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Abstract

The internal limiting membrane (ILM) separates the retina and optic nerve head (ONH) from the 

vitreous. In the optical coherence tomography volumes of glaucoma patients, while current 

approaches for the segmentation of the ILM in the peripapillary and macular regions are 

considered robust, current approaches commonly produce ILM segmentation errors at the ONH 

due to the presence of blood vessels and/or characteristic glaucomatous deep cupping. Because a 

precise segmentation of the ILM surface at the ONH is required for computing several newer 

structural measurements including Bruch's membrane opening-minimum rim width (BMO-MRW) 

and cup volume, in this study, we propose a multimodal multiresolution graph-based method to 

precisely segment the ILM surface within ONH-centered spectral-domain optical coherence 

tomography (SD-OCT) volumes. In particular, the gradient vector flow (GVF) field, which is 

computed from a multiresolution initial segmentation, is employed for calculating a set of non-

overlapping GVF-based columns perpendicular to the initial segmentation. The GVF columns are 

utilized to resample the volume and also serve as the columns to the graph construction. The ILM 

surface in the resampled volume is fairly smooth and does not contain the steep slopes. This prior 

shape knowledge along with the blood vessel information, obtained from registered fundus 

photographs, are incorporated in a graph-theoretic approach in order to identify the location of the 

ILM surface. The proposed method is tested on the SD-OCT volumes of 44 subjects with various 
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stages of glaucoma and significantly smaller segmentation errors were obtained than that of 

current approaches.
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1. Introduction

The top surface of the retina and optic nerve head is called the internal limiting membrane 

(ILM) and is utilized for measuring several structural parameters such as Bruch's membrane 

opening-minimum rim width (BMO-MRW), total retinal thickness, and cup volume. The 

BMO-MRW, for instance, is measured as the minimum Euclidean distance between the 

BMO and the ILM surface, and has been shown to be superior to other conventional 

structural parameters for diagnosing open angle glaucoma [1]. Besides computing structural 

parameters from SD-OCT volumes, having a precise ILM surface segmentation is also 

necessary for extracting different features from SD-OCT volumes in approaches that utilize 

machine learning-techniques for segmenting different retinal structures such as retinal blood 

vessels, BMO points, optic disc, and optic cup [2, 3, 4, 5].

There has been a great deal of research in segmenting the intraretinal surfaces including 

machine-learning based approaches [6, 7, 8], model based approaches [9, 10], and graph-

based approaches [2, 11, 12, 13, 14]. However, precisely segmenting the ILM surface in 

optic nerve head (ONH)-centered OCT, as needed for computing parameters such as the 

BMO-MRW of glaucoma patients, is more challenging than segmenting the ILM from a 

macular-centered OCT volume. The reason is that, due to the presence of deeper cups in 

glaucoma patients, the morphology of the ILM surface in the ONH region is very different 

from that of the macular region. Hence, many graph-based segmentation approaches [12, 2] 

initially designed to segment the intraretinal layers of the macula or the peripapillary region 

surrounding the ONH cannot catch the deep, steeply sloped cups which are characteristics of 

a glaucomatous ONH. This is due to the fact that the corresponding graph of the OCT 

volume is constructed such that each A-scan corresponds to a column in the graph and the 

ILM surface must intersect with each column only once. However, precise segmentation of 

the ILM surface inside the large and deep cups, present in glaucomatous OCT volumes, 

requires to intersect with each A-scan multiple times or to allow for sharp and large 

transitions (Fig. 1a). Shah et al. proposed a graph-theoretic segmentation method using the 

range expansion algorithm such that the sharp transitions were not penalized heavily [14]. 

More specifically, a truncated convex function was utilized for controlling the surface 

smoothness which allowed to preserve the discontinuity of the ILM surface while 

encouraging the smoothness. Even though this method improved the performance of its 

previous generations (i.e. [2, 12]) in segmenting the ILM surface within deeper cups, there is 

a trade-off between preserving discontinuity and obtaining a smooth ILM segmentation. 

Furthermore, the approach did not allow for multiple intersections with A-scans. 

Consequently, in the presence of steep slopes, many current ILM segmentation approaches 
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would lead to underestimation of measurements such as cup volume (the volume between 

the ILM surface and the BMO reference plane) as shown in Fig. 1b and overestimation of 

measurements such as minimum-rim width.

In addition to the presence of steep slopes, the presence of large retinal blood vessels, which 

is characteristic of the ONH region, causes the accurate segmentation of the ILM surface to 

be difficult. The large blood vessels located closer to the top surface of the retina are able to 

change the topology of the ILM surface. Since the current segmentation approaches include 

the retinal blood vessels as part of the ILM surface, as a result, the gaps surrounding the 

blood vessels may include as part of the ILM surface as well which leads to overestimating 

the BMO-MRW or underestimating the cup volume (Fig. 2b).

In order to address the segmentation errors mentioned above, we incorporated the gradient 

vector flow (GVF) field [15] in a multimodal graph-theoretic approach to enable dealing 

with deep cupping as well as retinal blood vessels. In another application domain, Oguz et 
al. benefited from GVF field by proposing a graph-theoretic method for segmenting multiple 

objects and surfaces of the brain where in order to be able to segment the complex-topology 

surfaces of the brain, the columns in graph construction were obtained by computing the 

GVF field. Similarly, in order to allow for steep and deep cupping, we benefited from the 

direction of the GVF field to construct a new set of equally spaced columns along the 

normals of the ILM surface. Since the columns in the graph construction must be non-

overlapping (otherwise it may lead to a self-intersecting surface segmentation) and GVF-

based columns satisfy this condition, the OCT volume was resampled using the new GVF-

based columns which also served as the columns in the graph construction.

In order to compute the GVF field, an initial ILM segmentation is required which was 

computed using a multiresolution method. Since the GVF-based columns are perpendicular 

at the initial ILM segmentation, the ILM surface in the resampled volume does not contain 

any steep slope or deep cupping, hence, we segment the ILM surface using a graph-theoretic 

approach by incorporating prior shape information [16]. The blood vessels are dealt with by 

correcting the initial segmentation as well as modifying the cost function that was used in 

the graph-based segmentation at the blood vessel locations. Since the blood vessels are more 

visible in fundus photographs (especially inside the ONH), they are segmented from 

registered fundus photographs. Based on the survey conducted by Kafieh et al. [17], the 

graph-theoretic approach proposed by Lee et al. is one of the best existing intraretinal 

approaches and will be used in this work for comparison purposes. A preliminary version of 

this work was presented in [18].

2. Methods

The flowchart of the proposed method is shown in Fig. 3. There are four major steps in the 

proposed method including: 1) preprocessing, 2) computing initialization and blood vessel 

correction, 3) computing GVF-based columns, and 4) identifying the ILM surface using a 

graph-theoretic method.
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2.1. Preprocessing

Due to better visibility of the retinal blood vessel inside ONH in fundus photographs than in 

SD-OCT projection images, the blood vessels are segmented from fundus photographs [19]. 

In order to be able to map the blood vessel mask to SD-OCT volumes, the fundus 

photographs need to be registered to their corresponding SD-OCT volumes. A 2D projection 

image is created from SD-OCT volume by segmenting the intraretinal layers and averaging 

the intensities within the retinal pigment epithelium (RPE)-complex subvolumes in the z-

direction [2]. The fundus photographs are registered to the 2D projection images using an 

iterative closest point (ICP)-based approach [3].

Additionally, in order to obtain a more consistent shape of the ILM within the ONH region 

across all slices, the SD-OCT volume is transferred from the Cartesian domain (x×y×z) to 

the radial domain (r×θ×z) with angular resolution of one degree, which results in 180 radial 

B-scans. The computed retinal blood vessel mask is also transferred to the radial domain.

2.2. Initialization

During the initialization step, we obtain an initial ILM segmentation automatically through a 

multiresolution peak detection method (described in more detail in the subsequent 

paragraphs of this section). The result of peak detection in the highest resolution (i.e. 

original resolution) is considered as the initial ILM segmentation. The initial ILM 

segmentation is required only for computing the gradient vector flow (GVF) field. After 

computing the GVF field, the GVF-based columns are created by following the directions of 

gradient vectors (section 2.3) and the OCT volume is resampled using the GVF-based 

columns such that the ILM surface becomes a fairly smooth surface in the resampled volume 

(section 2.3). The final ILM segmentation is obtained from the resampled volume using the 

graph-theoretic algorithm. In particular, a sufficiently large band around the initial 

segmentation is resampled using the GVF-based columns which gives the graph-theoretic 

approach the opportunity to correct the errors that may exist in the initial segmentation. 

Therefore, it is not required that the initial segmentation to be very accurate.

More specifically, the multiresolution initial segmentation approach first involves 

downsampling the volume (by a factor of 2 each time) to three lower resolutions. The 

boundary of retina and vitreous body appears as a strong edge in OCT volumes and in order 

to capture this dark-to-bright transition, where the ILM surface generates a large response, 

the OCT volume at each level, I(i), was convolved with an asymmetric 3D Gaussian 

derivative filter as follows:

(1)

where , , and  are the standard deviation of the Gaussian filter in the i-th level in r, θ, 

and z, respectively. As it is depicted in Eq. 1, the derivative is performed only in z-direction, 
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however, in order to incorporate the contextual information from surrounding regions and 

neighboring slices, the filter was designed in 3D. Since the first dominant high response 

from the top of each A-scan belongs to the ILM surface, the peak detector identifies the 

location of first peak at each A-scan within the lowest resolution, ℰ(3)(r, θ, z). While the 

entire A-scan was included for detecting the peaks in the lowest resolution, in the next 

resolution instead of the entire A-scan, the searching interval includes only a small portion 

of the A-scan relative to the location of the peak in the previous lower resolution. The 

response in the original (highest) resolution is considered as the ILM initial segmentation, 

i(r, θ). Besides allowing for the suppression of speckle noise, the other advantage of 

obtaining the initialization through a multiresolution process is that constraining the possible 

surface locations in the subsequent resolutions helps avoid finding edges produced by other 

surfaces.

Furthermore, before computing the GVF field, the ILM initial segmentation is corrected for 

the presence of retinal blood vessels. Since the presence of blood vessels may affect their 

surrounding regions as well, the radial blood vessel mask computed in section 2.1 was 

dilated by 2 pixels and mapped on the initial segmentation, i(r, θ), such that the surface 

segmentation at the A-scans containing blood vessel was ignored and a cubic interpolation 

was used to compute the new values at these locations. Therefore, the vessel-corrected initial 

segmentation, i–v(r, θ), is used in section 2.3 for computing the GVF field. Furthermore, 

the response of the 3D Gaussian filter in the original resolution, ℰ(0)(r, θ, z), is used as part 

of the cost function computation of the graph-theoretic approach in section 2.4.

2.3. Gradient Vector Flow Computation

In the cases of deep cupping, in order to be able to follow the steep slopes, we resample the 

volume using a set of equally spaced non-overlapping columns which are perpendicular to 

the initialization surface. Since the new columns are also used as the columns in the graph 

construction, these columns are computed by following the direction of the gradient vectors 

to assure non-overlapping columns. If an SD-OCT volume in the radial domain is 

represented by I(r, θ, z), GVF is the vector field V⃗(r, θ, z) = [u(r, θ, z), v(r, θ, z), w(r, θ, z)] 

that minimizes the energy function E [15]:

(2)

where μ is the regularization parameter. Due to the smooth shape of ONH, μ was not a 

sensitive parameter for computing GVF field and was set empirically to 0.02. The vector 

field in Eq. 2 can be found by solving the following Euler equations:

(3)
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where ∇I = (Ir, Iθ, Iz) and Ir, Iθ, and Iz are the derivatives in r, θ, and z directions, 

respectively. Therefore, an initial vector field, ∇I, with high gradient at the initial 

segmentation is required in order to be able to compute the appropriate GVF field. The 

initial vector field, ∇I, is derived from the following 3D binary function I(r, θ, z):

(4)

Constructing the GVF-based columns starts from a point on the initial surface i–v(r, θ), and 

continues by following the directions of the gradient flow on both sides of the initial surface. 

In order to find the next point on the column, the direction and the step size need to be 

determined. The direction of all normalized gradient vectors in the neighborhood of the 

current point (i.e. {V⃗i/|V⃗i| |i ∈ c} where c represents the neighborhood) are interpolated 

to find the resultant direction, V⃗R. In order to avoid sampling artifacts, the step size, s, must 

be smaller than half of the distance between two voxels in the volume. Therefore, moving in 

the direction of V⃗R with step size s indicates the next point on the column and assures 

obtaining non-overlapping columns. There is no limit on the length of the GVF-based 

column and the next points are obtained by continuously moving in the direction of the 

gradient flow at both sides of the initial surface. The length of the columns was set to 100 in 

this study (Fig. 4) (a value larger than the expected maximum error of the initial ILM 

segmentation) in order to assure the entire ILM surfaces appears in the resampled volume. 

This enables the graph-theoretic approach to correct any possible errors in the initialization.

2.4. Graph Construction and Cost Function Computation

The radial OCT volume is resampled using the GVF-based columns computed in section 

2.3. When the OCT volume is transferred from the radial domain to the new space, the 

neighborhood relationships are retained (i.e., the 8-neighboring columns of a specific 

column in the radial volume and the resampled volume stay the same). Due to the fact that 

the GVF-based columns are along the normals at the initialization surface, and the columns 

are extended to the same length in both sides of the initial segmentation, it is expected that 

the ILM surface in the resampled volume appears as a smooth surface with minimal 

variation in the middle of the cube. We incorporate this prior shape information in the graph 

construction which helps with managing the presence of blood vessels.

Our graph-theoretic approach follows the methods proposed in [12, 16]. Consider a 

volumetric image in the resampled volume described as ℐ(i, j, k) with dimensions I×J×K, 

and the ILM surface  can be defined as a function (i, j) that maps each (i, j) pair to its 

corresponding k value. The surface  has to intersect with one and only one voxel on each 

GVF-based column in the resampled domain, parallel to the k–axis and spans the entire i × j 
domain. In order to assure obtaining a smooth segmentation, the surface smoothness 

constraints in both i and j directions are enforced. The hard surface smoothness constraint 

represents the maximum allowed variation of  between two adjacent columns in i–
direction, Δi, and in j–direction, Δj. In other words, if ℐ(i, j, k1) and ℐ(i + 1, j, k2) are two 
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adjacent voxels on the surface  in the i–direction (k1 = (i, j) and k2 = (i + 1, j)), then |

(i, j) − (i + 1, j)| ≤ Δi. Similarly, for two adjacent voxels on the surface  in the j–direction 

(ℐ(i, j, k1) and ℐ(i, j + 1, k2)) we have | (i, j) − (i, j + 1)| ≤ Δj.

In order to incorporate the shape prior information, in addition to hard smoothness 

constraints, soft smoothness constraints, responsible for penalizing the deviation from the 

expected shape inside the allowed variations (hard smoothness constraints) is also enforced 

[16]. Therefore, the deviation of the surface  from its expected shape is penalized via a 

convex function f(h). Specifically, for any pair of neighboring columns p = (i1, j1) and q = 

(i2, j2) on surface (i, j), if the expected shape change of surface  between (p, q) is 

m(i1, j1),(i2, j2) the cost of the shape term can be written as:

(5)

Here, c indicates the neighboring relationships. Due to the resampling of the volume along 

the normals of the initial segmentation, it is expected that the ILM surface appears as a 

smooth surface with minimal variation in the resampled volume, hence, m(i1, j1),(i2, j2) = 0. 

Since the weights of those graph arcs that are responsible for enforcing the soft smoothness 

constraints are related to the second derivatives of the penalizing function f [16], and the arc 

weights need to be greater than or equal to zero, the penalizing function is required to be 

convex for which a quadratic function is employed in Eq. 5.

As part of the total cost function of the ILM surface, Ctotal, an edge-based cost function 

called the on-surface cost function is employed [12]. The on-surface cost function reflects 

the unlikelihood of a voxel being located on the ILM surface (i.e., it has lower values for the 

voxels located on the ILM surface). The strategy to deal with the blood vessels is relying 

more on the contextual information from adjacent slices, the shape prior knowledge, and the 

feasibility constraints than on the on-surface cost function values. Hence, the on-surface cost 

function at the blood vessel locations is modified to enable the graph-theoretic approach to 

cut through the blood vessels that change the shape of the ILM surface substantially. The 

blood vessel location is obtained by transferring the binary vessel map computed from the 

registered fundus photographs to the radial domain. The on-surface cost function can be 

expressed as:

(6)

where w(i, j) controls the modification of the cost function at the blood vessel locations and 

Mvessel is the binary vessel map in the radial domain. The edge information, ℰ́(i, j, k), is 

computed by resampling the inverted response of the 3D Gaussian derivative filter (ℰ(r, θ, z) 

computed in section 2.2) using the GVF-based columns. The intensities of ℰ(r, θ, z) were 

normalized and inverted before resampling to reflect the unlikelihood of a voxel being 
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located on the ILM surface. Therefore, the total cost of finding the ILM surface in the 

resampled volume can be written as follows:

(7)

Here, the coefficient α was set to 0.85. As in [16], the optimal ILM surface (with respect to 

the cost function provided) can be found by computing the max–flow/min–cut in the arc-

weighted graph. Once the ILM surface is obtained in the resampled volume, the 

segmentation is transferred back to the radial domain.

3. Experimental Methods

3.1. Data and Reference Standard

The dataset in this work includes optic nerve head (ONH)-centered SD-OCT volumes in one 

eye (per patient) of 44 open-angle glaucoma or glaucoma suspect patients acquired using a 

Cirrus HD-OCT device (Carl Zeiss Meditec, Inc., Dublin, CA) at the University of Iowa. 

The size of each scan was 200×200×1024 voxels (in the x-y-z direction, respectively) which 

corresponds to a voxel size of 30×30×2 μm, and the voxel depth was 8 bits in grayscale. 

Additionally, the color fundus photograph of the optic disc corresponding to each SD-OCT 

scan was taken as well. Twenty-four patients had stereo color fundus photographs taken 

using a stereo-base Nidek 3-Dx stereo retinal camera (3072×2048 pixels). The rest of the 

patients had color fundus photographs taken using a Topcon 50-DX camera (2392×2048 

pixels). The pixel depth was 3 8-bit red, green and blue channels.

In order to obtain the reference standard, two radial slices were randomly chosen from each 

SD-OCT volume (i.e., for each volume the two radial B-scans were selected by computing 

two numbers between 1 and 180 using a random number generator that generates uniformly 

distributed numbers). One expert manually segmented the ILM surface from each slice twice 

(the time interval between manual delineations was more than one year) and the reference 

standard for each slice was computed by averaging the two manual delineations. 

Furthermore, a volumetric reference standard was obtained for one subject in the dataset 

such that the ILM surface was manually delineated on every five radial B-scans (every 5°).

3.2. Experiments

The performances of the following three methods were compared: 1) the initialization 

computed using a multiresolution process in section 2.2, 2) the ILM segmentation proposed 

by Lee et al. [2], and 3) the proposed graph-theoretic approach in this paper. The metrics 

used to evaluate the accuracy of the segmentation results consisted of the signed and 

unsigned border positioning errors calculated in the radial domain. The unsigned border 

positioning error was calculated by averaging the distances between all surface points (on 

two randomly selected slices) from the reference standard and the corresponding closest 

points from the segmentation result. The signed border positioning error was similarly 

calculated but the signs of the distances were retained. If the algorithm's surface point was 

above the surface point of the reference standard, the sign was considered positive.

Miri et al. Page 8

Comput Med Imaging Graph. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Moreover, the signed and unsigned border position errors were also computed for the single 

subject with volumetric reference standard. The subject was selected such that it had the 

median unsigned border positioning error (computed from two randomly selected B-scans 

described in section 3.1) among the subjects in the dataset.

Additionally, in order to further assess the effectiveness of the proposed method in dealing 

with the presence of the retinal blood vessels and the steep slopes, the signed and unsigned 

border positioning errors were measured locally as well. Hence, for measuring the localized 

error at the blood vessel locations, only the A-scans intersecting with blood vessels were 

considered for measuring the border positioning errors. Similarly, the localized error of steep 

slope is computed at the A-scans containing steep slopes which were identified by 

computing the gradient of the ground truth. A paired t-test was utilized to compare the 

performances of three methods where p < 0.05 was considered significant.

Furthermore, the accuracy of the three segmentation approaches were evaluated using the 

cup volume. In order to compute the cup volume, the reference plane at each B-scan is 

defined as a straight line 150 μm (standard cup offset) above the straight line that connects 

the two BMO points [20] and the volume bounded between the ILM surface and the BMO 

reference plane was considered as the cup volume. The average of the cup volumes on the 

two B-scans with the manual segmentation was calculated for each subject.

4. Results

Two examples ILM surface segmentation are shown on a single radial B-scan in Fig. 5. The 

quantitative evaluations of border positioning errors for the entire ILM surface are provided 

in Table 1. The proposed method had significantly smaller signed and unsigned border 

positioning errors than the initialization and Lee et al. segmentations (p-value < 0.05). In 

addition, the proposed method improved the average unsigned border positioning error of 

Lee et al. method and the initialization by 51.95% and 71.06%, respectively.

The volumetric unsigned border positioning error for the initialization (19.45 μm), Lee et al. 
method (12.57 μm), and the proposed method (5.25 μm) was computed on the single subject. 

Moreover, the signed border positioning error for the initialization (7.04 μm), Lee et al. 
method (4.32), and the proposed method (-0.84 μm) was computed as well.

Furthermore, the localized border positioning errors at the blood vessel locations and steep 

slopes are reported in Table 2. The signed and unsigned border positioning errors (at the 

blood vessel locations) of the proposed method were significantly lower than the 

initialization and and Lee et al. segmentations (p-value < 0.05). The proposed method 

improved the average unsigned border positioning error (at the blood vessel locations) of 

Lee et al. method and the initialization by 64.65% and 78.88%, respectively.

Similarly, the proposed method had significantly lower signed and unsigned border 

positioning errors (at the steep slopes) than the initialization and Lee et al. segmentations (p-

value < 0.05). The proposed method improved the average unsigned border positioning error 

(at the steep slopes) of Lee et al. method and the initialization by 66.34% and 79.98%, 

respectively.
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The cup volume measurements are reported in Table 3. Furthermore, the Bland-Altman 

graphs in the Fig. 6 clearly shows that initialization and the method in [2] underestimate the 

cup volume which resulted in the negative biases, whereas, the proposed method decreased 

the existing bias in the other approaches substantially. Additionally, the cup volume 

calculated using the manual segmentation and the automated approaches were compared 

using paired t-tests and the results showed that the cup volume computed using the 

initialization and the method in [2] are significantly different from that of the manual 

segmentation (p < 0.05). However, the cup volume computed using the proposed method 

was not significantly different from that of the manual segmentation (p > 0.05).

5. Discussion and Conclusion

In this work, we proposed a multimodal graph-theoretic approach for segmenting the 

internal limiting membrane surface from optic-nerve-head-centered SD-OCT volumes and 

the proposed method was tested on 44 glaucoma patients. The existing ILM segmentation 

approaches (e.g. the method in [2]) generate erroneous results inside the optic nerve head 

region due to the presence of retinal blood vessels and existing deep cupping and steep 

slopes in the ILM surface which are very typical in glaucomatous SD-OCT scans. These 

issues cause inaccurate measurements of ONH structural parameters such as Bruch's 

membrane opening-minimum rim width and cup volume. The proposed method deals with 

the issue of large blood vessels by modifying the cost function associated with the graph-

theoretic approach and eliminates the steep slopes by resampling the OCT volumes using the 

gradient vector flow-based columns.

The large retinal blood vessels locating near the ILM surface, which are characteristics of 

ONH region, are able to change the morphology of the ILM surface. Current segmentation 

approaches include the blood vessels as part of the ILM surface which increase the 

possibility of inaccurate measurement of the structural parameters such as BMO-MRW. The 

correct way of dealing with retinal blood vessels is controversial [21], however, we currently 

argue that doing a better job of only including the non-vascular tissue can provide the most 

precise measurements of glaucoma parameters of interest such as BMO-MRW, where going 

around the vessels would lead to overestimating the MRW. Note that as BMO-MRW is 

measured as the shortest Euclidean distance from the BMO to the ILM surface, depending 

on the location of blood vessels, and the closest point on the ILM surface to BMO, the 

BMO-MRW parameter may or may not be affected by the presence of blood vessel. Hence, 

it is possible that BMO-MRW computed using the proposed ILM segmentation stays the 

same as that computed using the existing ILM segmentation approaches.

The proposed method also addresses the issue of segmenting ILM surface inside deep cups 

with steep slopes. In order to be able to accurately segment the ILM surface, the 

segmentation must be able to intersect with A-scans containing steep slopes more than once, 

therefore, those segmentation approaches [12, 2] that were initially designed to segment the 

intraretinal layers of the macula or the peripapillary region surrounding the ONH cannot 

catch the steep slopes inside the deeper cups. This issue results in inaccurate cup volume 

measurements [22], and the Bland-Altman graphs in Fig. 6 shows the negative bias of the 

method in [2] which is associated with the underestimating cup volumes. Resampling the 
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volume using GVF-based columns which are along the normals of initial segmentation helps 

eliminate the steep slopes and transfers the ILM surface into a smooth surface with minimal 

variation. Therefore, the graph-theoretic approach incorporates this shape prior knowledge 

while segmenting the ILM surface in the resampled volume. The Bland-Altman graphs in 

Fig. 6 demonstrate that the proposed method successfully removed the negative bias existed 

in the initialization and Lee et al.'s method.

While Lang et al. [23] demonstrated that reformatting the OCT volume is beneficial for 

intraretinal layer segmentation in macular scans and GVF-based columns have been 

previously used in the graph-construction for segmenting complex-topology surfaces of the 

brain [24], we present a new framework for precise segmentation of the ILM surface by 

reformatting the OCT volumes using non-overlapping GVF-based columns. Additionally, 

use of multimodal information for the graph-construction and cost function design for use in 

the 3D graph-based approach that incorporates shape priors [16] is generally novel as well. 

In addition to allowing for a more precise ILM segmentation for ophthalmic applications, as 

in this work, it is expected that other application domains would also benefit from a 

multimodal graph-construction and cost-function design framework.

In summary, we proposed a method for accurate segmentation of the ILM surface within 

ONH region of OCT volumes where first, the blood vessels are segmented from the 

registered fundus photographs due to the higher visibility of ONH region in fundus 

photographs than OCT projection images. The vessel mask is transferred to the radial 

domain along with the OCT volumes and is utilized for two purposes 1) correcting the initial 

segmentation which is computed using a multiscale peak detection method and 2) modifying 

the cost function used in the graph-theoretic approach at the vessel locations. The radial 

volumes are resampled using non-overlapping GVF-based columns which are calculated by 

following the directions of gradient vector flow field of the initial segmentation. The optimal 

solution with respect to the edge-based and shape-based cost functions is obtained using a 

graph-theoretic approach in the resampled domain and finally the segmentation is 

transferred back to the original domain.
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Highlights

• We present a multimodal approach for segmenting the surface of the 

optic nerve head

• A graph-based approach is extended to utilize gradient-vector-flow-

based columns

• Issues related to the presence of blood vessels and deep cups are 

overcome

• The approach will enable more accurate computation of glaucomatous 

measures
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Figure 1. 
(a) ILM segmentation error due to the steep slopes as well as low signal strength. The red 

lines indicate segmentation results using the approach of Lee et al. [2] and the yellow dashed 

lines indicate the desired segmentation. (b) The resulting underestimated cup volume. The 

solid green region is the measure cup volume using automated ILM segmentation and the 

underestimated regions are shown with shaded patterns.
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Figure 2. 
(a) ILM segmentation error due to the presence of blood vessels. The red lines indicate 

segmentation results using the approach of Lee et al. [2] and the yellow dashed lines indicate 

the desired segmentation. (b) The resulting inaccuracy in computing the BMO-MRW 

structural parameter. Underestimating the cup volume because of including the blood vessel 

in the ILM segmentation is also observed.
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Figure 3. 
Flowchart of proposed algorithm.
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Figure 4. 
(a) A zoomed-in illustration of gradient vectors, for better illustration of the gradient vectors, 

a schematic image is provided where the larger and reddish vectors represents stronger 

gradient vectors. (b) The columns constructed by following the flow of the gradient vectors. 

The blue line shows the corrected initial segmentation.
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Figure 5. 
Example results on the ONH portion of two slices from two volumes (only the ONH portion 

shown for better visibility). Red is the reference standard, green is the proposed algorithm 

and dashed cyan is Lee et al. [2] results. (a) Shows the effect of the presence of blood vessels 

and (b) shows an example of deep cupping.
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Figure 6. 
The Bland-Altman graphs of the cup volume measurement corresponding to (a) 

initialization, (b) Lee et al. [2], and (c) the proposed method in comparison with the manual 

tracing.
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Table 1

Average signed and unsigned border positioning error (Mean ± SD in μm).

Methods Unsigned Signed

Initialization 21.32 ± 11.02 7.95 ± 4.66

Lee et al. [2] 12.84 ± 7.45 5.84 ± 3.52

Proposed method 6.17 ± 3.19 -1.43 ± 1.54
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Table 2

Localized unsigned and signed border positioning error at blood vessel and steep slope locations (Mean ± SD 

in μm).

Error

Blood Vessel Steep Slope

Unsigned Signed Unsigned Signed

Initialization 18.56±13.11 13.23±15.45 24.12±16.86 21.23±19.65

Lee et al. [2] 11.09± 9.68 10.34±12.24 14.35±10.11 13.44±13.11

Proposed method 3.92± 2.01 -1.23± 2.87 4.83± 3.25 3.56± 3.87
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Table 3

Cup volume measurements.

Mean± SD in mm2 Pearson Correlation

Initialization 1.756±0.441 98.66

Lee et al. [2] 1.836±0.457 99.02

Proposed method 1.900±0.475 99.94

Reference standard 1.910±0.478 –
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