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Abstract

Accurate coronary artery segmentation is a fundamental step in various medical imaging applications such as stenosis

detection, 3D reconstruction and cardiac dynamics assessing. In this paper, a MultiScale Region Growing (MSRG)

method for coronary artery segmentation in 2D X-Ray angiograms is proposed. First, a region growing rule which

incorporates both vesselness and direction information in a unique way is introduced. Then an iterative multiscale

search based on this criterion is performed. Selected points in each step are considered as seeds for the following step.

By combining vesselness and direction information in the growing rule, this method is able to avoid blockage caused

by low vesselness values in vascular regions, which in turn, yields continuous vessel tree. Performing the process in a

multiscale fashion helps extracting thin and peripheral vessels often missed by other segmentation methods. Quantita-

tive evaluation performed on real angiography images shows that the proposed segmentation method identifies about

80% of the total coronary artery tree in relatively easy images and 70% in challenging cases with a mean precision

of 82% and outperforms others segmentation methods in terms of sensitivity. The MSRG segmentation method was

also implemented with different enhancement filters and it has been shown that the Frangi filter gives better results.

The proposed segmentation method has proven to be tailored for coronary artery segmentation. It keeps an acceptable

performance when dealing with challenging situations such as noise, stenosis and poor contrast.
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1. Introduction

X-ray Coronary Angiography (XCA) is the gold standard for the assessment of clinically significant coronary

artery diseases (CAD) [1]. The angiograms obtained by the XCA enable to reveal the initial CAD symptoms by the

morphological features of the coronary arteries such as diameter, length, branching angle, and tortuosity. However,

complex vessel structure, image noise, poor contrast and non-uniform illumination make vessel tracking a tedious

task.
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Email address: asma.kerkeni@gmail.com (Asma Kerkeni )

Preprint submitted to Computerized Medical Imaging and Graphics May 12, 2015



Accurate coronary vessels detection is a fundamental step in various medical imaging applications such as stenosis

detection [2], 3D reconstruction [3] and cardiac dynamics assessing [4]. Vessel detection is generally related to two

important tasks which are vascular features enhancement and blood vessel segmentation.

The enhancement step aims to improve the vessels delineation while reducing background artefacts. So far, a

variety of vessel enhancement methods have been proposed [5, 6, 7, 8, 9, 10, 11, 12, 13]. Truc et al. [14] distinguish

three method classes : linear filtering [15], non-linear anisotropic filtering [16, 17] and Hessian-based multiscale

filtering[5, 6, 7, 8, 9, 10].

Linear enhancement methods generally use Gaussian kernels or Gabor filters in order to denoise images. They are

inappropriate to complex vascular structures since they blur vessel borders as well as thin vessels.

Unlike the linear smoothing filters, non-linear anisotropic diffusion filtering adjusts the filter for local variations by

acting mainly along the preferred structure direction [16]. Hence, important features are better preserved during

the smoothing process. Those filters are widely applied in many image processing tasks such as fingerprint image

filtering [18], Optical Coherence Tomography image denoising [19] and cell membrane enhancement [20]. The main

drawback of diffusion based methods is that they usually act at a fixed scale and are therefore unable to detect vessels

within a wide range of size.

Most of the research on vessel enhancement falls into falls into Hessian-based methods. These methods utilize the

second order derivatives matrix (Hessian matrix ) of the image intensity in order to detect tubular-like structures.

For that, the Hessian matrix at each pixel is computed by convolving the initial image with second-order Gaussian

derivatives. Then, the Hessian eigenvalues and/or eigenvectors are often used to propose a vesselness measure which

can be interpreted as the probability of belonging to a blood vessel of a pixel. The vesselness generates maximum

response at the scale which matches the diameter of the vessel to be detected. The main advantage of methods in this

category is that can perform in a multiscale fashion, thus detecting different sized objects.

In [21], the authors compared four different Hessian-based multiscale filters, namely those proposed by Koller [5],

Sato [6], Frangi [7] and the Vessel Enhancing Diffusion (VED) filter. VED is a diffusion filter built upon the Frangi

filter. It can be seen as a generalization of anisotropic diffusion to iteratively smooth the image, while preserving the

vessel structure [17]. This filter was initially proposed by [22] and extended by Manniesing et al. [17] who added a

smoothness constraint and an enhanced scheme. Results of this study showed that the two latter outperform the others

with a far better background suppression performance and vascular structure enhancement.

The second important step in vascular analysis is vessel segmentation. Existing segmentation methods can be

divided into two general categories [23]: skeleton based, and non-skeleton based. The principle of skeleton-based

techniques is the segmentation of vessels by first detecting the centerlines, then estimating the vessel width. A typical

problem with this class is that it can fail to approximate the vessel segments which present stenosis and bifurcations.

Non-skeleton-based segmentation techniques, on the other hand, are those that extract the vessels directly. Methods

in this category vary from thresholding [24, 25, 26, 3], region growing [27, 28, 29, 30, 31, 32, 33], fuzzy clustering

[34], mathematical morphology [35, 36, 13], deformable models such as active contour and level set [37, 38, 39, 40]
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to graph cuts [41, 42, 43]. A more general review on vessel segmentation can be found in [44] and [45]. Hereafter,

we especially focus on region-based vessel segmentation which is used in our work. Region-growing has been widely

used for image segmentation [46], and in particular medical image applications such as vessel extraction. The rationale

for this popularity is that these methods are based on a connectivity assumption, which is naturally suited to the case of

the vascular trees [47, 48]. Region-growing incrementally segment an object by recruiting neighboring pixel starting

from seed points or regions located inside a vessel based on some inclusion rule. Defining a robust region growing

rule for X-ray vessel segmentation may encounter several difficulties such as image artefacts, lesions, noise and very

low contrast between the vessels and the background particularly in thin vessels location. Therefore, classical region

growing methods based on grey level values and/or spatial proximity are often sensitive to noise, and inhomogeneous

contrast, which often leads to false negative (holes), false positive (leakage) and unwanted stop of region-growing

[45].

In coronary artery angiograms, several factors such as image artefacts, stenosis and noise may introduce discon-

tinuities, hence region growing may result in holes and over-segmentation. To avoid such problems, the growing

process was performed in many frames of the same sequence in [27]. Although discontinuities may be avoided by

temporal tracking, other difficulties such as centerline matching and user interaction in each step are necessary in this

approach.

Instead of using the intensity feature in the growing process, authors in [49] incorporate the Frangi vesselness filter

[7] in order to introduce more seed points when the growing process stops.

In [31], the authors proposed a novel vesselness function and performed vessels segmentation in two steps. First,

large vessels are extracted from the maximum vesselness response by region growing. However, this final vesselness

response given by the maximum response among the scale space may present low values for thin vessels, junctions

and stenosis location. Thus discontinuities may occur if the growing process is applied directly on this final vesselness

image. That’s why a detail repairing process is launched in order to extract thin vessels using a direction information

given by the first directional derivatives i.e. image intensity gradient.

Combining the vesselness function with a directional information for vessel tracking is certainly a good idea but the

image gradient isn’t, in our opinion, the appropriate direction information descriptor. A more precise direction de-

scriptor would be given by the Hessian matrix eigenvectors.

This idea was investigated in [50] where the authors combined the Sato vesselness function [6] with the line direction

information given by the first Hessian eigenvector to guide the segmentation of 3D blood vessels. As discussed in

[21], the Sato filter is more sensitive to noise than the Frangi filter when applied to 2D X-ray angiograms. Fig.1 shows

that background noise is better removed by the Frangi filter than the Sato one.

In this paper, a multiscale vessel segmentation method for X-ray coronary angiography images is presented. This

method takes advantages from multiscale Hessian analysis strength and aims to overcome the two major problems

encountered in region growing techniques which are the difficulty of detection of poorly enhanced vessel segments

and the occurrence of false positives [50]. The major contributions of this paper is threefold: (1)From methodological
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(a) (b) (c)

Figure 1: Vessel enhancement with two different filters: (a) original image; and images enhanced by the (b) Sato and (c) Frangi filters.

point of view, we combine both Hessain geometrical features which are eigenvalues and eigenvectors to define a robust

new region growing criterion tailored to the coronary artery segmentation problem. This criterion is integrated into a

mulitscale region growing algorithm ensuring the detection of different sized vessels. (2) We propose an evaluation

database containing two datasets with different challenging degrees, which allow the quantitative evaluation of the

method in terms of region overlap, sensitivity and precision. To the best of our knowledge, there is no standard

database available for this task. The only database available in the literature was proposed by [43] and was designed

to evaluate centerline extraction methods rather than segmentation evaluation. (3) We evaluate our method from two

aspects which are the enhancement filter and the segmentation methods. The remainder of this paper is organised as

follows. In section 2, background concepts related to our approach are reviewed. Section 3 illustrates the proposed

method in detail. Experiments are described in section 4. Some illustrative results are given in section5. Section 6

presents discussion and concluding remarks.

2. Background on Multiscale Analysis

The idea of multiscale image analysis is to add a new dimension to the analysis which is the image scale. The

image is transformed into a set of blurred images, each representing the original image, but at a different scale [51].

These blurred images are obtained by convolving the initial image I0(p) = I0(x,y) with a Gaussian kernel to represent

the information at a certain scale.

Iσ (p) = Iσ (x,y) = I0(x,y)⊗Gσ (x,y) (1)

where Iσ is an image of the scale space, p = (x,y) is a pixel location, ⊗ represents the convolution operation and

Gσ (x,y) is the 2D Gaussian kernel with standard deviation σ defined as:

Gσ (p) = Gσ (x,y) =
1√

2πσ2
exp− (x2 + y2)

2σ2
(2)
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where σ ∈ Σ = {σmin, ..,σmax}, σmin and σmax are set according to the approximate width of the smallest and largest

vessel to be detected [51].

In the scale space framework, differentiation is defined as a convolution with derivatives of Gaussian:

(
∂ n1+n2I

∂xn1∂yn2
)σ = I⊗ ∂ n1+n2Gσ

∂xn1∂yn2
(3)

Thus, the Hessian matrix which is the second order derivative of an intensity image in the scale space can be obtained

at each point by Eq.4:

Hσ (p) =





∂ 2Iσ (x,y)

∂x2

∂ 2Iσ (x,y)
∂y∂x

∂ 2Iσ (x,y)
∂x∂y

∂ 2Iσ (x,y)

∂y2



 . (4)

The Hessian matrix is symmetric, therefore has two real eigenvalues λ1 and λ2 and two associated eigenvectors e1

and e2. The signs as well as the relative and absolute magnitudes of eigenvalues characterize the local shape of the

intensity in the image. If we assume that we seek to characterize black vessels on a white background, which is the

case of the angiography images, a pixel belonging to a vessel region will be given by small (ideally 0) λ1 and a high

positive value of λ2 (with λ1 < λ2).

2.1. Frangi Vesselness Filter

Frangi et al. [7] note that the Hessian eigenvalues ordered by magnitude (i.e |λ1| < |λ2|) are geometrically inter-

preted as principal vessel curvatures and provide a vesselness measure on the basis of this observation. They introduce

two measures to describe structures in images: Rb =
λ1
λ2

is the blob-like structure measure and S= ‖H‖F =
√

λ 2
1 +λ 2

2 ,

the Frobenius norm of the Hessian matrix, is the second-order structureness measure. These measures were combined

in a vesselness function as given by Eq.5.

Vσ (p) =











0 if λ2 < 0

exp(− R2
b

2β 2 )(1− exp(− S2

2c2 )) otherwise.

(5)

Where parameters β and c are thresholds which control the filter’s sensitivity to Rb and S respectively. The two

vesselness terms exp(− R2
b

2β 2 ) and (1− exp(− S2

2c2 )) are combined using their product to ensure that the response of the

filter is maximal only if both criteria are fulfilled.

According to scale space theory, Vσ (p) will be the maximum only when the width of the vessel in pixel p matches

a suitable scale factor σ . Thus, In the multi-scale vessel enhancement algorithm, Vσ is computed for different scales

then the largest one is taken as the final filter output.

Vmax(p) = max
σ∈Σ

σ γ ∗Vσ(p) (6)

The normalization factor σ γ [51] is introduced to normalize the intensity values across the scale space. The

parameter γ can be adjusted to show preference for particular scales. It is equal to one if no scale is preferred. Taking

γ < 1 favours small scales while γ > 1 favours large ones.
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2.2. Vessel Direction Information

The eigenvectors e1 and e2 of the Hessian matrix of Eq.4 characterize the local shape of the intensity. e1 gives

the direction of lower second derivative, i.e. the direction of a potential linear structure, while e2 gives the direction

of the stronger second derivative, i.e. the normal direction to a potential linear structure. Thus the proposed direction

information Dσ can be simply given by the following expression:

Dσ (p) =











0 if λ2 < 0

e1 otherwise.

(7)

Fig.2 shows a motivating example of incorporating the direction information. The green circle in Fig.2(a) shows

a stenosis in a coronary artery. When the maximum Frangi vesselness is computed, the filter response significantly

decreases in this location. However the first eigenvector ensure the continuity of concerned pixels and their neighbours

(see Fig.2(d)). One can note that neighbouring pixels in this location exhibit close direction.

3. Multiscale Segmentation Method

Leveraging from the above-mentioned multiscale geometrical information, we design a robust multiscale region

growing process able to extract both wide and thin vessels while avoiding undesirable structure overemphasis and

early segmentation stop.

A general overview of the proposed method is depicted in Fig.3. First, seed points are selected by seeking for points

with the highest Frangi vesselness response (section 3.1). Subsequently, starting from the highest scale σmax, the

vesselness (Vσ ) and direction (Dσ ) features are computed for each scale. Then a region growing process based upon a

specific criterion combining those two features is performed. This criterion will be described in section 3.2. If all the

scales are explored i.e σmin is reached, the segmented image is obtained else the segmentation process restarts with

the next scale σ −σstep. The details of the process evolution over the different scales are described in section 3.3.

3.1. Initial seed points selection

Candidate seed points are automatically generated by the Frangi vesselness map analysis. Pixels exhibiting the

maximum of vesselness are considered as a good starting point. Since the vesselness is always maximum along the

vessels’ centerlines and close to zero outside tube-like regions, the initial seed points are generally located in the

center of vascular regions. To avoid points in the peripheral positions which may have high response, the search is

done inside a sub-area excluding the image borders.

The red points in Fig.4(a), 4(b) and 4(c) show some automatically generated seeds on three different images.

These points are located in the center of wide vessels. One can see that some regions especially thin vessels with very

low illumination may be unreachable. Thus, if the user is interested in thin vessel extraction, he may add some more
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(a) (b)

(c) (d)

Figure 2: Motivating sample: (a) original image; (b) Frangi vesselness response; (c) vesselness in the green circle; (d) corresponding first eigen-

vector field.

additional seeds. The added seeds are depicted in green in Fig.4. Sometimes, the area thought to be had to reach is

segmented even without added markers.

3.2. Region Growing Condition

The idea behind our approach is to incorporate the vessel direction information with the vesselness response in

order to improve the vessel segmentation result. This information have to be included in a way that favours neighbours

exhibiting directions close to the direction of a seed point even if their vesselness responses are lower than a given
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Input Image

Initial Seed points selection

Set initial scale: σ = σmax

Compute Hessian features:

Vesselness(Vσ ) Direction (Dσ )

Update Scale:

σ = σ − σStep

σmin σmax σStep

Region growing based on

Vesselness and Direction

is σmin reached

Ouput Segmented Image

no

yes

Figure 3: MultiScale Region Growing Overview.

threshold. This will help to ensure the continuity of the segmentation along the artery direction, and reduce the

number of broken branches as well. Based on this idea, we propose a region growing algorithm based on the following

convergence condition:

for all pixel p, if there exists q ∈N4(p) such that B(q) = 1 and Vσ (p)> η (1−Ωσ(p,q)) , then B(p) = 1. (8)
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(a) (b) (c)

Figure 4: Seed points selection : automatically generated points using the vesselness map are plotted in red color and manually added points are

plotted in green color.

Here B is the binary image corresponding to the segmentation, N4(p) is the 4-neighbourhood of pixel p, and Ωσ is a

correlation index between vessel orientations at pixels p and q, defined as follows:

Ωσ (p,q) =
Dσ (p).Dσ (q)

‖Dσ (p)‖‖Dσ (q)‖
(9)

Ωσ (p,q) becomes one when the two local direction vectors are parallel and becomes zero if they are orthogonal. As

a result, the growing process may aggregate pixels with close directions even if their vesselness values are low. The

η parameter is a basic threshold of the vesselness value needed to growing the vessel region. If we assume that the

vesselness is rescaled in the interval [0,1], η will be between 0 and 1. The smaller value of the parameter η can result

in the overgrowth of the vessel region, while the bigger one will limit the extension of the seed point set.

3.3. MultiScale Region Growing Algorithm

A pseudo-code for the MSRG algorithm is given in Algorithm 1. The initial seeds (binary image S) are used to

initialise an iterative region growing segmentation process, whose output is the binary image B. Then, at each scale

starting from the largest scale σmax, the vesselness (Vσ ) and direction (Dσ ) features are computed from the original

image I.

The root of the coronary tree is found in the coarsest scale as a candidate with the highest Frangi vesselness.

Most of the automatically generated seed points are located in large vessels, thus the coarse-to-fine scheme makes the

growing process more fluid and faster. This scheme is also less sensitive to noise often encountered in thin vessels.

At each scale, the region growing process is implemented using a processing queue Q, which is initialised with

the current segmentation image B. Then, the first pixel of the queue (q← Q.first) is picked, its 4-neighbours meeting

the growing condition of Eq.8 are added to the queue and to the segmented image, then q is pulled out of the queue,

the new first pixel of the queue is picked, and so on until the queue is empty. If all the scales have been explored, i.e

σmin is reached, then the segmented process is done else it restarts with the next scale σ −σstep.
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Algorithm 1 MULTISCALEREGIONGROWING (I,S)

Require: S 6= 0

1: B← S

2: σ ← σmax

3: while σ ≥ σmin do

4: Q← {q;B(q) = 1}
5: while Q 6= /0 do

6: q←Q.first

7: for all p ∈N4(q) do

8: if B(p) = 0 and Vσ (p)> η (1−Ωσ(p,q)) then

9: B(p)← 1

10: Q← Q∪{p}
11: end if

12: end for

13: Q← Q\ {q}
14: end while

15: σ ← σ −σStep

16: end while

17: return B

4. Experiments

This section presents experiments carried out to assess the behaviour of the proposed segmentation method. The

materials used in our experiments is described in section 4.1. Section 4.2 introduces the performance measures used to

evaluate the algorithm. The different parameters used in the experiments are described in section 4.3. Finally section

4.4 introduces the state of the art methods used in the evaluation.

4.1. Materials

Real clinical X-ray angiograms were acquired during routine cardiac catheter examinations using a single plane

Siemens Artis Zee angiography system available at the Cardiology Department of The University Hospital Fattouma

Bourguiba, Monastir, Tunisia.

For each intervention, Dicom sequences of different projections were obtained by varying the left or the right anterior

oblique (LAO or RAO) angle and the caudal or cranial (CAUD or CRAN) angle in order to visualize both left and

right coronary arteries. The acquired series were then extracted and interesting angiograms from both healthy and

diseased patients with different stenosis severity degrees.

A total of 50 images obtained from 25 patients were selected by the clinicians. Each image has a size of 512*512
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pixels and 256 gray levels with a resolution of 0.3x0.3 mm. This database was equally split into 2 datasets. The

first one (DS1) contains relatively easy cases in terms of vessel illumination and stenosis degrees, whereas the second

dataset (DS2) presents difficult situations that may occur in X-ray coronary angiograms, such as low signal to noise

ratio, severe stenosis and the overlapping of many vessels.

In order to evaluate the different segmentation methods on these images, manually gold standard were outlined by

two trained operators and verified by clinicians resulting in two sets 1 and 2. The manually segmented images in set

1 and set 2 noted GT1 and GT2 respectively are used as ground truth. The disagreement between the two observers

occurs especially on vessels borders and endpoints.

Fig.5 depicts two different ground truth of an image belonging to the first dataset. The common part is plotted in

white color in Fig.5(b) while the red color illustrates pixels detected only by the first human observer. The blue color

shows pixels detected only by the second human observer.

(a) (b)

Figure 5: Example of two manual segmentation of the same image: (a) original image (b) Two manual segmentation outputs: The common part

is plotted in white and the red color illustrates pixel detected only by the first human observer. The blue color shows pixels detected only by the

second human observer.

4.2. Performance measures

Three evaluation metrics, namely Dice coefficient [52], sensitivity and precision were used. The DICE similarity

index is a measure of region overlap defined by:

Dicei =
2 ∗ |GTi∩Seg|
|GTi|+ |Seg| for i ∈ {1,2} (10)
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where GTi is the ground truth region depicted by the observer i and Seg is the automatically segmented region. Dice

is always between 0 and 1, with higher values indicating better match between automatic and manual segmentations.

Precision is the rate of true-positives to the total number of positives. It is expressed by the following formula:

Precisioni =
T P

T P+FP
for i ∈ {1,2} (11)

TP is the number of true positive i.e. correctly classified vessel whereas FP is the number of false positive i.e. ground

truth non-vessel pixels overlapping detected pixels.

Sensitivity measures the proportion of ground truth positives which are correctly identified as such. It is given by:

Sensitivityi =
T P

T P+FN
for i ∈ {1,2} (12)

where FN is the number of false negatives i.e. incorrectly rejected pixels.

4.3. Parameter setting

All the results presented in this work use β = 0.5 and half the value of the maximum Hessian norm for c (c =

1
2
max‖H(x)‖F ) as proposed in [7].

Scales should be set according to the approximate width of the smallest and largest vessel to be detected. Scales

should better match the radii of coronary arteries. In our database vessel radii vary from less than 1 pixel to more

than 10 pixels wide in some images. The performance of our method, as any other multiscale method, highly relies

on how accurate the scales estimation is, especially on the σmax parameter. In fact, a lower σmax will suffer from noise

disturbance and bar-like profiles. In contrast, an over-large σmax might blur the adjacent structures and over-estimate

the vessel caliber. In our work, for each image, the largest vessel diameter dmax was calculated by averaging the

maxima of the distance transform computed on the two ground truth vessel trees and σmax was set to 0.5 ∗ dmax. σmin

was set to 1 since vessels with smaller radii are not of interest. Four logarithmically spaced scales between σmin and

σmax were then generated for each image.

The η parameter is calculated as a fixed quantile of the accumulated histogram of the vesselness image Vσ . We

experimentally optimize this parameter and find that 95 percent is an acceptable threshold for our dataset.

4.4. Methods

The evaluation of our method robustness and efficiency is done in two stages. First, we seek to see the effect of

the enhancement filter chosen in this work. Then, we compare the proposed segmentation with other state of the art

methods.

4.4.1. Enhancement filters

In order to justify the choice of the Frangi filter for vessel detection within our approach, we build our segmentation

algorithm upon different enhancement filters which are Sato filter, VED filter and Frangi filter.
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The vesselness proposed by Frangi et al. in [7] is often considered as the current gold-standard for vessel enhancement

[53]. The Sato filter [6] is also a well-cited method in this field and is integrated in many medical tools such as

Mevislab 1 and Vmtk 2. The VED filter was presented as a diffusion based version of the Frangi filter and is gaining

in popularity especially for vessel enhancement in 3D images. The results obtained by the VED filter, similarly to

other diffusion-based methods cannot be directly compared to Hessian-based methods since the VED output is a

smoothed image and not a vesselness image. Readers may note this difference in Fig.6 where Fig.6(c) is the smoothed

image obtained by applying the VED filter to the original image in Fig.6(a), whereas Fig.6(b) is the output of the

Frangi filter. Thus, we apply the Frangi filter to the VED result (Fig.6(c)). The final output image is given by Fig.6(d).

All these methods were tested using the same scale range already discussed. The parameters α and β were set to 1

for the Sato filter whereas the VED filter was applied using the default parameters recommend by the authors in [17]

(w = 25, s = 5 and ξ = 10−2).

4.4.2. Segmentation methods

The MSRG algorithm was compared against four state-of-art segmentation approaches, which are hysteresis

thresholding (HT), fuzzy clustering (FC), multi-seed region growing(RG) and accurate quantitative coronary artery

segmentation (AQCA).

Classic segmentation method such as hysteresis thresholding (HT), fuzzy clustering (FC) and multi-seed region grow-

ing(RG) are often applied to the final Frangi filter obtained by the maximum Frangi vesselness response. They are

used generally in cases in which no dense abnormalities are present or when the vessel segmentation is auxiliary to the

main task such as centerline extraction and 3D reconstruction of the coronary tree from different projections [3, 26].

Their output was thought to be sufficient to launch other applications. An interesting relatively recent work (AQCA)

tailored to coronary artery extraction was proposed by Hernandez-Vela et al. in [54] and extended in [43].

The hysteresis thresholding is applied on the maximum Frangi vesselness response. This method retains connected

components with all points that have a vesselness value greater than a low threshold and having at least one pixel with

a vesselness value greater than a given threshold. We used the thresholds suggested in [3] which are around 90 and 96

percent of the accumulated histogram of the vesselness image.

The second method segments the maximum vesselness image into two partitions using standard Fuzzy c-means al-

gorithm (FCM).The FCM algorithm classifies the image by grouping similar pixels in the image into clusters. This

clustering is achieved by iteratively minimizing an objective function with respect to fuzzy membership.

The third method is based on simple region growing (RG) on the maximum vesselness image with multiple seeds.

Seeds and thresholds are manually set. The intial seed points for RG are the same used for the MSRG algorithm. No

manual seed were added to any method.

The last method (AQCA) is also based on the maximum Frangi vesselness map but it uses a graph cuts algorithm

1http://www.mevislab.de/
2www.vmtk.org/
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(a) (b)

(c) (d)

Figure 6: Vessel Enhancing Diffusion vs. Hessian-based filter : (a) original image; (b) Frangi vesselness response; (c) output of the VED filter; (d):

corresponding vesselness image.

which incorporate an automatic point seeding method and a multiscale edgeness term to detect vessel borders. We

used the implementation available in the author website 3 and the recommended parameters.

5. Results

We divide the results in enhancement (section 5.1) and segmentation (section 5.2) evaluation.

3http://www.cvc.uab.es/ cgatta/CoronaryCenterlineExtraction.html
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5.1. Enhancement filter

Dice, sensitivity and precision of the three MSRG versions are presented in Fig.7 for the first dataset and Fig.8

for the second dataset. The first row compares the second observer and the three methods to the first observer and

the second row presents an evaluation against the second observer. Regarding the two datasets, the Sato filter has the

lowest performance in terms of Dice similarity, sensibility and precision. This confirms the sensibility of this filter

to noise. The Frangi and VED filters have very similar performance measures with a slight superiority for the Frangi

filter. This is due to the impact of the blurring effect of VED filter especially on small vessels. One can see in the red

rectangles in Fig.6(c) and Fig.6(d) that some discontinuities occur in thin vessels. Thus, distal parts of those vessels

are missed in the segmentation step.
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Figure 7: Enhancement filter evaluation for DS1 relatively to the first human observer (first row) and the second human observer (second row) :

Dice (left), sensitivity (middle) and precision (right).

5.2. Segmentation methods

Fig.9 shows dice, sensitivity and precision for the four different methods (HT, FC, RG, AQCA and MSRG) as

well as each observer against the other. It is worth to note that the plots in the first and second row have roughly

similar appearance. A small inter-observer variability occurs in the specificity plot and shows that the first observer

detects more vessels pixels than the second one. Regarding the dice metric, the FC method has the lowest dice, HT

achieves better than FC but lower than the three other methods. RG and AQCA have slightly equal dice values and

the MSRG achieves the best overlap values. The method HT has a higher sensitivity than FC, RG and AQCA but it

has the disadvantages to produce many false positives as confirmed by the low precision values. Our method which
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Figure 8: Enhancement filter evaluation for DS2 relatively to the first human observer (first row) and the second human observer (second row) :

Dice (left), sensitivity (middle) and precision (right).

can be seen as an enhanced region growing method achieves better sensitivity while keeping the same precision level

as the region growing. It is also worth to note that the AQCA has the highest precision but it remains lower than the

inter-observer variability.

Regarding the second dataset (Fig.10), the methods keeps the same order in term of segmentation overlap (dice). The

inter-observer variability has increased in term of specificity and precision. The precision of the HT, FC and RG

methods have a large standard deviation which means that they may introduce a lot of false positives. Our method still

achieve the best sensitivity and an acceptable rate of precision (80% ) and AQCA has the best precision. The outliers

(red marks) seen in the different plots are related to bad seed or threshold automatic initialization.

Moreover, Fig.11 shows some resulting outputs of the five different segmentation methods. From top to down, we

find three different real angiograms; ground truth; hysteresis thresholding; fuzzy clustering; region growing; AQCA

and our method outputs. The first and second images belong to the first dataset whereas the third images is charac-

terised by a difficult background and many thin vessels overlap and belongs to second dataset. All the shown results

are obtained without any added seeds.

The strength of our method is that detects correctly most of the relevant vessels are segmented, even small ones. From

the third line, it’s obvious that the HT method has difficulties to segment the small vessels. The red circle in the first

row shows a missed small vessel by the HT segmentation method. The same branch is also omitted by the FC and

RG. This branch is also detected by the AQCA but not in totality.

The green circles in images of the second row demonstrate that FC, AQCA and our approach are robust when dealing
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Figure 9: Segmentation evaluation for DS1 relatively to the first human observer (first row) and the second human observer (second row) : dice

(left), sensitivity (middle) and precision (right).
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Figure 10: Segmentation evaluation for DS2 relatively to the first human observer (first row) and the second human observer (second row) : dice

(left), sensitivity (middle) and precision (right).

with a moderated stenosis. The three other methods fail to reach distal parts located after the stenosis. However, the

FC method suffers from some discontinuities and is sensitive to noise which is also a limitation of the HT segmen-
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tation method as we can see in the figures of the last column where the yellow circles show non-vascular structures

erroneously segmented by both HT and FC. Contrarily, the RG, MSRG and AQCA are able to avoid noise far enough

from vessels since they start from correct seeds. However, the RG method produces many false positives around the

thin vessels. The AQCA achieves a good segmentation of the principal arteries but gives more false negatives than the

MSRG.

6. Discussion and Conclusion

In this paper, we have presented a novel method for coronary artery segmentation based on Hessian features anal-

ysis in a multiscale fashion. We have introduced a growing rule combining both vesselness and direction information

at different scales. First, the Frangi vesselness filter was adopted for vessel enhancement since it nicely captures

tubular structure and significantly reduces background artefacts. Then, instead of extracting vascular structure only

on the basis of their vesselness response, we have also incorporated the direction information. This information was

included in a way that favours neighbours exhibiting directions close to the direction of a seed point even if their ves-

selness responses are lower than a given threshold. Thereby, the growth runs fluidly along the artery direction, and the

number of broken branches is reduced as well. The multiscale region growing is robust, especially when dealing with

discontinuity factors such as noise, stenosis and low contrast. Quantitative evaluation have been performed on real

angiography images at two stages. First, the choice of the Frangi filter for vessel-like structures detection was justified

by comparing the segmentation results obtained from three different filters. The proposed segmentation method has

been also compared to other segmentation methods and it has been shown that it generates a better performance than

fuzzy clustering, hysteresis thresholding and region growing in terms of vessel overlap, sensitivity and precision. The

AQCA method, however, by using a multiscale edgness term that is able to accurately detect vessel border, reaches a

precision greater than our method. But its sensitivity is smaller.

The results obtained by our algorithm (an average of DICE coefficient of 80%± 5% for DS1 and 70%± 5% for

DS2 ) seem to represent a significant misalignment. Fig. 12 gives details of misalignment between the MSRG al-

gorithm and the first ground truth. Almost the false negatives occur in vessels boundaries. For the large vessels a

difference of 1 to 2 pixels between each ground truth and the segmentation is noted. Contrarily, false positives fre-

quently appear on thin vessels which are generally overemphasized.

Our observations throughout the two datasets showed that the discordance is due to two main causes which are: 1)

detection of non-vascular structures like background structures which are adjacent to vessels; and 2) false positives

on vessel borders.

The first type of error is normally related with the vessel enhancement method used. In fact, the Frangi filter enhances

not only the coronary tree but also any tubular structure including diaphragm, spinal disks, catheters and other back-

ground artefacts. Such non-vascular structures are erroneously segmented by our method only if they intersect or are
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very close to a vascular branch, otherwise they are enhanced by the Frangi filter but omitted by our segmentation

method since the growth process starts from correctly classified seeds. Such error occurs in just few images of our

dataset and it can be resolved if these structures are beforehand detected and eliminated from the images using an a

priori knowledge for the shape of the diaphragm border [55] or a learning-based method to detect the catheter [43].

The second error consists in inaccurate border detection especially for thin arteries. In fact, these vessels may be

overemphasized when they are processed at a scale larger then their sizes. This issue could be addressed if a break

constraint is added to our algorithm in order to stop the growing when the vessel boundaries are reached. Obviously,

this needs a robust vessel border detector such as the mulitscale Canny edge detector used in the AQCA method [43].

In the future work, we would like to overcome these limitations by automatic detection of non vascular structures

and better vessel border delineation. Future investigation of our segmentation method can be used as a computer-

assisted quantitative analysis of blood vessels from angiograms or as an input for other processing tasks such as

centerline extraction [43], and 3D coronary tree reconstruction [3].
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Figure 11: Segmentation results. Top to down: real angiograms ; ground truth ; hysteresis thresholding; fuzzy clustering; region growing; AQCA

and our method .
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(a) (b) (c)

Figure 12: Comparison between MSRG and the first ground truth: The white color depicts true positives. False negative points are marked in blue

and false positives in red. The shown results are obtained with manual added seeds in images 1 and 3.
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