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Abstract

Multi-atlas segmentation is a powerful approach to automated anatomy delineation via fusing label 

information from a set of spatially normalized atlases. For simplicity, many existing methods 

perform pairwise image registration, leading to inaccurate segmentation especially when shape 

variation is large. In this paper, we propose a dynamic tree-based strategy for effective large-

deformation registration and multi-atlas segmentation. To deal with local minima caused by large 

shape variation, coarse estimates of deformations are first obtained via alignment of automatically 

localized landmark points. The dynamic tree capturing the structural relationships between images 

is then employed to further reduce misalignment errors. Evaluation based on two real human brain 

datasets, ADNI and LPBA40, shows that our method significantly improves registration and 

segmentation accuracy.
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 1. Introduction

Multi-atlas segmentation is an automated approach to delineating anatomical structures of a 

target image by borrowing complementary information from multiple pre-annotated atlases. 

Segmentation labels from multiple atlases that are registered to the target image are 

combined to obtain the ultimate segmentation result. This approach avoids not only time-

consuming manual annotation but also potential bias introduced by segmentation with only 

one single atlas. Due to its promising results, it has been widely used in medical image 

analysis to segment the brain (Aljabar et al., 2009; Asman and Landman, 2013), heart 
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(Išgum et al., 2009; van Rikxoort et al., 2010; Bai et al., 2015), and abdominal organs (Wolz 

et al., 2013).

Although much effort has been dedicated to improving the accuracy of label fusion, much 

less emphasis has been put on image registration. Most of the existing multi-atlas 

segmentation methods merely perform simple pairwise registration (Asman and Landman, 

2013; Bai et al., 2015) by aligning each atlas independently to the target image. This 

approach fails to consider the correlation between atlases and thus leads to inconsistency 

among the atlases when labeling the same anatomical structure. Simple pairwise registration 

also does not take advantage of the structural similarity between images to help overcome 

registration related problems such as local minima. Such problem occurs quite often when 

images from different populations (i.e., patients and healthy controls) vary dramatically in 

anatomical structures.

There have been some recent attempts to overcome the above problems by using more 

sophisticated registration strategies. For example, Hoang Duc et al. (Hoang Duc et al., 2013) 

attempted to establish the relationship across atlases and the target image by iteratively 

registering them to an evolving group mean image (Rohlfing et al., 2004). However, this 

only works well when images in the group can be registered reasonably well. Also, the mean 

image is sensitive to registration outliers and may be unstable in case of large shape 

variation. A better approach described in (Jia et al., 2012) links images according to their 

similarity using a tree and performs a series of registration of adjacent images. This breaks 

down the complex registration process into a number of simpler ones and helps reduce local 

minima.

In this paper, we describe a registration scheme for multi-atlas segmentation under large 

deformation. Similar to (Jia et al., 2012), a tree is used for robust registration. The 

registration outcome is then applied for multi-atlas segmentation of either a single image or 

a group of images. Our work differs from (Jia et al., 2012) in three major aspects. First, 

images with similar intensity values are not necessarily similar in anatomy. Hence, in 

contrast to (Jia et al., 2012), we propose to construct the tree using shape similarity 

evaluated based on the distance of points localized at structure boundaries in different 

images. Second, unlike the affine registration based initialization as used in (Jia et al., 2012), 

we use the localized landmark points to initialize image registration. Good initialization has 

been shown to be able to significantly improve registration accuracy, particularly when 

dealing with large shape variation (Zhang et al, 2010; Zhang and Cootes, 2011; Zhang and 

Cootes, 2012; Zhang et al, 2012b; Wu et al, 2011). Finally, we propose to utilize a 

dynamically updated tree, as opposed to the fixed one used in (Jia et al., 2012). This is to 

ensure connections between images to be progressively refined to reduce misalignment.

 2. Methodology

Our goal is to label one or more target images using a set of atlases, each with an intensity 

image and a segmentation image obtained by manually labeling some regions of interest 

(ROIs). Each target image is only an intensity image and does not have any label. To 

simultaneously register all atlases and target images for consistent segmentation, we use the 
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following steps: (1) seek corresponding points among atlases and target images (Section 

2.1); (2) perform initial registration using a tree generated by connecting all images using 

the corresponding points (Section 2.2); (3) iteratively update the tree and registration results 

(Section 2.3). Label fusion (e.g., weighted voxel-based fusion (Jia et al., 2012) and patch-

based fusion (Zhang et al, 2012a)) can then be carried out for segmentation of the target 

images using the registered atlases. Each step is described in details below.

 2.1. Localization of corresponding landmark points

We follow the method described in (Han et al., 2014) to detect landmark points on an image. 

A set of landmark points is first generated for each atlas in a semi-supervised manner. These 

points, together with the atlases, are then used to train a series of point detectors, one for 

each landmark, using regression forests (Criminisi et al, 2012). For a target image, each 

trained detector is finally applied for landmark localization. These steps are described briefly 

below. The interested reader is referred to (Han et al, 2014) for more details.

To generate the landmark points for each atlas, we randomly choose one atlas as the 

reference and break it down into a large number of patches (i.e., 30 × 30 × 30). For each 

patch, we use a method similar to (Wu et al., 2013) to generate landmark point candidates. 

To remove the candidates within flat regions, we further compute the gradient magnitude of 

each candidate and rule out those below a user-defined threshold. The left landmark points 

are then propagated from the reference atlas to the rest of the atlases via non-rigid 

registration of segmented images (as well as manually annotated images if needed). 

Examples of the generated landmark points are shown in Fig. 1. Note that the generated 

landmark points are not always on the boundary. Here we only show some good ones for 

illustration purpose.

By using the landmark points in the atlases, we train a detector for each landmark point to 

predict its position from Haar-like features of nearby voxel neighborhood. We systematically 

sample a number of voxels around each landmark point, record their displacements to the 

landmark point and their Haar-like features computed in the neighborhood (Viola and Jones, 

2001). Repeating this process for the corresponding landmark points in the other atlases 

leads to a set of displacement-feature pairs that can be used to train the detector to predict 

the displacement of the landmark point from each voxel based on its Haar-like features. To 

learn such highly non-linear relationship, we use the regression forest (Criminisi et al., 

2012).

A regression forest consists of a collection of binary decision trees, each trained individually 

using a random subset , where  represents displacement vectors and ℋ denotes 

image samples. For each tree, the training involves splitting the subset by passing it through 

a series of tests starting at the root until each sample in the set reaches a leaf of the tree (Fig. 

2). The node that performs a specific test is called a split node, which distributes the 

incoming samples to its left or right child node based on the result of the test. The leaf node 

stores an empirical conditional probability distribution p(δ|h), over the displacement δ given 

the samples h The test at split node t is usually realized by maximizing the following 

information gain
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where IGt is the information gain,  is a set of displacements associated with the incoming 

samples, L/R represents the left/right child of the current node,  is a subset of 

displacements associated with the samples sent to a child, and S measures the consistency of 

a set of displacements. p(δ|h) is approximated by a Gaussian distribution and thus each leaf 

node only stores the mean and covariance of the displacements associated with the samples 

reaching that node. The trained regression forest is used as a point detector. Note that the 

decision trees here are only used for regression and should not be confused with the tree 

built for image registration, which will be detailed in Section 2.2.

To predict δ for a given voxel, the sample h is passed to the detector until it reaches a leaf 

node of each tree. Although the final δ can be computed by averaging the mean 

displacement stored at each leaf node, this scheme is sensitive to large local anatomical 

variations. A “point jumping” technique and a multi-resolution strategy are used instead for 

robust prediction (see Han et al. (2014) for details).

 2.2. Tree construction and initial registration

Once the landmark points for all atlases and target images have been localized, we use them 

to build a tree connecting images that are similar in anatomy for initial registration. Based on 

(Jia et al., 2012), we utilize the atlases to build a tree, onto which each target image is 

progressively attached. This helps avoid having to rerun the registration, whenever a new 

image needs to be segmented.

An adjacency matrix is first generated based on the Euclidean distance between the 

corresponding landmark points of each pair of atlases. Based on the adjacency matrix, a 

minimum spanning tree is then generated using Prim’s algorithm. Each edge of the tree 

connects a pair of atlases and encodes their distance. In the tree, any pair of atlases are 

connected by a unique path (i.e., a set of edges). An atlas with the least sum of distances to 

all other atlases is chosen as the root of the tree. This root is fixed throughout the whole 

registration process.

To attach the target images to the tree, we repeat the following steps: (1) choose an unlinked 

target image, find out an atlas that is closest to it and record their point-to-point distance; (2) 

group such distances across the set of unlinked target images; (3) select the unlinked target 

image that has minimum of such distance; (4) connect it to its closest atlas. Note that once a 

target image is attached to the tree, it is treated as an atlas when adding other unlinked target 

images to the tree. As a result, a target image may be connected to either an atlas or another 

target image in the final tree.

Once the tree is built, registration between a pair of images in the tree can be achieved using 

the root atlas Ar as the bridge (Fig. 3). Specifically, we use the following steps to warp an 

image Is to another image It: (1) determine the path that connects Is and Ar; (2) perform 

pairwise registration between adjacent images along this path from Is to Ar; (3) concatenate 
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the resulting deformation fields to obtain the deformation field from Is to Ar, denoted as 

; (4) repeat the above three steps to obtain the deformation field from It to Ar, denoted 

as ; (5) estimate the inverse of , denoted as ; (6) compute the deformation 

field from Is to It, , by concatenating , and , i.e., , where ∘ 

is a composition operator. In the current work, registration between adjacent images is 

performed using diffeomorphic Demons (Vercauteren et al., 2009).

The above process is repeated to register all atlases to each target image. The resulting 

deformation fields are then used to warp the segmentation images associated with the atlases 

to target images for segmentation via label fusion.

Although we use corresponding landmark points to encourage connections between images 

of similar anatomy in the initial tree construction, some target images may be still 

inappropriately connected to the tree due to the simple Euclidean distance for similarity, thus 

introducing more local minima to registration. This is especially the case when registering 

images under large deformation. To reduce local minima caused by large shape variation, 

here we propose two solutions: one is to initialize the registration with the corresponding 

points, which can be achieved by thin-plate spline (TPS) interpolation, and the other is to 

reconnect target images that are inappropriately connected, which will be detailed below.

 2.3. Iterative registration with dynamic tree

As it is difficult to know whether a target image is appropriately connected to the tree 

without carrying out registration, we introduce a feedback loop after initial registration to 

find out those poorly connected target images. Since their links to the tree may keep 

changing through iterations, the tree is dynamic, not fixed any more.

To determine the appropriateness of the connection of a target image to the tree, we warp the 

landmark points of an atlas onto the target image by linearly interpolating the deformation 

field between the two images. We then average the distances between all warped points and 

their corresponding counterparts on the target image. We repeat this process for all atlases 

and finally obtain an overall average landmark distance that can be used to tell how well the 

given target image is connected to the tree. A smaller overall distance indicates better 

connection.

As the landmark points only cover the brain sparsely, the above metric merely gives a coarse 

indication of the appropriateness of the connection. For more localized sensitivity, we also 

(1) warp the segmentation images of the atlases onto the target image, (2) estimate a 

segmentation image for the target image using the set of warped segmentation images via a 

weighted label fusion method (Jia et al., 2012), (3) warp the resulting segmentation image 

back onto each atlas, and (4) compute the Dice ratio between the segmentation image of 

each atlas and the warped segmentation image of the target image. We use the overall Dice 

ratio, computed by averaging the ratios across ROIs and atlases, as another metric for 

evaluation of connection appropriateness. This segmentation-based metric is combined with 

the above landmark-based metric via weighted averaging to form a combined metric after 

normalizing both to have a zero mean and a unit variance.
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Once we have computed the connection appropriateness of each target image, we can select 

a subset of target images with the best connections to the tree. This can be achieved by 

ranking all the target images by the appropriateness and choosing the top ones. Let  be the 

set of atlases,  the selected subset of target images, and  the rest of the target images. We 

repeat the following steps until , or no new tree can be generated:

1. Rebuild the connections of the images in  to the tree by recursive attachment 

as described in Section 2.2. Note that the images in  are treated as atlases and 

their links to the tree will not be changed in this process. The combined metric, 

instead of the landmark distance, is used to guide the reattachment process.

2. Run registration with the new tree. As the images in  are well linked to the 

tree, the deformation fields between those images and atlases are likely to be 

reliably estimated. Hence, we can use these deformation fields to guide the 

registration between a pair of images, Is and It, as follows (Fig. 4): (i) find its 

most recent ancestor node in  for target image ; (ii) estimate the 

deformation field from the ancestor to It; (iii) concatenate the resulting 

deformation field with that from Is to the ancestor; (iv) use the composite 

deformation field to initialize the registration from Is to It.

3. Extend  by adding the images in  whose connection appropriateness 

improves after registration. If not enough images are added, we rank all images 

in  by the connection appropriateness and choose the top ones as before. This 

is to ensure that the whole registration completes in a few iterations for 

efficiency. We require at least a fixed portion (i.e., 10%) of the targeted images 

to be added to  at each iteration.

 3. Experiments

We demonstrate the efficacy of our method on two real datasets: the ADNI dataset1 and the 

LPBA40 dataset (Shattuck et al, 2008). For each dataset, FLIRT (Jenkinson and Smith, 

2001; Jenkinson et al., 2002) was used to align all the images via affine transform to a 

common space. These images were then used for all subsequent experiments.

The segmentation images in the two datasets were used for evaluation. Segmentation of the 

LPBA40 dataset was carried out by experts. Only 54 out of the 56 labels were used for 

evaluation, by excluding the cerebellum and brainstem. Segmentation of the ADNI dataset 

into gray matter (GM), white matter (WM), cerebrospinal fluid (CSF), and ventricle (VN) 

was done using FAST (Smith et al., 2004; Zhang et al., 2001).

Each point detector was trained at 4 different image resolutions, at each of which 10 trees 

were trained, amounting to a total of 40 trees. To train a detector, we sampled 6000 voxels 

around the landmark point and computed their Haar-like features based on the intensity 

image of each atlas. The number of samples is proportional to the reciprocal of the distance 

between the landmark point and the sampled voxels. For each tree in the regression forest, 

the maximum depth was set to 12 and the input of each leaf node was required to be at least 

10 sampled voxels.
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We compared our method with the method proposed by Jia et al. (2012) (MABMIS for 

short), which builds a fixed tree based on image intensity difference to guide the registration 

for multi-atlas segmentation. The code is available at http://www.nitrc.org/projects/mabmis. 

The comparison is to show the advantage of the use of shape similarity for tree construction, 

corresponding landmark points for registration initialization, and the dynamic tree 

registration scheme for registration correction. Although it is interesting to compare our 

method with pairwise registration, a detailed comparison has already been done in (Jia et al., 

2012), where the results clearly show that the tree-based registration works much better than 

pairwise registration. Hence, we decided not to carry out that comparison in this work. The 

reader is referred to (Jia et al., 2012) for detailed results.

We computed the Dice ratio of the segmentation image of each target image with respect to 

the segmentation image of each atlas after warping to the space of the target image. 

Averaging the Dice ratios across atlases for each target image and then across target images 

leads to an overall Dice ratio that was used for quantitative evaluation of the methods. Note 

that diffeomorphic Demons (Vercauteren et al., 2009) was used to register adjacent images 

in all the experiments throughout this paper.

 3.1. ADNI dataset

We randomly selected 150 baseline images from the dataset: 50 from healthy controls, 50 

from mild cognitive impairment patients, and 50 from Alzheimer’s disease patients. All of 

the selected images were then preprocessed using the following steps: (1) Anterior 

commissure/posterior commissure alignment correction; (2) Inhomogeneity correction using 

the N3 algorithm (Sled et al, 1998); (3) Skull stripping using Brain Surface Extractor 

(Shattuck and Leahy, 2002) and Brain Extraction Tool (Smith, 2002); (4) Intensity 

normalization via histogram matching.

We randomly chose 10 images from each group as the atlases and used the rest as the target 

images that need to be segmented, leading to 30 atlases and 120 target images. Using an 

atlas as the reference, we generated over 500 landmark points covering the whole brain and 

propagated them to other atlases. The landmark detectors, trained using these landmark 

points, were applied to localize landmark points in each target image.

The landmark points were used to build a “point” tree (p-Tree) and based on this tree the 

images were registered as described in Section 2.2. To demonstrate the effectiveness of the 

p-Tree in image registration, we built an “intensity” tree (i-Tree) using the intensity 

differences between images, as in MABMIS. The overall Dice ratios shown in Table 1 

indicate that, compared with the i-Tree, the p-Tree improves registration accuracy. Since 

both i-Tree and p-Tree follow the same construction procedure, the improvement suggests 

that the shape similarity helps link images that are truly similar to each other and thus leads 

to a better tree than the tree built with intensity similarity.

The registration between adjacent images in the above p-Tree was initialized by the identity 

deformation field. Since we have corresponding landmarks, we can use them to estimate a 

better deformation field for initialization using thin-plate spline (TPS) interpolation, leading 

to p-Tree+TPS. Table 1 shows that such initialization can remarkably improve the final 
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registration accuracy, indicating that careful initialization is very important for registration. 

Further improvements can be obtained using the dynamic tree registration strategy described 

in Section 2.3 to correct the poorly connected target images in the p-Tree, i.e., disconnecting 

them from the old nodes and then linking them to the new ones to form better registration 

paths. The improvement given by the dynamic tree based method is statistically significant 

(two-tailed t-test, p < 0.01) when compared with each of the other methods. For example, 

the improvement is 0.8%, 1.8% and 2.2% within the VN, GM and WM, compared with the 

MABMIS method.

 3.2. LPBA40 dataset

The above experiment was repeated for the LPBA40 dataset. Specifically, 8 out of the total 

40 images were used as atlases. This was also the portion of atlases used for the ADNI 

dataset. Fig. 4 indicates that, compared with i-Tree, the p-Tree + TPS is similar or 
significantly better for most ROIs. In fact, the accuracy is increased by more than 1% for 29 

out of 54 ROIs, with the largest improvement given by the left postcentral gyrus (5.6%). Fig. 

5 also shows that the results are further improved by the dynamic tree based strategy. In 

particular, 26 out of 54 ROIs show over 1% improvement in accuracy, compared with the 

result from the p-Tree + TPS. The maximum improvement is given by the right postcentral 

gyrus (2.4%). Averaging the overall Dice ratios over all 54 ROIs leads to 67.4%, 68.6%, and 

69.6%, respectively, for the three methods shown in the figure.

We further demonstrate the advantages of our method using multi-atlas segmentation with 

the sparse patch based label fusion method described in (Zhang et al., 2012a). Fig. 6 shows 

that our method gives significant improvement over MABMIS. Compared with MABMIS, 

p-Tree+TPS leads to 27 out of 54 ROIs with more than 1% improvement in segmentation 

accuracy. The maximum improvement is given by the left postcentral gyrus (3.3%). The 

segmentation accuracy is further improved by the dynamic tree based registration, with more 

than 1% improvement for 22 out of 54 ROIs, compared with p-Tree +TPS. The left cuneus 

gives the largest improvement (3.4%). The averaged overall Dice ratios for the three 

methods are 73.0%, 73.8%, and 74.7%, respectively, for the three methods shown in the 

figure.

 4. Conclusions and future work

We have described a method that can accurately register a set of atlases to a set of target 

images for multi-atlas segmentation. Our method deals with large-deformation registration 

by using landmark points in a dynamic tree-based image registration strategy. Local minima 

caused by large shape variation can be reduced by (1) encouraging the registration between 

images with comparable anatomy, (2) good registration initialization, and (3) dynamic 

reconnection of images to the tree.

To localize the corresponding landmark points, we train a number of detectors using 

regression forests. Although it will be worth fine-tuning parameters (i.e., number of decision 

trees, and the depth of each tree) for better localization accuracy, this is not practical at the 

moment due to long training time (i.e., days). For registration, we use a multi-resolution 

strategy to register all the images in the initial tree for accuracy, while we only perform 
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registration at the original scale when dynamically correcting links of poor target images for 

efficiency.

Experiments show that our method is able to achieve good results on two real datasets. We 

show that our method is superior to a tree based image registration (Jia et al., 2012). It can 

not only further improve registration accuracy, but also greatly help label fusion for better 

segmentation. This clearly demonstrates the importance of accurate image registration for 

multi-atlas segmentation. In the future, we will investigate a more advanced approach to 

using the landmark points for both tree construction and registration initialization.
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Fig. 1. 
Examples of the generated landmark points. Note that some landmarks reside in difference 

slices and might not be visible.

Zhang et al. Page 11

Comput Med Imaging Graph. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 

Illustration of training a binary decision tree. A random subset  is fed into the root 

node (red) of the tree. After a specific test, the root node sends each sample in the subset to 

one of its children. This process is repeated by splitting nodes (brown) until each sample 

reaches a leaf node (green), which stores empirical conditional probability distribution. A 

possible path through which a sample may go is highlighted by a set of red lines ending with 

a red arrow.
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Fig. 3. 
Registration of one image (Is) to another (It) via the root node (Ar): (a) Register adjacent 

images along the respective paths from Is and It to root Ar; (b) Concatenate the deformation 

fields along the paths, i.e., ; (c) Concatenate the inverse of  with 

 to obtain the final deformation field from Is to It.
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Fig.4. 
Registration of one image (Is) to another (It) via the help of images in : (a) Register 

its most recent ancestor, , to image It; (b) Concatenate the resulting deformation 

field  with the deformation field from Is to Iu, ; (c) Initialize the registration from 

Is to It with the composite deformation field.
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Fig. 5. 
Overall Dice ratios of 54 ROIs of the LPBA40 dataset.
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Fig. 6. 
Overall Dice ratios of 54 ROIs of the LPBA40 dataset after sparse patch based label fusion.
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Table 1

Overall Dice ratios for different tree-based image registration methods.

Methods CSF VN GM WM

i-Tree 61.6 ± 2.0% 87.3 ± 3.0% 61.4 ± 2.2% 75.0 ± 1.3%

p-Tree 62.0 ± 2.0% 87.6 ± 2.9% 61.7 ± 2.1% 75.4 ± 1.3%

p-Tree + TPS 62.7 ± 2.0% 87.9 ± 2.9% 62.2 ± 2.1% 76.2 ± 1.3%

Dynamic Tree 63.7 ± 1.9% 88.1 ± 2.7% 63.2 ± 2.0% 77.2 ± 1.2%

Comput Med Imaging Graph. Author manuscript; available in PMC 2017 September 01.


	Abstract
	1. Introduction
	2. Methodology
	2.1. Localization of corresponding landmark points
	2.2. Tree construction and initial registration
	2.3. Iterative registration with dynamic tree

	3. Experiments
	3.1. ADNI dataset
	3.2. LPBA40 dataset

	4. Conclusions and future work
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig.4
	Fig. 5
	Fig. 6
	Table 1

