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Abstract

Comparison of human brain MR images is often challenged by large inter-subject structural 

variability. To determine correspondences between MR brain images, most existing methods 

typically perform a local neighborhood search, based on certain morphological features. They are 

limited in two aspects: (1) pre-defined morphological features often have limited power in 

characterizing brain structures, thus leading to inaccurate correspondence detection, and (2) 

correspondence matching is often restricted within local small neighborhoods and fails to cater to 

images with large anatomical difference. To address these limitations, we propose a novel method 

to detect distinctive landmarks for effective correspondence matching. Specifically, we first 

annotate a group of landmarks in a large set of training MR brain images. Then, we use regression 

forest to simultaneously learn (1) the optimal sets of features to best characterize each landmark 

and (2) the non-linear mappings from the local patch appearances of image points to their 3D 

displacements towards each landmark. The learned regression forests are used as landmark 

detectors to predict the locations of these landmarks in new images. Because each detector is 

learned based on features that best distinguish the landmark from other points and also landmark 

detection is performed in the entire image domain, our method can address the limitations in 

conventional methods. The deformation field estimated based on the alignment of these detected 

landmarks can then be used as initialization for image registration. Experimental results show that 

our method is capable of providing good initialization even for the images with large deformation 

difference, thus improving registration accuracy.
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1. Introduction

Accurate matching of anatomical structures is a key step in many medical image processing 

and analysis tasks, e.g., deformable image registration (Zacharaki et al., 2008, 2009; Xue et 

al., 2006; Zhan et al., 2006; Shen et al., 1999), organ motion correction (Castillo et al., 

2010), and imaging biomarker identification (Zhang et al., 2011; Fan et al., 2007; Wee et al., 

2011; Chen et al., 2009). For example, the goal of deformable image registration is to 

maximize the image similarity by spatially warping one image to another. To achieve this, 

accurate determination of matching structures between images is crucial. Correspondence 

detection can be achieved by using either image intensities or image features (e.g., SIFT 

(Lowe, 1999), geometric invariant moments (Shen and Davatzikos, 2002), and wavelet 

transformation (Xue et al., 2004)).

However, anatomical structures can vary significantly across individuals. For instance, as 

shown in Fig. 1, the brain images from two individuals can differ significantly in ventricle 

size and their corresponding structures (i.e., marked by the red and blue crosses). Large 

structural differences pose huge challenges for accurate and robust correspondence 

detection. Current methods typically perform a local neighborhood search to find anatomical 

correspondences between images, by comparing the similarity between a target landmark in 

one image and all nearby candidate points in another image (Xue et al., 2004; Wu et al., 

2006; Shen, 2009; Yang et al., 2008). Such approach is limited in two aspects: (1) Current 

methods neglect the fact that, due to large inter-subject variability, corresponding structures 

could be far away and also exhibit different appearances, thus leading to inaccurate 

matching. (2) The similarity between corresponding points is often measured using local 

image features (e.g., intensity or SIFT features), rather than global image information that 

can help better distinguish between structures. Moreover, the same feature is usually used 

for the entire image -- this fails to take into account the structural variation within an image. 

We propose two ways to improve correspondence detection: (1) design discriminative 

feature descriptors that can enhance uniqueness in correspondence detection, and (2) use a 

global correspondence detection mechanism that can deal with the large anatomical 

difference between individual subjects.

In this paper, we propose a supervised global anatomical landmark detection method for MR 

brain images, which can address the aforementioned limitations in correspondence 

detection. More specifically, for each landmark, a robust correspondence detector is learned 

using a regression forest, an ensemble of randomly-trained binary decision trees that can 

efficiently map a complex input space to continuous output parameters (Criminisi et al., 

2011a). The highly non-linear mappings are solved by converting the original complex 

problem into a set of small-scale problems that can be handled with simple predictors. 

Regression forest has been proved to be a powerful tool for a variety of learning tasks 

(Criminisi et al., 2011a, 2011b; Pauly et al., 2011; Donner et al., 2013; Lindner et al., 2013). 

In our proposed method, regression forest is used to efficiently predict the pathways from all 

possible points in a new MR brain image to the corresponding landmark. More specifically, 

in the training stage, we annotate a set of salient landmarks, corresponding to the common 

anatomical structures, in a number of training MR brain images. Then, a regression forest is 

employed to simultaneously learn the optimal set of features that can best characterize these 
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landmarks and also the complex non-linear mappings from local patch appearances of an 

image to these landmarks. In the application stage, the trained regression forest is used to 

predict the displacements of each point in a new image towards a corresponding landmark. 

Based on the predicted displacements, a “point jumping” strategy is proposed to determine 

the location of the landmark, which is shown to be more robust than the simple majority-

voting approach when there is large anatomical structure variation. Robustness and 

efficiency of landmark detection is further improved by adopting a multi-resolution 

implementation. Because landmark detection is performed in the entire image domain, our 

proposed method is able to handle the challenge of large structure variations. Moreover, 

since a unique detector is learned for a specific anatomical landmark, more discriminative 

features could be utilized to best distinguish a landmark from other points in the MR brain 

image.

To evaluate the performance of our multi-resolution regression-guided landmark detection 

method, we apply it to MR brain image registration for addressing the problem of registering 

images with large anatomical differences. For computational efficiency, we first select a 

small set of landmarks that are sparsely covering the whole brain. Then, a unique detector is 

learned for each landmark by using regression forest. These detectors are used to establish 

rough initial correspondences between two MR brain images. Further refinement of the 

initial deformation field can be performed by using a registration algorithm, e.g., the 

HAMMER algorithm (Shen and Davatzikos, 2002), which is one of the state-of-the-art 

feature-based deformable registration methods. Experimental results show that these learned 

landmark detectors are quite robust to large anatomical variability among subjects. After 

landmark-based initialization, inter-subject differences are significantly reduced, thus 

making the subsequent registration-based refinement much easier. In our experiments, more 

accurate and robust results are obtained by combining these landmark detectors with 

HAMMER, especially for the cases with large anatomical differences.

The preliminary version of this work was published in (Han et al., 2014). But this work 

differs from our previous work in the following aspects. 1) More detailed descriptions of the 

method are presented. Also, an algorithm (Alg. 1) also given for readers to better understand 

the detailed implementation of our point-jumping landmark detection method. 2) 

Comprehensive parameter setting is provided in Section 3, which makes it feasible to 

reproduce our results by others. 3) Experimental Section is extensively extended with more 

visual results and also a validation on additional “18-elderly-brain” dataset.

This paper is organized as follows. In Section 2, we describe the multi-resolution regression-

guided anatomical landmark detection method and its application to MR brain image 

registration. Evaluation results of the proposed method are presented in Section 3. Finally, 

we conclude this paper in Section 4.

2. Methods

In this section, we first introduce the training and application procedures of general 

regression forest in Subsection 2.1. Then, in Subsection 2.2, we give the detailed 

descriptions of our multi-resolution regression-guided landmark detection method. Finally, 

Han et al. Page 3

Comput Med Imaging Graph. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in Subsection 2.3, we describe the application of using our proposed method to assist MR 

brain image registration.

2.1 Regression forest

In multivariate regression, we want to learn a mapping that predicts a continuous output m ∈ 

ℝM using input d ∈ ℝD. Regression forest belongs to random forest family and is 

specialized for non-linear regression. A regression forest consists of a set of binary decision 

trees. Each binary decision tree contains a number of split and leaf nodes as shown in Fig. 2. 

A split node is associated with a split function, which directs an incoming data item to either 

left or right child based on a single feature and the learned threshold; on the other hand, a 

leaf node stores a statistical distribution of outputs of training data items that fall into it. This 

piece of information would be used to determine the output of an unseen testing data item. 

In this paper, a training data item consists of data extracted at a point of a training image 

(i.e., training point), d ∈ ℝD is a vector that contains image features calculated from the 

local patch centered at the training point, and m ∈ ℝM (M = 3) is the 3D displacement from 

this training point to an annotated landmark. In the next two paragraphs, we will briefly 

introduce (1) in the training stage how regression forest is learned to capture the non-linear 

relationship between d and m, and (2) in the application stage how the learned forest is used 

to predict the output of an unseen data item.

In the training stage, each tree is trained independently, and thus training can be performed 

in parallel. Given a set of sampled training data items  = {di ∈ ℝD, i = 1 ··· N} and their 

corresponding continuous outputs  = {mi ∈ ℝM, i = 1 ··· N}, the training of a binary 

decision tree starts with the root node, and recursively proceeds to its left and right children 

until either of the two stopping criteria is met: (1) the maximum tree depth DTree is reached; 

(2) the number of training data items after splitting is below a threshold NLeaf. If none of the 

two stopping criteria is met, the current node is a split node; otherwise, it is a leaf node. For 

each split node j, we want to find the optimal feature  and threshold  that best split the 

training data items into two groups with consistent output values {mi}. This is typically 

done using exhaustive search over a random feature and threshold set by maximizing the 

following objective function:

where f and t denote a pair of randomly sampled feature and threshold, Ωj denotes the index 

set of training data items that arrive at node j, Objectivej(f, t) measures how well a particular 

pair of feature and threshold separates the training data set indexed by Ωj into two groups 

with consistent outputs,  and  are the index sets of training data items that arrive at left 

and right children of node j after splitting, respectively, E(Ωj) computes the consistency of 

output values of training data set indexed by Ωj, f(di) returns the response of feature f on data 

item di,  denotes the outputs of training data items indexed by Ωj, trace denotes the matrix 

trace, and cov denotes covariance matrix. After determining the optimal feature and 
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threshold, we split the training data items into two groups, which are further passed to the 

left and right children for training, respectively. For each leaf node, we can save the 

posterior probability p(m|d) by summarizing the outputs of all training data items that arrive 

at this leaf. In most cases, by assuming Gaussian distribution of outputs in each leaf, only 

mean and covariance of outputs need to be calculated. The entire tree training continues 

until all training paths reach the leaves.

In the application stage, we can use the learned regression forest to predict the output of an 

unseen data item dnew ∈ ℝD. Similar to the training stage, the prediction of each binary 

decision tree is independent, and also can be performed in parallel. To predict the output of 

dnew from one binary decision tree, we push data item dnew through the tree starting at the 

root. At each split node j, we compute the feature response  and compare it with 

threshold . If , data item dnewis passed to the left child; otherwise, it is 

passed to the right child. The data item dnew continues being passed until it reaches a leaf 

node. Under this scenario, the posterior probability distribution p(m|d) saved at that leaf 

node is used to compute the expectation of m as the output of this tree.

where mk is the prediction of the k-th tree, and pk(m|d) denotes the posterior probability 

distribution of the leaf node reached by dnew in the k-th tree. The final prediction of a 

regression forest is computed as the average over predictions of all trees in the forest:

Here we assume p(m|d) to be multivariate Gaussian distribution. Thus, the expectation can 

be efficiently calculated.

2.2 Multi-resolution regression-guided landmark detection

In this paper, regression forest is used as landmark detector to detect the corresponding 

landmarks across different subjects. In particular, we first use regression forest to 

simultaneously learn the optimal set of features that best characterize the underlying 

landmark and a complex non-linear mapping that associates the local patch appearance of an 

image point with its 3D displacement to the landmark. Then, the learned regression forest is 

used to detect the latent corresponding landmark in the new testing image by predicting the 

pathways from the image points to the landmark. Unlike traditional correspondence 

detection, which is usually performed by feature matching in a small local neighborhood, 

our regression-guided landmark detection searches for the corresponding landmark in the 

entire image domain with the automatically learned features. Thus, it is able to overcome 

large inter-patient anatomical variability. Besides, a unique detector is trained for each 

landmark of interest under supervised learning setting. Thus, compared with pre-defined 

features, more discriminative features could be used to best distinguish the underlying 

Han et al. Page 5

Comput Med Imaging Graph. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



anatomical landmark from other points in the MR brain image. In the following paragraphs, 

we will elaborate the proposed multi-resolution regression-guided landmark detection, from 

both training and application perspectives.

Training—In the stage of detector training, the training dataset consists of a set of linearly 

aligned MR brain images {Ij}. Each image is associated with the annotated location of a 

corresponding landmark {vj ∈ ℝ3}. For each image, we first sample a set of training image 

points PTrain = {pi ∈ ℝ3} around the landmark by using spherical sampling as shown in Fig. 

3. Specifically, we sample the same number of training points on spheres with different 

radiuses centered at vj. Here, the maximum sampling radius is denoted as Rs. More training 

points are sampled near the annotated landmark, thus the prediction reliability and accuracy 

of image points close to the landmark can be improved. For the i-th training point  in the j-

th training image, its output vector  is defined as the 3D displacement from this 

point to the annotated landmark, i.e., . The features used to characterize each 

image point are Haar-like features that are computed from a local patch centered at each 

point, and are defined as follows:

where ρ is an intensity patch; R(ρ, al, sl) is a cubic function, which calculates an intensity 

summation over one cubic area within patch ρ; ul ∈ {−1,1}, al ∈ ℝ3 and sl are the polarity, 

translation and size parameters of the l-th cubic function, respectively; Z is the number of 

3D cubic functions; q is a voxel within patch ρ and ρ(q) is the intensity value of q. By 

changing the number of 3D cubic functions (i.e., Z) and the parameters of each 3D cubic 

function (i.e., ul, al and sl), we can generate virtually unlimited features from an intensity 

patch ρ. All features that can be represented by Φ(ρ) form the feature pool. When training a 

binary decision tree, we randomly sample a subset of features F = (fk, k = 1 ··· NF} from the 

feature pool. At each split node, we randomly generate one set of thresholds 

 for each feature fk based on the distribution of feature responses of the 

training image points reaching this node. The feature set F and the corresponding threshold 

sets {Tk}are used to learn the optimal parameters for split nodes.

After defining the sampling strategy, features, and the output that we want to predict, we can 

train multiple binary decision trees to form a regression forest, which encodes the non-linear 

relationship between local patch appearance of an image point and its 3D displacement to 

the landmark.

Testing—In the application stage, the learned regression forest is used to detect the 

location of corresponding landmark in a new testing image. To achieve it, the most intuitive 

way is to adopt the idea of “point voting”. In the “point voting”, we allow each image point 

to vote for the latent landmark location. Specifically, for each image point p ∈ ℝ3, we first 

predict the 3D displacement vector m̂ ∈ ℝ3 using the learned regression forest, based on the 
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image appearance of the local patch. Then, a vote is given to the point nearest to p + m̂. 

Finally, after voting from all image points, the point that receives the most votes is regarded 

as the corresponding landmark location. However, the major limitation of such voting 

strategy is that the landmark location is determined by consensus of all image points. If large 

anatomical variations exist near the landmark, majority of image points far away from the 

landmark would not be informative for landmark prediction. Thus, their prediction results 

are not reliable. Unfortunately, in the voting strategy, the final landmark location may be 

dominated by the wrong votes. In our experiments, we will show some cases where the 

voting strategy fails due to the large inter-subject anatomical structure variations.

In this paper, we propose a regression-guided method for landmark detection, which 

employs an improved strategy named “point jumping” to overcome the limitations of the 

voting-based approach. Similar to the “point voting”, each image point can predict one 

landmark location. The difference is that, instead of directly using the estimated 3D 

displacement from an image point to predict the landmark, we repeatedly utilize the learned 

regression forest to estimate a pathway from an image point to the latent landmark, and 

during this procedure the landmark prediction is iteratively refined. Specifically, given the 

initial location of an image point p ∈ ℝ3, we can estimate its 3D displacement m̂ to the 

latent landmark by the learned regression forest. Then, we let this point jump to the new 

location p + m̂. This “point jumping” procedure continues until it reaches one of the four 

stopping criteria as stated below:

1. ||m̂|| is too small, which indicates the point does not move anymore and the “point 

jumping” procedure converges.

2. The currently predicted ||m̂|| is significantly larger than the previously predicted 

one. In most cases, the point would be very close to the landmark after one jump. 

The length of jumping should gradually decrease as the point approaches the 

landmark. This situation happens only when the prediction of ||m̂|| is wrong, and 

thus the point should stop jumping.

3. The point jumps out of the image domain.

4. The maximum number of jumping is reached.

After jumping, the final location of the point is regarded as the predicted landmark location 

from this point. Given a set of image points, we can use “point jumping” to obtain one 

predicted landmark location from each point. Then, the predicted location with the smallest ||

m̂|| is regarded as the location of the latent landmark. Fig. 4 gives a simple illustration of the 

“point jumping” strategy. Because the prediction from each point is iteratively refined via 

“point jumping”, a small set of sampled image points is generally enough for successful 

landmark detection, which makes this approach much more efficient than “point voting”. In 

the next paragraph, we will detail the multi-resolution landmark detection and how the 

image points are sampled in each resolution in the application stage.

Multi-resolution—To further increase the robustness of our landmark detection method, 

we adopt multi-resolution strategies in both training and application stages. Specifically, in 

the training stage, we train one regression forest for each resolution. In the coarsest 
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resolution, we sample the training points all over the image in order to ensure the robustness 

of the detector (i.e., large maximum sampling radius in Fig. 3); in the finer resolutions, we 

only sample the training points near the annotated landmark to increase the specificity of the 

detector (i.e., small maximum sampling radius in Fig. 3). During the application stage, in the 

coarsest resolution we sparsely and uniformly sample a set of points from the entire image 

as shown in Fig. 5(a). Using the “point jumping” on these sampled points, we can obtain an 

initial guess of the latent landmark. In a finer resolution, we take the predicted landmark in 

the previous resolution as the initialization. Instead of sampling in the entire image domain, 

now we sample points only near the initialization (Fig. 5(b)), thus improving the specificity 

of landmark detection. In this way, the detected landmark will be gradually refined from 

coarse to fine resolutions. Alg. 1 summarizes our multi-resolution regression-guided 

landmark detection method.

Algorithm 1

Multi-resolution regression-guided landmark detection

Input: An unseen MR brain image I

 A set of learned regression forests {Fi} at different resolutions

Notations: ρp denotes a local patch centered at image point p

 F(ρp) returns a predicted 3D displacement by forest F based on the local patch ρp

Output: Detected landmark location l

Init: l = the image center of I

for i from the coarsest scale index to the finest scale index do

Uniformly and sparsely sample a set of testing points PTest = {pj} within the bounding box indexed by l − bi/2 and l + 
bi/2, as shown in Fig. 5. (Here, bi is the side-length vector of the bounding box Bi at resolution i, which gradually 
decreases as the resolution goes from coarse to fine.)

for each point pj in PTest do

 count = 0, p = pj; L = +Inf

 while count ≤ MAX_JUMP do

  if ||Fi(ρp)|| ≤ TLen then break; endif

  if L − ||Fi(ρp)|| ≤ ε then break; endif

  if p + Fi(ρp) outside of image domain then break; endif

  L = ||Fi(ρp)||; p = p + Fi(ρp); count = count + 1

 end while

 pj = p

end for

 l = argminp∈PTest||Fi(ρp)||

end for

Output: l

In the above, TLen is the threshold for controlling the minimum length for landmark jumping; ε enforces the length of 
point jumping to be decreasing with some toleration, and ε is usually set to a negative value close to 0.

Summary—Compared with the conventional correspondence detection methods, our 

method detects the latent landmark in the entire image domain, thus overcoming the 

limitation of local feature matching and the difficulty of choosing the search range as often 

suffered by the conventional approaches. Besides, unlike the voting-based landmark 
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detection, we use “point jumping” to iteratively refine the predictions from the image points, 

which makes our method more accurate under the scenario of large inter-subject structural 

differences.

2.3 Application of the proposed method to MR brain image registration

In this paper, we demonstrate the advantages of our multi-resolution regression-guided 

landmark detection method by applying it to MR brain image registration. As shown in Fig. 

1, large inter-subject differences pose challenges to accurate correspondence identification. 

In general, current deformable registration algorithms are limited in solving this problem for 

two reasons: (1) most deformable registration algorithms adopt a local correspondence 

matching mechanism, which limits their ability to deal with the large inter-subject 

anatomical variations; (2) the lack of global image information makes hand-crafted feature 

descriptors not discriminative enough to identify each point in the brain. Fortunately, our 

proposed landmark detection method can help alleviate these difficulties.

Ideally, to apply our proposed method to MR brain image registration, we can learn a large 

number of detectors that are densely distributed in the whole brain. For typical MR brain 

images, thousands of landmark detectors are often needed to better model the high-

dimensional deformation field between two images, which is unfortunately computationally 

infeasible. To resolve this issue, we select an alternative way. Specifically, we learn a 

relatively small set of landmark detectors (located at distinctive brain regions) to provide 

robust initial correspondences between two images. Then, a dense deformation field can be 

interpolated from the initial correspondences on the landmarks, and is then used to initialize 

the deformable image registration. Since the most important and challenging 

correspondences can be well established by our landmark detectors, the subsequent 

refinement of deformation field becomes much easier than the direct registration between 

two images. In this way, the conventional image registration can be divided into two sub-

tasks, i.e., (1) accurate initial correspondence establishment by robust landmark detectors 

and (2) efficient deformation refinement by an existing image registration method. Next, we 

will describe the landmark-based initialization method in detail.

In the stage of detector training, given a group of training MR brain images, we annotate a 

small set of corresponding landmarks in each image. These landmarks should satisfy two 

criteria: (1) distinctiveness: a good landmark should be distinctive in terms of its 

appearance, in order to make the correspondence as reliable as possible; and (2) coverage: 

the distribution of landmarks should cover the entire brain, in order to effectively drive the 

whole deformation field. After landmark annotation, a unique detector is learned for each 

landmark by using the method described in Subsection 2.2.

When registering two new MR brain images, landmark detection is first performed in each 

image using the learned landmark detectors. Then, sparse correspondences can be 

established between the two images based on the detected corresponding landmark pairs. 

Occasionally, a landmark may be incorrectly detected, e.g., at a different region that is too 

far from its true location. In this case, this landmark together with its corresponding 

landmark in the other image must be discarded. Recall that we know the exact locations of 

all the landmarks in the training images, which can be considered as valuable a priori 
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information. Therefore, we can first calculate the average location of each landmark based 

on the corresponding landmark locations in all training images (after their linear alignment). 

Then, a simple way to remove the outliers is to calculate the distance between each detected 

landmark and its corresponding average landmark from the training set. If the distance is 

larger than a pre-defined threshold, this landmark is considered to be incorrectly detected 

and is therefore discarded. Next, thin plate spline (TPS) method can be utilized to interpolate 

a dense initial deformation field from these sparse correspondences (Wu et al., 2010). The 

generated initial deformation field will be further refined by other deformable registration 

methods. Since our proposed landmark detection method can provide good initialization for 

image registration, we can obtain more accurate registration results than directly registering 

two images from scratch.

3. Experiments

In this section, experiments are conducted to evaluate the performance of the multi-

resolution regression-guided landmark detection method. Subsection 3.1 describes the MR 

brain image datasets used in the experiments and presents the parameter setting for the 

proposed method. In Subsection 3.2, the proposed method is validated and its advantages are 

demonstrated. In Subsection 3.3, the proposed method is applied to MR brain image 

registration to improve the registration accuracy. Experimental results show the advantages 

of the proposed landmark detection method.

3.1 Image datasets and parameter setting

Two image datasets were used in our experiments. One consisted of 62 MR brain images 

selected from the ANDI dataset (denoted as the “ADNI dataset”). The other one consisted of 

18 MR elderly brain images (denoted as the “18-Elderly-Brain dataset”). The dimensions of 

these images are 256×256×256, and the voxel size is 1×1×1mm. All these images were first 

linearly aligned using FLIRT in the FSL software package (Jenkinson and Smith, 2001; 

Jenkinson et al., 2002). Then, each image was further segmented into white matter (WM), 

gray matter (GM), ventricle (VN), and cerebrospinal fluid (CSF) regions by FAST (Zhang et 

al., 2001). Here, we regard these segmentations as the ground truth for evaluating the 

accuracy of the registration results by comparing the tissue overlap ratio (see Subsection 

3.3). To learn a landmark detector, regression forest training was performed on 3 different 

image resolutions. Table 1 lists the parameter values used in the proposed landmark 

detection method. The same set of parameters was used in all experiments below.

3.2 Validation of the proposed method

In this subsection, the performance of the proposed landmark detection method is 

quantitatively and qualitatively evaluated by training detectors for a few specified landmarks 

and comparing the detection results with the manually annotated landmark locations in the 

testing images. Specifically, in this experiment, 44 images were selected from the ADNI 

dataset as the training set and the rest 18 images in the ADNI dataset formed the testing set 

in the application stage. Next, we manually annotated 6 specific landmarks on the corners/

edges of the ventricle regions in both training and testing images. Fig. 6 shows the 6 
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annotated landmarks in one training image. Then, one detector was trained for each of the 6 

landmarks by using the method described in Subsection 2.2.

After training, these learned detectors were used to detect the corresponding landmarks in 

each testing image. The detection results were compared with the annotated landmark 

locations. To better demonstrate the advantage of the proposed method over the voting-

based method, detection results from both methods were obtained and compared. Table 2 

presents the detection errors (the residual distance between the manually annotated landmark 

and the predicted landmark) of the two methods for each of the six landmarks. Both mean 

errors and corresponding standard deviations are provided. We can obverse from the table 

that, for the first four landmarks, both methods achieve reasonable detection accuracy with 

good stability (see the small standard deviations). However, for landmarks 5 and 6, the 

performance of the voting-based method is far worse than that of the proposed method. This 

is mainly because the inter-subject variability of these two landmarks is much larger than 

that of the other four landmarks. In this case, the prediction from the voting-based method is 

more likely to be dominated by the wrong votes, which eventually leads to false landmark 

detection. Fig. 7 shows two examples where the voting-based method fails to predict the 

correct landmark locations, whereas the proposed method still performs well. To better 

evaluate the performance of the proposed method, we select one image from the testing set 

that is substantially different in appearance from the training image in Fig. 6. Fig. 8 shows 

the six annotated landmarks in this image and the corresponding distance maps for each 

landmark at different resolutions, which are obtained by calculating the distance between 

each point in the image and the latent landmark based on the regressed displacement from 

the learned regression forest. From Fig. 8, we can clearly see that, in the coarsest resolution, 

a rough initial guess of the latent landmark can be robustly estimated from the entire image 

by the proposed method. This initial prediction is gradually refined in the successive finer 

resolutions. In this example, all six landmarks are correctly predicted in the finest resolution. 

Since our proposed method performs landmark detection in the entire image domain, it is 

not sensitive to anatomical structure variations among different subjects, and thus more 

robust than its local-search-based counterparts.

3.3 Evaluation of the proposed method in MR brain image registration

In this subsection, the proposed landmark detection method was further evaluated by 

applying it to assist MR brain image registration, where a set of landmark detectors were 

learned to provide a good initial deformation field between two images under registration. 

Further refinement of the remaining deformation field was performed by HAMMER (Shen 

and Davatzikos, 2002), which is one of the state-of-the-art feature-based deformable 

registration algorithms.

3.3.1 ADNI dataset—The first group of experiments was conducted by using the ADNI 

dataset. The same training and testing sets as in Subsection 3.2 were used here. Prior to the 

training of landmark detectors, we need to select a set of distinctive landmarks that sparsely 

cover the whole brain. To speed up the procedure of landmark selection, a semi-automatic 

approach was adopted in our experiment. Specifically, one image in the training set was 

selected as the template. Then, a large number of candidate landmarks were extracted from 
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the template. This was realized by using the importance sampling strategy described in Wu 

et al. (2013). Specifically, we first calculated the gradient magnitude at each voxel of the 

template image. The resulting gradient magnitude map was then smoothed and normalized 

to serve as the sampling probability map. A voxel with large gradient magnitude indicates its 

importance and thus has higher probability to be selected as a candidate landmark. The 

advantage of this sampling strategy is that the extracted candidate landmarks cover the 

whole brain, especially texture-rich regions. Fig. 9 (a) shows the initially extracted candidate 

landmarks. Next, we removed the candidate landmarks that were in homogeneous regions 

(e.g., white matter), because these landmarks are not associated with distinct texture 

information and may not be reliably detected by regression forest. This was done by first 

calculating the saliency of each candidate landmark, which is defined as the sum of gradient 

magnitudes within a small spherical neighborhood. Then, thresholding was performed on 

these saliency values. Landmarks with saliency values lower than a pre-defined threshold 

were discarded. Fig. 9 (b) shows the candidate landmark locations after non-salient point 

removal. Next, we selected a small set of landmarks of interest from all remaining candidate 

landmarks. This was realized by sorting the candidate landmarks in descending order 

according to their saliency values, and sequentially picking the final landmarks one by one. 

Once a candidate landmark was selected as the final landmark, we used a spherical mask 

centered at the selected landmark to mask out its nearby region. In this way, we could ensure 

that the selected landmarks evenly covered the whole brain. The landmark selection 

continued until all candidate landmarks were processed (i.e., either selected or excluded). 

Fig. 9 (c) shows the final landmarks. In our experiments, 1,350 landmarks were finally 

selected. Next, we non-rigidly warped all other training images to the template. Based on the 

deformation fields, the corresponding locations of the landmarks in other training images 

could be obtained. Because deformable registration may not be accurate enough for each 

image, we visually checked all the corresponding landmarks and made some necessary 

corrections to ensure that they all corresponded to the same anatomical structures.

After training all the landmark detectors, these detectors were used to establish rough initial 

correspondences between the two images. Two different cases were considered in this 

experiment. Case 1 is where the fixed image comes from the training set. This is possible 

when the training images are used as standard atlases for the applications such as atlas-based 

segmentation. In this case, landmarks need to be detected only in the new moving image, 

since the corresponding landmarks in the fixed image are already known. Case 2 is where 

none of the two to-be-registered images is from the training image set. Therefore, we need to 

detect landmarks from both of them. For both cases, one image was selected as the fixed 

image and all other images in the testing set were warped to it. Registration results from the 

landmark-based initialization, HAMMER, and the combination of these two methods were 

obtained. The Dice ratios (Van Rijsbergen, 1979) (and their standard deviations) of these 

methods, computed for VN, GM, and WM, are reported in Table 3. We can see that using 

landmark-based initialization increases the Dice ratios (and decreases the standard 

deviations) for all tissue types. This indicates that the correspondences established by the 

landmarks are accurate and robust. Refinement using HAMMER further improves the 

accuracy to a level that is better than the original HAMMER. The most prominent 

improvement comes from the ventricular region. Although, in Case 1, HAMMER also 
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achieves a Dice ratio of 80.9%, the standard deviation is, however, quite large. This implies 

that the registration results are not robust for images with large anatomical variations. The 

registration results from our approach (Landmark+HAMMER) are much more consistent in 

all cases, along with smaller standard deviations.

Fig. 10 shows the fixed images and the average images of all the warped images produced 

by HAMMER alone and Landmark+HAMMER, respectively, for both Case 1 and Case 2. 

Through visual inspection, the average images given by Landmark+HAMMER are sharper 

than those given by HAMMER alone, especially in the ventricular areas. To better illustrate 

the advantage of our approach, we select 5 images from the testing set that are substantially 

different in appearance from the fixed images in both Case 1 and Case 2. Figs. 11 and 12 

present the registration results for Case 1 and Case 2, respectively. These two figures clearly 

demonstrate the registration improvements given by the Landmark+HAMMER. After 

landmark-based initialization, the inter-subject differences of these MR brain images are 

significantly reduced. Further improvements are obtained by refinement using HAMMER.

Next, we evaluated the registration performance of Landmark+HAMMER in labeling the 

ventricular regions in the testing images. Specifically, the fixed image in Fig. 11 was used as 

the atlas, and the ventricle label in the atlas was mapped to the 5 moving images in Fig. 11 

by using the deformation fields estimated by image registration. Fig. 13 shows the results 

from HAMMER and Landmark+HAMMER, respectively. It is apparent that when the 

images are quite different from the atlas, Landmark+HAMMER can achieve better accuracy 

in ventricle labeling (see the red regions in Fig. 13).

From the above experiments we can see that, when the moving image is substantially 

different from the fixed image, the large differences may not be handled well by using 

HAMMER alone. One possible solution to this problem is to use more aggressive 

parameters. For instance, we can use a larger search range. However, increasing the search 

range may introduce other issues, e.g., the risk of introducing false-positive 

correspondences. In addition, the deformation fields may be bumpy, indicating structural 

mapping that may not be biologically feasible. To better illustrate this point, we used 

HAMMER again, but with a larger search range, to warp the third moving image to the 

fixed image in Fig. 11. Then, the result given by HAMMER (with a larger search range) was 

compared with that given by Landmark+HAMMER (with default search range). From the 

results shown in Fig. 14, we can see that the ventricular region in the warped image from 

HAMMER is well aligned, but at the cost of less-accurate registration in the cortical regions. 

This can be better understood from the magnitude maps of the deformation fields estimated 

by the two methods. From these deformation magnitude maps, we can see that the 

deformation field generated by HAMMER is quite bumpy and the displacement values of 

some regions are unrealistically large. Landmark+HAMMER generates a smoother 

deformation field with largest displacements around the ventricular region, which seems to 

agree with the images. This experiment further demonstrates the advantage of Landmark

+HAMMER.

3.3.2 18-Elderly-Brain dataset—To further evaluate the robustness of the landmark-

based initialization method, we also applied these learned landmark detectors to the 18-
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Elderly-Brain dataset. In this experiment, one image was selected as the fixed image, and the 

other 17 images were warped to it. Registration results from the Landmark+HAMMER 

approach and HAMMER alone were obtained. Table 4 presents the Dice ratios and the 

corresponding standard deviations of VN, GM and WM regions for both methods. From 

Table 4 we can see that, compared with the original HAMMER, the Landmark+HAMMER 

approach achieves higher Dice ratios and lower standard deviations for all tissue types, 

which is quite similar with the results on the ADNI dataset. To quantify the consistency of 

the registration results, we further calculate the entropy of tissue type probability across all 

warped segmentation images voxel by voxel. A lower entropy value at a voxel indicates 

higher registration consistency at this voxel. In this experiment, the average entropy values 

for HAMMER and Landmark+HAMMER are 0.44 and 0.42, respectively. Fig. 15 shows the 

average images of all warped moving images produced by HAMMER and Landmark

+HAMMER, respectively, and the corresponding entropy maps of tissue type probability. 

Improvements in registration consistency by the Landmark+HAMMER approach can be 

easily observed in Fig. 15. This experiment well demonstrates the applicability of the 

landmark-based initialization method to different MR brain image datasets.

4. Conclusion

In this paper, we analyze the limitations of conventional anatomical correspondence 

detection methods, and then propose a multi-resolution regression-guided landmark 

detection method to overcome these limitations. In our method, regression forest is 

employed to learn the complex non-linear mapping from local image appearances to the 3D 

location of each landmark. The learned regression forest is utilized to detect latent 

corresponding landmarks in new images. Experimental results indicate that, when the 

structural differences of two images are significant, using HAMMER alone may not obtain 

satisfactory results. However, with the help of reliable correspondences obtained using the 

landmarks detected via the proposed method, structural differences between two subjects 

can be significantly reduced. Then, by refining the outcome using HAMMER, the final 

results are more accurate and robust than those given by HAMMER alone.

One limitation of the proposed method is that it uses only Haar-like features, i.e., intensity 

patch differences, to characterize a point in an image. Haar-like features are low-level 

features and are relatively sensitive to image contrast variations. Because MR brain images 

from different scanners can be different in contrast, the accuracy of landmark detection may 

be compromised. To alleviate this problem, histogram matching can be adopted in both 

training and application stages to normalize image contrast. Further improvements can be 

obtained by incorporating higher-level features, e.g., contrast-invariant features, into the 

proposed method. Future research will include (1) further improving landmark detection 

accuracy and (2) extending our regression forest framework to other potential application 

areas.
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• We propose a novel method to detect distinctive landmarks for effective 

correspondence matching.

• Specifically, we use regression forest to simultaneously learn (1) the optimal 

sets of features to best characterize each landmark and (2) the non-linear 

mappings from the local patch appearances of image points to their 3D 

displacements towards each landmark. The learned regression forests are used 

as landmark detectors to predict the locations of these landmarks in new images.

• Because each detector is learned based on features that best distinguish the 

landmark from other points and also landmark detection is performed in the 

entire image domain, our method can address the limitations in conventional 

methods.

• Experimental results show that our method is capable of providing good 

initialization of registration, even for the images with large deformation 

difference, thus improving registration accuracy.
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Fig. 1. 
An example showing the large difference between ventricular regions in the two MR brain 

images. The boundary of ventricular region in the left image is overlaid on the right image. 

The red and blue cross marks denote the reference and the corresponding points in the two 

images, respectively. The distance between two cross marks in the right image is about 

19mm.

Han et al. Page 18

Comput Med Imaging Graph. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
A simple example of a four-level binary decision tree in a regression forest. Gray and green 

nodes are split nodes and leaf nodes, respectively.
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Fig. 3. 
A sketch diagram of spherical sampling in the training image. The red dot denotes the 

annotated landmark and the white dots denote the sampled image points. More points are 

sampled near the annotated landmark so that the prediction reliability and accuracy of image 

points close to the landmark can be improved.
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Fig. 4. 
A sketch diagram of the “point jumping” strategy. The red dot in (a) denotes the true 

landmark location, the white dots in (b) denote the initial locations of the points, and the 

green and yellow dots in (b) denote the locations of the points after jumping. The green dot 

is the final predicted landmark location.

Han et al. Page 21

Comput Med Imaging Graph. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
The image point sampling strategies for the coarsest resolution (a) and a finer resolution (b), 

respectively, in the application stage. For the coarsest resolution, a set of grid points (white 

dots in (a)) are sampled from the entire image. For a finer resolution, grid points (white dots 

in (b)) are sampled only near the predicted landmark location (red dot in (b)) from the 

previous resolution.
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Fig. 6. 
The six manually annotated landmarks on the corners/edges of the ventricular region in one 

training image. The white crosses mark the landmark locations.
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Fig. 7. 
Two examples where the voting-based method fails to predict the correct landmark 

locations, whereas the proposed method still performs well. (a) and (e) are the two images 

selected from the testing set, along with their manual landmarks 5 and 6; (b) and (f) show 

the automatically detected landmarks by using the proposed method; (c) and (g) show the 

detected landmarks by using the voting-based method, with their corresponding voting maps 

for the two landmarks shown in (d) and (h), respectively, where the white ventricular 

contours are provided as references for better comparing across images.
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Fig. 8. 
The six annotated landmarks in one testing image (first row) and their corresponding 

distance maps at 3 different resolutions (the remaining 3 rows: from coarse to fine 

resolutions). The white crosses mark the locations of the annotated landmarks. The distance 

maps are obtained by calculating the distance between each image point and the latent 

landmark based on the regressed displacement from the learned regression forest.
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Fig. 9. 
Semi-automatic landmark selection strategy. The white dots denote the landmark locations. 

(a) The initially extracted candidate landmarks. (b) The remaining landmarks after removing 

the non-salient landmarks. (c) The finally selected landmarks.
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Fig. 10. 
The fixed images and the corresponding average images of all the warped images produced 

by HAMMER alone and Landmark+HAMMER for both Case 1 (first row) and Case 2 

(second row).
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Fig. 11. 
Registration results of 5 images that are substantially different from the fixed image in Case 

1. The first row consists of the fixed image and the original moving images. The second row 

consists of the results from HAMMER alone. The third row consists of the results given by 

landmark-based initialization. The fourth row consists of the results given by refinement 

using HAMMER.
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Fig. 12. 
Registration results of 5 images that are substantially different from the fixed image in Case 

2. The first row consists of the fixed image and the original moving images. The second row 

consists of the results from HAMMER alone. The third row consists of the results given by 

landmark-based initialization. The fourth row consists of the results given by refinement 

using HAMMER.
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Fig. 13. 
The labeling results for the ventricular regions in 5 testing images. The fixed image in Fig. 

11 was used as the atlas, and the ventricle label in the atlas was mapped to the 5 moving 

images in Fig. 11 by using the deformation fields estimated by image registration. Labeling 

results given by both HAMMER (first row) and Landmark+HAMMER (second row) are 

presented.
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Fig. 14. 
Registration results given by HAMMER (with a larger search range) and Landmark

+HAMMER (with default search range). The first row consists of the fixed image and the 

two warped images. The second row consists of the corresponding magnitude maps of the 

deformation fields. Greater brightness indicates larger magnitude of deformation.
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Fig. 15. 
This figure illustrates the registration performance of the original HAMMER and the 

Landmark+HAMMER approach on the 18-Elderly-Brain dataset. The first row shows the 

fixed image and the average images of all warped moving images produced by HAMMER 

and Landmark+HAMMER, respectively. The second row shows the corresponding entropy 

maps of tissue type probability for the two methods. Higher brightness indicates less 

registration consistency.
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Table 1

List of parameters used in the proposed landmark detection method. The same set of parameters was used in 

all experiments.

Parameters Coarse resolution Medium resolution Fine resolution

K: number of trees 10

DTree: maximum tree depth 12

NF: number of random features per tree 1,500

NT: number of random thresholds per feature 1,000

NLeaf: minimum number of data items in leaf node 10

Rs: maximum sampling radius in training image (mm) 160 80 40

|PTrain|: number of sampled points per training image 6,000

Size (B): size of sampling bounding box in testing image (mm) 200×200×200 100×100×100 50×50×50

|PTest|: number of sampled points in testing image 125

Size(ρ): patch size (in voxels) 30×30×30

s: side length of cubic area within the patch (in voxels) {3, 5}

Z: number of cubic functions per feature {1, 2}

MAX_JUMP: maximum number of point jumping 10

TLen: minimum length of point jumping (in voxels) 0.5

ε: minimum decrease in length of point jumping with tolerance (mm) −2
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Table 4

The Dice ratios and the corresponding standard deviations of VN, GM and WM regions, for both the 

Landmark+HAMMER approach and the original HAMMER.

Region Before Reg. Landmark+HAMMER HAMMER

VN 64.7% (±9.39%) 84.1% (±2.67%) 81.9% (±5.43%)

GM 52.4% (±1.85%) 67.8% (±1.60%) 66.7% (±1.97%)

WM 61.7% (±2.62%) 76.1% (±1.39%) 74.6% (±1.85%)
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