efficiently solve the optimized VROI 

in the linear system, which results in the transformed ROI mesh. The detailed process of 

solving the minimization problem in Equation (1) can be found in Appendix 1.

E. Contour Optimization

Initial mesh segmentation based on the constraint set Ω without Vcontour in Equation (7) may 

result in the mismatches between the intersection polylines of the mesh and the true ROI 

boundaries on 2D transversal image planes in CT volume due to the lack of local boundary 

constraints (Vcontour) in Ω. Thus, the constraint set Ω needs to be updated before the next 

evolution of mesh deformation to achieve accurate segmentation. This constraints updating 

is performed automatically by adding targeting vertices ( ) selected from the local 

boundaries of a ROI into Vcontour, which are searched in the neighborhood of the initial 

intersection polylines.

Assuming that the boundary of a ROI is located in the neighborhood of the intersection 

polylines of the initial mesh on the 2D transversal images. This neighborhood is defined as a 

band on the transversal images centered by the intersection polylines of the initial mesh, as 

shown in Figure 5. The width of the band can be adjusted in terms of the size of the ROI. In 

our study, we set the band width to be 40 pixels. The local boundary of a ROI will be 

detected by optimal-path searching within this local band.

A transversal CT image can be represented by a 2D weighted bi-directed graph, in which 

one node corresponds to a pixel in the image. Each node (pixel) has 8 edges connecting to 

its neighborhood pixels, and each node and each edge have a related cost, respectively. A 

local ROI boundary on a transversal image plane is defined as the optimal path with the 

minimum cost between two corresponding nodes in the graph. We defined five cost 

functions on a node or an edge employing the forms similar to those described in [29].

(1) The Laplacian zero-crossing cost—The Laplacian zero-crossing is defined as the 

points with local maximal or minimal gradient magnitude, which corresponds to a boundary 

point. Thus, a node has a low cost if it is a zero-crossing point:

(10)

where ∇2() is the Laplacian operator u is a neighboring pixel of v.

(2) Gradient magnitude cost—A large gradient magnitude tends to indicate a local 

boundary. Thus, a gradient magnitude is considered as the local cost of a boundary:

(11)

where ∇() is the gradient operator, k is 1 if v and u are diagonal neighbors, and k is  if v 

and u are horizontal or vertical neighbors.
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(3) Gradient direction cost—We assume that a local boundary is perpendicular to the 

gradient direction. Thus, the cost is low if the direction of an edge is perpendicular to the 

gradient direction of the pixel:

(12)

where u is a neighboring node of v.

(4) Contour direction cost—Because the edge in the graph is bi-direction, we may 

define that the ROI region is located at the right side of the contour when walking through 

the contour in the clockwise direction. In order to separate a ROI region with low or high 

intensity compared to its background, we construct a cost function that compares the normal 

direction of the contour and the gradient direction:

(13)

where n is the normal of the contour (see Figure 6(b)), k is 1 for brighter ROI such as liver 

parenchyma (enhanced liver tissue is brighter than its neighborhood), and is -1 for darker 

ROI such as tumor (tumor tends to be darker than normal liver tissues). The default value of 

k is 1 and is set to -1 manually for tumor ROI.

(5) Isocontour cost—Assume that a local ROI boundary has a similar profile. We define 

an iso-distance contour map (see Figure 6) of a local contour: if two neighboring pixels are 

located at the same level of isocontour, its cost is low; otherwise the cost is high. The 

maximum isocontour value is defined as 8 pixels and the minimum isocontour is -8 pixels. 

The initial zero iso-contour is the intersection polylines of the initial mesh. To normalize the 

cost, the value of the cost is divided by 16:

(14)

where e(v) is the isocontour value at pixel v.

The local cost function from vertex v to vertex u is the weighted sum of five aforementioned 

costs defined on vertex v and edge vu:

(15)

where ΣCost= wZXSZX(v) + wgSg(v,u) + wdSd(v,u) + wcSC(v) + wIsoSIso(v,u), v,u are two 

vertices located within the band B shown in Figure 5. We set wZX=0.15, wg=0.15, wd=0.1, 

wc=0.5, and wIso=0.1. These values were set empirically, which may be fine-tuned in 

different clinical applications and imaging modalities.
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We use the dynamic-programming (DP) graph search algorithm [29] to search the local 

boundaries of a ROI within the band, such as the Dijkstra's algorithm or the A* algorithm 

[30]. To accelerate the searching of an optimal path with minimum cost, we employed an 

active list that sorts nodes by the total cost of starting nodes. This sorted active list takes 

computation time O(N) for sorting of N nodes (pixels) [30].

The seed points ( ) for searching the optimal path are selected on the intersection 

polyline at an interval of n pixels (n=60 in our study). Contour optimization searches the 

optimal path with minimal cost between each pair of seed points ( ) by using 

Equation (15) and then the resulting optimal paths are connected to form the optimized 

transversal contour COpt of the ROI.

The local boundary constraints (Vcontour) in constraint set Ω in Equation (7) is updated by 

adding a set of boundary points that are selected from the optimized transversal contour COpt 

as the constraint targeting vertices ( ). To ensure that the selected  is at or near the 

boundary of the ROI, we applied the following selection criteria:

• The middle segment of each optimal path between ( ) is selected to 

reduce the influence of inaccurate positions of initial seed points.

• For each point at the middle segment of a path, the vertex with the lowest cost is 

selected as the candidate of .

• All the  candidates on the transversal contour COpt are filtered to remove those 

that have a roof-edge, considering the segmented ROI has a step-edge.

Mesh transformation and contour optimization is performed in an iterative manner: mesh 

transformation initializes the transversal contours, and contour optimization updates the 

constraint targeting vertices for the refinement of the targeting mesh in the next iteration of 

mesh transformation. At each mesh transformation, ROI mesh is evolving from low to high 

resolution, as indicated by Equation (1). This iteration between mesh transformation and 

contour optimization is repeated in a multi-resolution progressively-optimized manner to 

ensure an efficient and accurate approximation of the ROI mesh.

III. Liver Segmentation Scheme

By applying the iterative mesh deformation algorithm, we developed a semi-automated 

segmentation scheme for diseased livers with cancer on CT images. The algorithmic steps of 

the semi-automated liver segmentation scheme are illustrated in Figure 7.

The mesh segmentation of a liver is initialized by 5 manually identified liver anatomical 

landmarks and a set of chest wall points Vchest that are detected automatically [31]. The five 

initial liver landmarks are illustrated in Figure 8, which are the liver top (superior) point (vt), 

the liver bottom (inferior) point (vb), the liver posterior point (vp), the liver anterior point 

(va), and the liver left point (vl), respectively. Because the right boundary of a liver is 

adjacent to the chest wall, a set of points at the boundaries of the chest wall is selected as the 

initial targeting constraint vertices, which are shown as the red points  in Figure 8(a).

Lu et al. Page 10

Comput Med Imaging Graph. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The initial homeomorphic sphere mesh for constructing M0 is built by setting the center at 

 and the radius of  as shown in Figure 8(a). To establish the 

correspondence constraints Ω, each targeting vertex on CT images (  in Equation (7)) 

needs to be mapped to the corresponding vertex on the sphere mesh, which is defined as the 

nearest vertex on the sphere mesh for each , as shown in Figure 8(a). By using the initial 

correspondence constraints Ω0, the sphere mesh is deformed to the initial liver mesh M0 

based on mesh transformation in Equation (1). The resulting M0 is displayed in Figure 8(b).

Because the deformed liver mesh M0 intersects with all transversal slices of CT images 

between the top and bottom landmarks, we may calculate a series of intersection polylines of 

the mesh on each transversal slice. These intersection polylines are re-sampled at an interval 

of 60 pixels to generate a set of seed points , shown as the red points in Figure 9(a). 

Between each pair of neighboring seed points ( ), an optimal path with minimal 

cost is searched. The optimal transversal contour is created by connecting all the optimal 

paths between every pair of seed points ( ) on the transversal image, shown as 

the yellow lines in Figure 9(b).

Due to the lack of local boundary constraint in Ωi, the initial intersection polylines and the 

seed points  may not closely match the local liver boundary. By contour optimization, 

the updated transversal contours approximate more accurately to the local boundary than do 

the initial polylines, as shown the yellow lines in Figure 9(a) and (b) respectively. Thus, we 

use the middle points ( ) of each optimal path as the targeting points and replace 

constraint set Ωi+1 with them to refine the targeting vertices. Occasionally, in case that the 

 is off the liver boundary, we may adjust or add or delete  interactively. In general, 

approximately 1∼3 pairs of extra correspondences may be needed for one case. Based on 

the updated constraint set Ωi+1, a new mesh Mi+1 is calculated using Equation (1). Figure 

9(c) compares the difference between the updated mesh Mi+1(red) and the initial mesh Mi 

(yellow).

IV. Experiments and Results

Forty (40) hepatic CT cases with biopsy-confirmed liver cancers or metastases were 

retrospectively collected for the evaluation of the accuracy and efficiency of our proposed 

semi-automated liver segmentation scheme. These hepatic CT cases were obtained by multi-

detector CT scanners with the following parameter settings: 2.5–5 mm collimation, 1.25–2.5 

mm reconstruction interval, 175 mA tube current, and 120 kVp tube voltage. All cases were 

acquired with use of an intra-venous contrast agent (ISOVUE; GE Healthcare, Milwaukee, 

WI).

The livers in these 40 hepatic CT cases were segmented manually by two radiologists in 

consensus on CT images. The volumetric size of these 40 cancerous livers ranged from 

1079.2 CC to 4652.3 CC, in which the tumor volume percentages (ratio of tumor volume/

liver volume) ranged from 1.77% to 53.54%. Some of these cases are shown in Figure 1.
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The manually-segmented liver volumes were compared with those obtained by the 

computerized liver volumes segmented by the proposed semi-automated scheme. The 

computerized liver volumes ranged from 1100.4 CC to 4443.5 CC.

Figure 10 to Figure 12 demonstrate some resulting images of three cases segmented by the 

proposed liver segmentation scheme. All these cases contain different sizes of tumors. 

Figure 10 demonstrates a case that was finished without any additional changes of the 

seeding points, i.e. by using only 5 user-identified liver landmarks. Figure 11 shows a case 

with a few manual adjustments on couple seed points on three slices. After the first run of 

the scheme, some seed points on the contours were adjusted manually by the user (see the 

upper row). After adjustments, the contours were finalized by the second run of the scheme 

(see the lower rower). Figure 12 shows an example case with large tumors. After the initial 

mesh segmentation, nine seed points were adjusted manual for contour refinement. It takes 

less than 5 minutes to get the result shown in Figure 12.

We evaluated the performance of the proposed liver segmentation scheme by using the 

evaluation criterion proposed in [4], which includes five metrics: (1) VOE: volumetric 

overlap error (%), (2) RVD: relative absolute volume difference (%), (3) ASD: average 

symmetric surface distance (unit: mm), (4) RSD: root-mean-square of symmetric surface 

distance (unit: mm), and (5) MSD: maximum symmetric surface distance (unit: mm). 

According to the criterion [4], a score of 75 is “comparable to human performance” of liver 

segmentation, which corresponds to VOE=6.4%, RVD=4.7%, ASD=1.0 mm, RSD=1.8 mm, 

and MSD=19 mm.

The evaluated performance of the proposed scheme is listed in Table 2. Our proposed liver 

segmentation achieved the average score of 84.75±3.69. This implies that the accuracy of 

the proposed liver segmentation scheme is superior to that of averaged “human 

performance”. In average, the proposed semi-automated liver scheme took approximately 5 

minutes including about 2 minutes of computing time. It demonstrates that our scheme is 

accurate and efficient in segmentation of livers considering that our study used diseased 

liver cases with pathologies including cancers and metastases, which are in general difficult 

cases compared to those healthy liver cases (such as liver donor cases in transplantation) in 

the literatures,.

In order to compare our method with other existing liver segmentation methods in terms of 

accuracy, running time, ease of use, and consistency, we selected five semi-automated or 

interactive liver segmentation methods from open-source segmentation software ITK Snap 

(www.itksnap.org) and Seg3D (www.sci.utah.edu/cibc-software/seg3d.html), and compared 

our method with these five selected methods by using 10 liver cases downloaded from 

MICCAI database (www.sliver07.org). We conducted a user study by evaluating the 

performance of these methods in two user groups: 1) the novice group of five college 

students, and 2) the expert group of five 3D imaging analysts in radiology department. After 

one day training of these tools, each participant finished the 10 MICCAI cases using five 

selected tools as well as our tool. Because interactive manual segmentation methods tends to 

outperform semi-automated or automated segmentation methods at a high cost of time and 

effort, all participant were required to apply the same criteria of accuracy in the evaluation 
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of each method. We compared the accuracy scores, the running time, and the easy-of-use 

index of each method in two groups. The result is showed in Table 3.

The average accuracy scores of all methods were approximately 80, which indicate the 

similar levels of accuracy for all tested methods. Compared with the five selected liver 

segmentation methods, our method demonstrated the highest level of easy-of-use as that of 

manual contouring, but took only about 5 minutes for finishing a liver segmentation task, 

which was much more efficient than other methods, in particular about 30-40 minutes for 

the manual contouring methods. Overall, the expert group outperformed the novice group 

with higher accuracy score (80.3 vs79.6) and shorter running time (21.2 vs 30.3). However, 

we observed that the running time in our method was almost constant in both groups, 

whereas it was approximately 10 min less (about 25%-35%) in expert group than that in 

novice group for other methods. The low standard deviation of our methods indicate that our 

liver segmentation scheme achieved a consistent accuracy score among different user groups

V. Discussion and Conclusion

The proposed semi-automated liver segmentation scheme based on iterative mesh 

transformation combines the advantages of 3D shape continuity and slice-to-slice constraints 

to achieve an quick and accurate segmentation with minimal user interaction. From our user 

study, we observed that our method is quicker and more consistent than other methods in 

both user groups. This outperformance of our method may result from the algorithm and 

user familiarity with our method.

• The energy-based contour deformable models (such as snakes) requires that the 

distances between the initial contours (or mesh) and the resulting contours (or 

mesh) of a ROI must be sufficiently small. User needs to manually initialize 

contours on each slice in the neighborhood of ROI or use interpolation to estimate 

the initial contours. The former may increase the interaction time and the latter is 

prone-to errors which may increase the error-correction time. In addition, 

deformable models tends to run a large number of iterations such as 100 or 200 

iterations to approximate the contours or mesh of a ROI in images.

• Different from energy-based deformation models, 3D mesh transformation model 

relies on small number of targeting vertices, five landmarks (feature points) in our 

liver segmentation scheme, to approximate the initial mesh of a ROI. The sparse 

LU factorization algorithm is very efficient to solve the minimization of the 

objective function (solve the resulting mesh) and contour optimization also takes 

O(NLogN) to find the optimized ROI contours on each image. In addition, the mesh 

is updated automatically every time when user corrects one vertex on a contour, i.e. 

the error-correcting is propagated to neighboring contours, which may substantially 

reduce the error-correcting time.

• We had to admit that the authors and the participants in the user study were more 

familiar with the features of our software than those of other tools. This may cause 

bias to the user study, in particular the user time. The running time in Table 3 relies 

on the experience of the image analyst and their familiarity to the software to 
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certain degree. The results might not reflect the best performance of these selected 

methods.

We acknowledge that the proposed iterative liver segmentation method and the evaluation 

study have four major limitations.

1. Mapping between a sphere mesh and a ROI boundary: The mesh transformation is 

established based on the one-to-one homeomorphic mapping between a sphere 

mesh and a ROI boundary. This assumption of continuous one-to-one mapping 

may not be easily held in the case of a concave or convex boundary, as shown in 

Figure 13(a). Because the ROI contour is searched within the band centered by the 

intersection polyline of the transformed mesh, the resulting contour may miss the 

concave hole if the band cannot cover the entire hole, as shown in Figure 13(b). 

Our current solution relies on interactive adding of a targeting point to cover the 

concave hole. In future, we will replace the sphere mesh with an initial liver mesh 

that has the same topology including these major concave holes.

2. Parameter setting: There are several important parameters in our liver segmentation 

scheme that were set empirically, such as the weights in equations (1), (5) and (15). 

We did not explore the possibility to optimize them further in this study because an 

optimal setting of the parameters may be related to the specific liver scanning 

protocols. Thus, we chose the parameters to be general, not optimized for our 

specific liver scanning protocol. Another important parameter is the bandwidth for 

searching 2D optimal contours. In our current implementation, we used a 

bandwidth of 40 pixels in each iteration for simplicity. A large bandwidth may 

erroneously take the neighboring large gradient boundaries such as bone as the 

liver boundaries, as pointed by the white arrows in Figure 13(b). An ideal solution 

is to adjust the bandwidth parameter at each iteration: from a large bandwidth at 

initial iteration to a small bandwidth at the final iteration.

3. User interaction: In comparison to previous semi-automated segmentation methods, 

our method reduced the user-interaction to as little as identification of five 

landmarks. However, users interaction is still needed to review and adjust targeting 

points on 2D transversal contours after each iteration, in particular at first or second 

iterations. This is the major interaction time spent in our current segmentation 

scheme. In future, this interactive identification of five landmarks may be lifted by 

automated landmark labeling and neighboring organs segmentation. In addition, the 

selection of constraint targeting points on transversal contours will be refined to 

minimize the constraint set with the most salient features on the contours.

4. Evaluation study: The hepatic CT images for evaluation were retrospectively 

collected from a radiochemotherapy study for patients with primary liver cancer or 

metastasis, and scanned with our institutional abdominal imaging protocol by using 

an intra-venous contrast agent. These cancer cases may present different texture 

patterns compared to other liver pathologies such as fatty liver or cirrhosis, and 

other liver imaging protocols. Further evaluation is required to apply this proposed 

liver segmentation scheme to hepatic CT images with other liver pathologies.
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In summary, we proposed a semi-automated segmentation scheme for diseased livers with 

cancers based on an iterative mesh transformation constrained by optimal transversal 

contours. The initial evaluation demonstrated that this semi-automated liver segmentation 

scheme can achieve an accurate and efficient 3D segmentation for diseased livers by using 

as little as five user-identified landmarks and an average of 5 minutes. Although this scheme 

was developed in the context of segmentation of diseased liver with tumors in hepatic CT 

images, this method may provide a general scheme for semi-automated segmentation of 

other organs or tumors.
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Refer to Web version on PubMed Central for supplementary material.
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Appendix 1: Solving the minimization problem in Equation (1)

Based on Equation (1) in Section II, mesh transformation is a minimization problem to solve 

the objective function f(Mi) formed by the weighted sum of three constraints: the smoothing 

constraint (CS: Equation (6)), the deforming constraint (CD: Equation (7)), and the distance 

constraint (CL: Equation (8)).

For an edge Ej, let the four vertices around Ej be vEj[x], where Ej[x] is the index of the 

vertices in the mesh, x = 1∼4. Let  be the element (r, c) of the 3 × 3matrix [TS]−1 in 

Equation (4), where r, c=1∼3. Equation (6) can be represented in the vector form of , 

shown in Equation (A.1).

(A.

1)

Let NS, ND, NL be the numbers of the items in Equation (A.1), (7) and (8), respectively. NS 

= |Z(M)| × 3 × 3, ND = |Ω|, NL = |E(M)|, where |Z(M)| is the number of triangle faces, |Ω| is 

the number of targeting constraint vertices in the constraint set, and |E(M)| is the number of 

edges in the mesh.
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Therefore, the three constraints C* (*=S,D,L) can be represented by a linear system:

(A.2)

where  is an N* × n matrix, n is the number of vertices in the mesh, and  is an N* × 1 

vector. For the smooth constraint CS, based on Equation (A.1),  is a zero vector and 

is a sparse matrix as shown in Figure (A.1).

Figure A.1. 

Distribution of non-zero elements in , which is a NS × n matrix and all the elements 

except those labeled as ej or ek in the ξth row are zero. The top labels are the indices of 

vertices, and the left labels are number of item in Equation (A.1), where ξ = 9i + 3k + c, i, k 

and c are variables of Equation (A.1). If two indices are equal, for example, Ej[2]=Ek[3]=i, 

the element in (ξ, i) is ej[2]+ek[3].

The non-zero elements in  can be calculated from Equation (A.1):

(A.3)

For the deforming constraint CD,  and  in the form of linear system of Equation (A.1) 

can be represented in Figure (A.2). For the distance constraint CL,  and  are shown in 

Figure (A.3).

The distribution of the non-zero elements in  and  (Figure A.1, A.2 and A.3) indicates 

that: . Thus, Equation (A.2) can be rewritten as:
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(A.

4)

Figure A.2. 

(a). Distribution of non-zero elements in , which is a ND × n matrix and all the elements 

except element (ξ, i) are zero, where ξ is the index of constraint in Ω. (b) Distribution of 

non-zero elements in .

The partial derivatives of C* is:

(A.5)

Thus, the partial derivatives of f has the form below:

(A.6)

Finally, the minimization problem in Equation (1) can be solved by evaluating the following 

equation:
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(A.7)

In terms of Equation (A.6), Equation (A.7) can be converted to a standard vector-formed 

linear system, which can be solved by using the sparse LU factorization algorithm [28].

Figure A.3. 

(a) Distribution of non-zero elements in , which is a NL × n matrix and all the elements 

except elements (ξ, i1) and (ξ, i2) are zero, where i1 and i2 are the indices of  and 

in the mesh, and ξ is the index of edge E(M) in the mesh M. (b) Distribution of non-zero 

elements in .
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Highlights

• An iterative mesh transformation algorithm for liver segmentation is proposed.

• Multi-resolution transformation optimization controls the 3D shape of a liver 

mesh.

• Dynamic-programming searches the 2D liver contours on CT images.

• A semi-automated segmentation scheme for diseased livers is developed.

• Interaction is reduced to as little as five user-identified landmarks.
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Figure 1. 
Examples of the inter-patient variability in sizes and shapes of diseased lives from patients 

with cancers or metastasis. All the patients were scanned by the same protocol at supine 

position. All the resulting images are displayed in the anterior viewing orientation. The sizes 

of livers vary significantly with more than four times of difference and more importantly the 

shapes vary substantially too. The CT intensities of liver parenchyma and cancerous tissues 

are apparently different.
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Figure 2. 
Mesh evolution in the segmentation of a sphere. (a) Initial mesh of an icosahedron is 

evolved by replacing of a triangle face with 4 smaller triangle faces. The newly-added 

targeting vertex D1 is the boundary point of the middle point D of edge AC along the 

direction of OD, where O is the center point of the sphere. (b) The resulting mesh after 5 

times of evolution, which consists of 10242 vertices, 30720 edges and 20480 triangle faces.
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Figure 3. 

 is a vertex on the mesh of a sphere and  is a vertex on the boundary of a ROI, such 

as a liver. When the size of the section is small enough, there is a continuous one-to-one 

mapping between the ROI boundary point ( ) and the sphere mesh vertex ( ).

Lu et al. Page 23

Comput Med Imaging Graph. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
(a) T is a 3 × 3 affine transformation matrix defined by four non-coplanar vertices 

(v1∼v4)around an edge Ei.  is the known variable before deformation and  is the 

unknown variable after deformation. (b) The roughest face on the original icosahedron. (c) 

The finest face on the segmented mesh by θ times of evolution. Zi is a triangle face of the 

mesh.
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Figure 5. 
The band (marked in blue) is centered by the intersection polylines of the mesh. The seed 

points ( ) on the intersection polyline are used to search the local boundary of a ROI on 

the transversal image plane. L is the width of the band, which is set to 40 in this study.
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Figure 6. 
The construction of an isocontour map on a transversal image plane. (a) The green contour 

is the intersection polylines of the initial mesh on the 2D transversal image, which is defined 

as the zero-isocontour. The region of the ROI is marked in light brown color, which is the 

inner region of the contour. (b) The e axis is the distance to the zero-isocontour: inner region 

has negative distances, whereas outer region has positive distance. n is the normal of the 

contour (from inner to outer) and g is the direction of the local image gradient. The 

maximum distance value is defined 8 pixels and the minimum is -8 pixels.
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Figure 7. The semi-automated liver segmentation scheme
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Figure 8. 
Liver mesh segmentation is initialized by five user-identified liver anatomical landmarks 

and a set of points from the chest wall detected automatically. (a) Five liver-landmarks 

Vlandmark = {vt, vb, vp, va, vl} are manually identified and the chest wall points 

are detected in an automated manner. Their correspondence points on the sphere mesh are 

{vst, vsb, vsp, vsa, vsl, }. (b) The initialized liver mesh M0 is deformed based on the 

constraint set Ω0 using Equation (1).
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Figure 9. 
Iterations between mesh transformation and contour optimization in a liver segmentation 

process. The red line is the intersection polylines of mesh Mi on the transversal slice. Red 

points are seed points re-sampled at an interval of 60 pixels on the intersection polylines. 

The yellow line is the optimal path calculated using the re-sampled seed points ( ). The 

initial seed points are replaced by the middle point ( ) at each segment of the optimal 

path, which is selected as the targeting point and added to the constraint set Ωi+1. (b) The 

intersection polylines are replaced by the optimal path re-calculated using middle points 

( ) in (a). Please note the re-calculated contour is closer to the liver boundary compared 

to the initial optimal path in (a). (c) The red mesh is the updated mesh Mi+1 by using the 

updated constraints Ωi+1, whereas the yellow mesh is the initial mesh Mi in (a). The default 

number of iterations is 3.
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Figure 10. 
Resulting liver contours (yellow curves) without additional manual adjusting seeds, i.e. the 

resulting contours were generated by using 5 liver anatomical landmarks identified by users. 

The contours of chest wall (blue curves) are generated by an automated segmentation 

method for chest cavity.
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Figure 11. 
The upper row is the initial contours generated by the scheme with 5 liver landmarks. The 

arrows indicate the seeds need to be adjusted interactively. The bottom row shows the 

resulting contours after the adjustments of the seeding points.
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Figure 12. 
Resulting contours of a liver with a large amount of tumors. In this case with 57 original CT 

slices, 9 seeding points (the large red points) were manually adjusted after the initial mesh 

segmentation. It took less than 90s to adjust the ambiguous seed points. The total time for 

the entire segmentation is approximately 5 minutes.
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Figure 13. 
(a) The continuous one-to-one mapping between a sphere mesh and a ROI mesh may not be 

easily held in the case of a concave hole, as indicated by the red arrow lines between the 

intersection polylines and a sphere, and the shading band area. (b) If the band cannot cover 

the entire concave hole, the resulting contour may miss part of the boundary of the concave 

hole, as indicated by the red arrow. On the other hand, large bandwidth may erroneously 

take the neighboring large gradient boundaries as liver boundary such as the bone or 

abdominal cavity pointed by the white arrows.

Lu et al. Page 33

Comput Med Imaging Graph. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lu et al. Page 34

T
ab

le
 1

N
um

be
r 

of
 v

er
tic

es
, e

dg
es

, a
nd

 f
ac

es
 o

f 
m

es
he

s 
at

 d
if

fe
re

nt
 s

te
p 

θ.
 M

es
h 

ev
ol

ut
io

n 
in

di
ca

te
s 

V
(M

θ–
1)

 ⊂
 V

(M
θ)

. I
n 

Fi
gu

re
 2

, m
es

he
s 

of
 a

 s
ph

er
e 

at
 θ

 =
 0

, 1
, 

…
, 5

 a
re

 il
lu

st
ra

te
d.

θ
0

1
2

3
4

5

V
er

tic
es

12
42

16
2

64
2

25
62

10
24

2

E
dg

es
30

12
0

48
0

19
20

76
80

30
72

0

Fa
ce

s
20

80
32

0
12

80
51

20
20

48
0

Comput Med Imaging Graph. Author manuscript; available in PMC 2016 July 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lu et al. Page 35

T
ab

le
 2

Pe
rf

or
m

an
ce

 o
f 

th
e 

pr
op

os
ed

 li
ve

r 
se

gm
en

ta
tio

n 
sc

he
m

e 
in

 th
e 

40
 li

ve
r 

C
T

 c
as

es
 w

ith
 c

an
ce

rs
 o

r 
m

et
as

ta
se

s 
in

 o
ur

 s
tu

dy
.

P
ar

t I
 (

40
 c

as
es

)
A

cc
ur

ac
y

Sc
or

e

V
O

E
R

V
D

A
SD

R
SD

M
SD

V
O

E
R

V
D

A
SD

R
SD

M
SD

O
ve

ra
ll

A
ve

ra
ge

5.
97

2.
46

0.
54

1.
15

7.
82

76
.6

9
86

.9
1

86
.4

5
83

.9
9

89
.7

1
84

.7
5

M
ax

im
um

7.
53

5.
54

1.
24

3.
72

25
.0

0
81

.7
9

99
.0

9
92

.6
4

89
.8

4
93

.1
5

89
.2

1

M
in

im
um

4.
66

0.
17

0.
29

0.
73

5.
20

70
.5

8
70

.5
1

68
.8

9
48

.3
5

67
.1

1
68

.6
4

St
d.

 D
ev

0.
70

1.
02

0.
19

0.
50

3.
37

2.
74

5.
40

4.
76

6.
95

4.
44

3.
69

Comput Med Imaging Graph. Author manuscript; available in PMC 2016 July 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lu et al. Page 36

Table 3

Comparison of our method with five liver segmentation methods selected from ITK-Snap (www.itksnap.org) 

and Seg3D (www.sci.utah.edu/cibc-software/seg3d.html) in terms of accuracy, running time, easy-of-use and 

consistency by using 10 liver cases downloaded from MICCAI database. We apply an index (1∼5) to indicate 

easy-of-use: 1 means easiest and 5 means most difficult. Running time is the average of the times spent on 10 

cases by 5 participants in each group.

(a) Results of novice group with 5 participants.

Methods and Description Average Score Std. Dev. Running Time (minutes) Easy-Of-Use

Manual Contouring (ITK Snap) 80.15 1.21 43 1

Region Competition Snakes (ITK Snap) 79.01 1.64 31 4

Edge Based Snake (ITK Snap) 80.01 2.12 29 4

Manual Paint and Contouring (Seg3D) 79.56 1.87 44 2

Speedline (Seg3D) 79.05 1.74 30 3

Our method 79.72 1.17 5 1

Average 79.60 1.63 30.3

(b) Results of expert group with 5 participants.

Methods and Description Average Score Std. Dev. Running Time (minutes) Easy-Of-Use

Manual Contouring (ITK Snap) 81.25 1.63 32 1

Region Competition Snakes (ITK Snap) 79.85 1.63 20 4

Edge Based Snake (ITK Snap) 80.79 1.60 19 4

Manual Paint and Contouring (Seg3D) 80.26 1.80 31 2

Speedline (Seg3D) 79.67 1.65 20 3

Our method 80.02 1.22 4.7 1

Average 80.30 1.58 21.1
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