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Abstract

A general method is reported for improving the segmentation of abnormal cell nuclei in cervical 

cytology images. In automation-assisted reading of cervical cytology, one of the essential steps is 

the segmentation of nuclei. Despite some progress, there is a need to improve the sensitivity, 

particularly the segmentation of abnormal nuclei. Our method starts with pre-segmenting the 

nucleus to define the coarse center and size of nucleus, which is used to construct a graph by 

image unfolding that maps ellipse-like border in the Cartesian coordinate system to lines in the 

polar coordinate system. The cost function jointly reflects properties of nucleus border and 

nucleus region. The prior constraints regarding the context of nucleus-cytoplasm position are 

utilized to modify the local cost functions. The globally optimal path in the constructed graph is 

then identified by dynamic programming with an iterative approach ensuring an optimal closed 

contour. Validation of our method was performed on abnormal nuclei from two cervical cell image 

datasets, Herlev and H&E stained manual liquid-based cytology (HEMLBC). Compared with five 

state-of-the-art approaches, our graph-search based method shows superior performance.
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1. Introduction

Automation-assisted reading techniques have the potential to reduce errors and increase 

productivity in cervical cancer screening (Birdsong, 1996; Biscotti et al., 2005; Wilbur et al., 

2009; Kitchener et al., 2011; Zhang et al., 2014a). The key function of these techniques is to 
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automatically distinguish potentially abnormal cells from a large numbers of normal cells in 

cervical cytology slides for further manual reading by pathologists (Birdsong, 1996; Biscotti 

et al., 2005; Wilbur et al., 2009; Kitchener et al., 2011; Zhang et al., 2014a). Both the 

nuclear and cytoplasmic morphological features are useful in distinguishing between 

abnormal and normal cells (Solomon and Nayar, 2004; Marinakis et al., 2009). However, 

recent studies have demonstrated the important role of nuclei in cancer recognition (Zink et 

al., 2004; Plissiti and Nikou, 2012a, b). More specifically, in cervical cytology diagnosis, all 

the cell abnormalities including atypical squamous cells of undetermined significance (ASC-

US), ASC-cannot exclude HSIL (ASC-H), low grade squamous intraepithelial lesion 

(LSIL), high SIL (HSIL), and squamous cell carcinoma, accompany nuclear abnormality 

(Solomon and Nayar, 2004). In order to accurately characterize nuclear abnormality, reliable 

automated detection/segmentation of abnormal nuclei in cervical cytology is a necessary 

step, and is of utmost importance in automation-assisted reading techniques (Zhang et al., 

2014a).

Most of the previous studies were developed to segment cervical cytology images with 

normal nuclei. Active contour model (Bamford and Lovell, 1998), morphology 

reconstruction (Plissiti et al., 2011), and level set (Bergmeir et al., 2012) are the most 

commonly used techniques for the accurate detection of nucleus boundary. To date, the 

segmentation of normal cervical nuclei has already achieved high accuracy. Researchers 

have started to change their attention to other more challenging tasks such as overlapping 

nuclei (Plissiti and Nikou, 2012a,b) and cytoplasm splitting (Lu et al., 2015; Guan et al., 

2014). Segmentation of abnormal nuclei is critical in real clinical setting and remains 

challenging due to their variations in size, irregular shape and non-uniform chromatin 

distributions.

Until now, only a few studies are related to the topic of abnormal nuclei segmentation in 

cervical cytology. The pioneer work was reported in Chang et al. (2009) but only very 

limited data were reported. Succeeding researchers usually evaluate their methods on the 

Herlev database (Jantzen et al., 2005) which consists of single abnormal cell images. Li et 

al. (2012) proposed a radiating gradient vector flow (RGVF) snake model, which detects 

nucleus boundary in a radiating manner over the GVF field, to refine the initial segmentation 

of nuclei. In Gençtav et al. (2012), a multi-scale watershed approach is proposed to over-

segment the image, and a classifier is then trained to identify the nucleus from the 

candidates. In a most recent work, fuzzy C-means (FCM) (Chankong et al., 2014) is utilized 

to separate the image into patches which are then combined into three clusters based on 

thresholding operation.

A more practically-oriented segmentation method for detecting/segmenting abnormal nuclei 

within a field-of-view (FOV) had recently been reported and evaluated by our group (Zhang 

et al., 2014a,b). Specifically, a local adaptive graph cut (LAGC) approach (Zhang et al., 

2014b), which models the nucleus and background as two Poisson distributions is proposed 

to refine the coarse segmentation of both normal and abnormal nuclei. Recently, a deep 

learning initialization and superpixels graph cut refinement method was proposed by our 

group with the aim of improving the segmentation of nuclei (Song et al., 2015). Our 
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previous approaches work well in most situations although they may generate inaccurate 

boundaries when the nuclei exhibit poor staining and/or their boundary contrast is low.

In order to handle the challenges presented in abnormal nucleus segmentation, we move 

away from the usage of traditional cervical cell segmentation techniques (Bengtsson and 

Malm, 2014; Plissiti and Nikou, 2013), and rely on the usage of graph-search based 

segmentation (Li et al., 2006), because it is known to be globally optimal in finding object 

boundaries. Specifically, we employ a 2D dynamic programming approach. Similar 

approaches have been successfully used in the segmentation of ellipse-like objects in other 

types of biomedical images (Baggett et al., 2005; Chiu et al., 2012; Fu et al., 2014). 

Especially for the abnormal nucleus segmentation task, specific information involving 

nucleus shape information, expected nucleus border and regional properties and nucleus 

context prior constraints are incorporated in a global optimal solution. Following an initial 

segmentation of nuclei and cytoplasm, our method is general and yields improved cell 

nucleus segmentation. We show quantitative comparisons between the proposed method and 

the state-of-the-art approaches (Li et al., 2012; Gençtav et al., 2012; Chankong et al., 2014; 

Zhang et al., 2014b; Song et al., 2015) on two datasets with different types of cervical 

cytology images, Herlev (Jantzen et al., 2005) and H&E stained manual liquid-based 

cytology (HELBC) (Zhang et al., 2014b).

2. Methods

State-of-the-art cervical nucleus segmentation methods often work in a coarse-to-fine 

manner. In the coarse stage, general segmentation techniques (e.g., Hough transform 

(Bergmeir et al., 2012), K-means (Li et al., 2012), thresholding (Zhang et al., 2014b), deep 

learning (Song et al., 2015)), or others are used to generate coarse nucleus candidates. The 

fine stage operates on each of these candidates, aiming at providing more accurate 

segmentation. Our graph-search based segmentation focuses on the fine stage, and is 

specifically designed for the refinement of coarse/initial segmentation of nucleus, given the 

rough segmentation of nucleus and cytoplasm regions (as shown in Fig. 1).

The refinement framework consists of five steps: (1) a rectangle (sub-image) around each 

nucleus candidate is cropped according to an annotation protocol which relies on the 

coarsely (initially) segmented nucleus boundary; (2) image unfolding is performed on the 

cropped sub-image to construct a graph; (3) nucleus-specific costs are assigned to each node 

in the graph; (4) a globally optimal path (red curve in Fig. 1) with the lowest cost is 

determined; and (5) the path is mapped onto the original sub-image by reversing the initial 

unfolding transformation and the improved nucleus boundary is obtained.

2.1. Nucleus image cropping

Given the initial segmentation of nucleus, the annotation protocol which was used to crop 

early gestational sac in ultrasound images (Zhang et al., 2012) is utilized since such a 

protocol ensures involving the entire nucleus area and a sufficiently large cytoplasm/

background region around the nucleus. Briefly, a nucleus sub-image is defined based on the 

coarse boundary of the nucleus, using which we can compute the length L of the major axis 

and the center x0 of the smallest upright bounding rectangle. Then a rectangle with sides of 
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Len = L +ΔL centered at x0 is cropped and determined to be the sub-image for graph-search 

based segmentation.

2.2. Image unfolding (graph construction)

Given a cropped image, image unfolding is performed by transforming the image 

coordinates from Cartesian to polar with the center of the cropped bounding box used as the 

unfolding center, as shown in Fig. 2. As a result, the ellipse-like border of the nucleus 

becomes a curve which starts from the first column and ends at the last column in the 

unfolded image. With the unfolded image, a graph with Ng graph columns is constructed and 

searched for the optimal path, where Ng equals to the number of columns of the unfolded 

image. In this graph, each node (yellow points in Fig. 2(b)) corresponds to a pixel in the 

unfolded image. The successors of a node (pointed by green arrows in Fig. 2(b)) are defined 

as the three nodes on the subsequent column corresponding to three possible changes of 

edge direction.

2.3. Cost function

The cost function used for the identification of nucleus boundary is of the primary 

importance for the success of the segmentation. In this work, the cost assigned to the graph 

node contains three specific information related to cervical (abnormal) nuclei, i.e., the 

expected nucleus border properties, nucleus regional homogeneity properties, and nucleus 

context prior constraints, as depicted in the example given in Fig. 3. By combining these 

information components and obtaining an optimal solution, the overall segmentation process 

is generally robust to address typical variation of cervical (abnormal) nuclei.

2.3.1. Nucleus border properties—Although non-ideal illumination, inconsistent 

staining, and artifacts tend to degrade the image quality, nucleus borders are still usually 

identifiable in most cell images. This observation motivates the design of an edge cost. In 

addition, since the boundary of nucleus is usually darker than the surrounding cytoplasm, 

gradient direction from dark to bright is considered. Specifically, the edge cost ce (Fig. 3(a)) 

is calculated based on the gradient magnitude gmag and gradient direction gdir of graph f as 

follows,

(1)

(2)

(3)
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where  and  are the gradient in the x and y direction, respectively. For a specific node 

(i, j), its gradient in the x and y direction can be discretized as I(i + 1, j) − I(i − 1, j) and I(i, j 
+ 1) − I(i, j − 1), respectively (Sonka et al., 2014), where I(i, j) represents the gray-scale 

intensity of node (i, j). Note that small deviations from this pattern are not critical because of 

the smoothness constraints of graph connections. Since the cytoplasm is also darker than the 

surrounding background, the values of ce between cytoplasm and background might even be 

stronger than that between the nucleus and cytoplasm. To remove such unwanted edges, the 

background pixels in each graph column are assigned low cost (marked as black color). 

Here, the background is determined by coarse segmentation.

2.3.2. Nucleus region properties—For images which are severely unfocused or where 

nucleus is surrounded by deep stained cytoplasm, the nucleus border gradients may be fuzzy. 

Furthermore, due to non-optimal autofocusing, different grades of abnormalities, 

inconsistent staining, and noise, the nuclear chromatin distribution (texture) may vary 

substantially. Nevertheless, most nucleus regions are still distinguishable from their 

surrounding background. Therefore, we add a region cost as a second component of our cost 

function to allow a segmentation to succeed even without the presence of gradients and 

without the assumption of a particular texture model. The region cost cr (Fig. 3(b)) is 

calculated using the Mumford-Shah functional as proposed by Chan and Vese (2001). This 

cost is minimized when nodes (i, j) coincide with the object boundary and best separate the 

object and background with respect to their mean intensities. For our constructed graph, this 

cost is assigned as the sum of the inside and outside variances computed in the graph column 

as follows:

(4)

where I is the gray-scale intensity, the two constants a1 and a2 are the mean intensities of 

pixels above (0≤j′ ≤ j) and below (j < j′ < J) the boundary, respectively, and J represents the 

last effective node on the graph column. Similar to the edge cost calculation, to alleviate the 

unwanted high values of cr between the cytoplasm and background, only pixels not in the 

background regions are considered in Eq. (4).

2.3.3. Combination of cost terms—The combination of edge and region information 

has proven successful in medical image segmentation tasks (Chakraborty et al., 1996). 

Therefore, the aforementioned edge and region cost terms are combined into a total cost 

function c (Fig. 3(c)) to allow more robust segmentation,

(5)

where α and β are the weights for the edge term and region term, respectively, satisfying α + 

β = 1. Each of the two terms is normalized to the range [0,1] before their combination.
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2.3.4. Nucleus context prior constraints—Although the coarsely detected borders 

between cytoplasm and background are mostly excluded from the aforementioned cost 

calculations, relatively large image gradient near such borders can still exhibit low cost 

values. Because the nucleus/cytoplasm ratio is usually large for abnormal cervical cells, 

some abnormal nuclei might be located close to the border between cytoplasm and 

background. As a result, the graph search-based segmentation might incorrectly identify 

such borders (highlighted by green color in Fig. 4(a)) as nucleus boundaries since they might 

have lower costs than the nucleus boundaries. To solve this problem, specific prior 

constraints are designed inspired by the “Just-Enough-Interaction” (JEI) principle (Beichel 

et al., 2016). By modifying the graph local costs using interactively-provided clues, JEI is 

able to refine the initial automated segmentation. In this paper, we adapt the principle of JEI 

into nucleus segmentation by modifying the local cost functions based on the cytoplasm-

nucleus context, consequently affecting the outcome of the graph-search segmentation.

Given the coarsely segmented cytoplasm boundary represented by the point set 

 in the polar coordinate system (dark blue points in Fig. 5(a)), where 0 ≤ 

bj ≤ Len with 0 indicating no cytoplasm on the current column, the affected nodes on graph 

column j are defined as those between the row bj −Δd (light blue points in Fig. 5(b)) and row 

bj +Δd (purple points in Fig. 5(b)). Let c (i, j) and c′(i, j) denote the costs of node n(i, j) 
before and after considering the proximity of cytoplasm, respectively, then two kinds of 

constraints including the hard context constraint and the context prior penalty are used to 

modify the costs of these affected nodes, and the costs of all other (unaffected) nodes remain 

unchanged,

(6)

The details for having these two constraints are as follows. First, for the context prior 

penalty, the costs of nodes on affected columns, which are immediately above the cytoplasm 

points need to become less “attractive” by utilizing an update function,

(7)

where d(.) denotes the distance (number of nodes).Δd controls the locality of the cost 

modification and corresponds to the affected range on the columns. Second, resulting from 

the hard context constraint, nodes on affected columns far away from coarsely segmented 

cytoplasm boundary points (below pj) become less attractive when modified according to the 

truncated L1 distance (Felzenszwalb and Zabih, 2011). K is set as 2 to make nodes that are 

outside the cytoplasm boundary less attractive to allow the segmented nucleus boundary to 

be outside of the cytoplasm boundary in case of inaccurate coarse detection of the 
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cytoplasm. Illustrative examples of the refined cost function and its optimal path are shown 

in Figs. 3(d) and 4(b), respectively.

2.4. Optimal path

After the graph is constructed, the optimal path is determined by dynamic programming 

(Sonka et al., 2014). However, the path found by standard dynamic programming does not 

guarantee a closed contour after reversely mapping onto the original image, since the 

starting node p1 and ending node  on the path are not necessarily on the same row (Fig. 

6(a)).

To solve this problem, an iterative approach is applied if a discontinuous boundary is 

detected, which is determined by , where t is the tolerance for distance 

discontinuity and is set as 3 pixels:

1. Set k = 1.

2. Cut the last k · C columns (overlaid with yellow color in Fig. 6) and concatenate 

them to the start of the graph.

3. Determine an optimal path and its starting node p1 and ending node  of the 

newly formed graph by dynamic programming.

4. The process ends when, , otherwise, set k = k + 1, and repeat step 2–

step 3.

The exact value of C has almost no impact on the method’s performance, and is simply set 

as 10.

2.5. Unfolding reversal

Finally, to get a closed contour of nucleus on the original image in Cartesian coordinate 

system, reversely mapped coordinates of adjacent nodes on the optimal path are directly 

connected.

3. Experimental methods

3.1. Data

The experiments were mainly carried out on abnormal nuclei from two types of cervical 

cytology images, which were acquired by different slide preparation, different staining 

methods, and also under different imaging conditions:

1. Herlev (Jantzen et al., 2005) – Pap-smear with Papanicolau (Pap) stained cervical 

cell images;

2. HEMLBC (Zhang et al., 2014b) – manual liquid-based cytology with H&E 

stained cervical cell images.

The Herlev dataset consists of 917 images of isolated cells collected at the Herlev University 

Hospital by a digital camera and microscope. Seven classes of cervical cells were manually 

classified by skilled cyto-technicians and physicians. Four types of abnormal cells were 
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identified: mild dysplasia, moderate dysplasia, severe dysplasia, and carcinoma, with cell 

counts of 182, 146, 192, and 150, respectively. In addition, three types of normal cells were: 

superficial squamous, intermediate squamous, and columnar epithelial, with cell counts of 

74, 70, and 98, respectively. The Herlev dataset also provides manual segmentation for all 

nuclei. Examples of some abnormal cells are shown in Fig. 7(a). Generally, the higher the 

abnormal degree, the darker and more irregular the nuclei, and the smaller the cytoplasm.

The HEMLBC dataset consists of 21 images within FOVs captured at the People’s Hospital 

of Nanshan District by using our previously developed autofocusing system (Olympus BX41 

microscope with 20× objective, Jenoptik ProgRes CF Color 1.4 Megapixel Camera, and 

MS300 motorized stage) (Zhang et al., 2014a). Image resolution is 1360 × 1024, with each 

pixel 0.208 μm2 in size. There are 64 abnormal cells from 15 cervical cell images annotated 

by a pathologist, who also manually traced boundaries of all abnormal nuclei twice. The 

expert segmentations serve as the ground truth and are used to conduct inter-observer 

variability analysis. A representative image is shown in Fig. 7(b), where five abnormal and 

five normal nuclei are highlighted by (larger) colored and (smaller) white bounding boxes, 

respectively.

3.2. Abnormal nucleus segmentation on the Herlev data

To evaluate the performance of our method on the Herlev dataset, initial segmentation of 

nuclei and cytoplasm was the first step using Li et al.’s (2012) preprocessing approach, 

because this approach was specifically designed for the Herlev data. Briefly, the L* channel 

in the CIELAB color space is extracted and normalized to [0,255] linearly to form the 

grayscale image, and then a spatial K-means clustering algorithm is used to divide the image 

pixels into three classes of cytoplasm, nuclei and background. Then, geometric information 

is used to select the most likely nucleus candidates. After that, different from Li et al.’s 

(2012) method, we simply select the segmented component with the closest distance to the 

image centroid as the nucleus candidate, where our annotation protocol is applied to crop 

sub-image for graph-search based segmentation. The cropping parameter ΔL is 

experimentally set as 20 pixels (throughout this paper) considering a tradeoff between 

accuracy and computational burden. The segmentation accuracy is not sensitive to the 

variation of ΔL (refer to Section 4.1). The parameters for graph-search based segmentation 

in this experiment were set as Ng = 360, α = 1, β = 1 and Δd = 2.

3.3. Abnormal nucleus segmentation on HEMLBC data

The initial segmentation of nuclei and cytoplasm follows our previous approach (Zhang et 

al., 2014b): a multi-way graph cut is used to segment the cytoplasm, and adaptive 

thresholding is used to coarsely locate nucleus candidates. For each abnormal nucleus 

candidate, our annotation protocol is utilized to crop sub-image for further graph-search 

based refinement. Note that in accordance with Zhang et al. (2014b), the V channel in HSV 

color space of the cropped sub-image is stretched linearly and processed by a 5 × 5 median 

filter to serve as the input of graph-search based refinement. For more details, please refer to 

the work of Zhang et al. (2014b). The parameters in this experiment are also set as α = 1, β 
= 1 and Δd = 2, but with Ng = 90 since the nucleus image sizes in this dataset are smaller 

than that in the Herlev dataset due to a lower-amplification lens.
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3.4. Normal nucleus segmentation

We further evaluate the proposed fine segmentation method on normal nuclei from the 

Herlev dataset. The same initial segmentation method (Li et al.’s, 2012, as specified in 

Section 3.2) is utilized. The parameters in this experiment were set as the same as in Section 

3.2.

3.5. Quantitative evaluation methodologies

The evaluation of the proposed segmentation method is based on the comparison with five 

state-of-the-art methods including RGVF snake (Li et al., 2012), multi-scale watershed 

(Gençtav et al., 2012), FCM (Chankong et al., 2014), LAGC (Zhang et al., 2014b), and 

superpixels GC (Song et al., 2015) using pixel-based criterion. For the Herlev dataset, the 

precision and recall as in Li et al. (2012), Gençtav et al. (2012), and Chankong et al. (2014) 

are used; for the HEMLBC dataset, the precision, recall, F-measure and overlap as in Zhang 

et al. (2014b) and Song et al. (2015) are used. The precision and recall indicate the fraction 

of the amount of nucleus correctly identified in the segmented object, and in the reference 

ground truth, respectively. The F-measure gives the harmonic mean of precision and recall. 

These indices are defined as follows:

(8)

(9)

(10)

(11)

where TP denotes the number of correctly identified pixels of the nucleus, FP is the number 

of pixels in background which were incorrectly identified as nucleus, and FN is the number 

of nucleus pixels missed by segmentation. All results are reported as the mean ± standard 

deviation.

Furthermore, linear regression analysis (Cox and Hinkley, 1979) and Bland–Altman plots 

(Martin Bland and Altman, 1986), which used nuclear area as a quantitative measure, are 

used to evaluate the relationship between the manual and automatic segmentation of 

abnormal nuclei on HEMLBC dataset as in Zhang et al. (2014b). Note that nuclear area is 

Zhang et al. Page 9

Comput Med Imaging Graph. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



used because it is one of the most important features to distinguish abnormal and normal 

cervical cells (Zhang et al., 2014a; Solomon and Nayar, 2004; Marinakis et al., 2009).

3.6. Computational resource

The proposed graph-search based method is implemented using Matlab and tested on HP 

Z400 workstation with 3.33 GHz Xeon W3680 CPU, 24 GB of RAM, running Windows 7 

SP1 Enterprise. The mean execution times of graph-search per cell on each dataset are 

reported.

4. Results

4.1. Evaluation on the Herlev data

Fig. 8 shows examples of our segmentation results on the Herlev dataset. It can be seen that 

our method generates accurate nucleus boundaries across a variety of cells with abnormal 

nuclei (different size, irregular shape and non-uniform chromatin distributions). Table 1 

shows the quantitative comparison of RGVF snake (Li et al., 2012), multi-scale watershed 

(Gençtav et al., 2012), FCM (Chankong et al., 2014), and our method in terms of average 

precision and recall of segmentation for all types of abnormal nuclei from the Herlev 

dataset. It can be seen that our new graph-search based method outperforms the state-of-the-

art approaches (Li et al., 2012; Gençtav et al., 2012; Chankong et al., 2014) on most sub-

datasets. However, statistic comparison with these approaches (Li et al., 2012; Gençtav et 

al., 2012; Chankong et al., 2014) is unavailable since their detailed results cannot be 

obtained. Note that results in method (Li et al., 2012) were obtained as described in Gençtav 

et al. (2012). In addition, a sensitivity analysis is performed for the parameter ΔL by varying 

its value as 10, 15, 20, 25. The resulting average precision/recall on all abnormal nuclei are 

0.92/0.91, 0.92/0.92, 0.91/0.94, 0.91/0.94, respectively, indicating a very limited sensitivity 

to ΔL. The average execution time of graph-search is 0.08 ± 0.03 s per cell.

4.2. Evaluation on HEMLBC data

Fig. 9 shows examples of our segmentation results on the HEMLBC dataset. Table 2 

provides the comparison of LAGC (Zhang et al., 2014b), superpixels GC (Song et al., 2015), 

our new method, and intra-observer variability in terms of average precision, recall, F-

measure, and overlap of segmentation for all analyzed abnormal nuclei. As can be seen, our 

new graph-search based method outperforms the previous approaches (Zhang et al., 2014b; 

Song et al., 2015) in all the comparisons.

Fig. 10 shows results of linear regression analysis and Bland–Altman plots when comparing 

nucleus areas. We compare with the LAGC method (Zhang et al., 2014b): (1) the LAGC 

method achieves r2 = 0.88 with Manual 1, our new method shows substantially improved 

correlation with Manual 1 segmentation (r2 = 0.97), which was virtually identical to the 

manual reproducibility (intra-observer variability) (r2 = 0.97); (2) the LAGC method 

achieves 95% limits of agreement of [−55,77] versus Manual 1, while the new method 

agrees much better with Manual 1 segmentation and ([−20,52]) was close to the agreement 

of manual reproducibility ([−22,36]). Similar observations are found between the new 
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method and Manual 2 (Fig. 10(b)). The average execution time of graph-search is 0.02 

± 0.02 s per cell.

4.3. Evaluation on normal nuclei

The normal nuclei segmentation performance of our method on the Herlev dataset is listed in 

Table 3, where comparisons with RGVF snake (Li et al., 2012), multi-scale watershed 

(Gençtav et al., 2012), and FCM (Chankong et al., 2014) are also provided. Our method 

shows high recall but relatively low precision. This was mainly because the utilized initial 

segmentation method (Li et al., 2012) failed to extract some normal nuclei in squamous cells 

especially when the cytoplasm showed heavy or non-uniform staining. For example, in the 

74 superficial and 70 intermediate squamous cells, 13 (18%) and 10 (14%) nuclei cannot be 

extracted (large cytoplasm regions were wrongly extracted as nuclei), respectively. 

Consequently, our fine segmentation method cannot be properly initialized. When removing 

these cells from the experiment, our method* (Table 3) shows promising precision.

5. Discussion

5.1. Comparison with state-of-the-art methods

For the task of abnormal nucleus segmentation in cervical cytology, previous approaches can 

be divided into three categories according to their utilized clues. The first category mainly 

relies on the nucleus gradient clue, and the nuclei are segmented using RGVF snakes (Li et 

al., 2012) or multi-scale watershed frameworks (Gençtav et al., 2012). As mentioned in 

Section 2.3.2, only using the gradient information may not be able to handle the challenges 

caused by severely unfocused images or low boundary contrast. As shown in Table 1, 

compared to the gradient-based RGVF snake approach (Li et al., 2012), our method achieves 

better accuracy when using the same initial segmentation. The second category directly uses 

image intensity clue in FCM-based segmentation (Chankong et al., 2014). Such an approach 

might not be robust enough in practice when the image quality suffers from non-ideal 

illumination, inconsistent staining, and noise. This can be reflected by the lowest 

performance of Chankong et al. (2014) in Table 1. The third category of methods models the 

distribution of nucleus intensity (Zhang et al., 2014b) or color information (Song et al., 

2015) for the GC-based segmentation. However, any assumption regarding a distribution 

model might not be correct given that nuclear chromatin distribution may vary substantially 

(Zhang et al., 2014b). Moreover, relying on the color information limits the generalization 

ability of such approach (Song et al., 2015). As a result, the performance of methods in this 

category is lower than that of our new method (Table 2). Besides the above limitations, 

previous approaches ignore the nucleus shape prior and the specific characteristic of 

abnormal nuclei, which were included in our graph-search based segmentation in a globally 

optimal manner.

5.2. Advantages of the proposed method

The main advantage of our graph-search based approach for nucleus segmentation is its 

ability to embed shape information about nuclei in the graph construction, and its flexibility 

to incorporate problem-specific prior knowledge when designing the cost function. 

Subsequently, the specifically designed knowledge-based cost function is robust to the 
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various challenges facing segmentation of abnormal cervical nuclei. In addition, our new 

method is well suited for practical use due to the fast optimization process of dynamic 

programming. Overall, the methodology is general as the parameters used in two totally 

different types of cervical cytology images are almost the same, with the only different 

parameter being Ng. The final segmentation is insensitive to the choice of Ng.

While the proposed method was only tested on cervical cell images, our ongoing study 

showed that it may be easily extended to other microscopy images (e.g., Drosophila cells 

(Quelhas et al., 2010)) and histopathology images (e.g., glioblastoma multiforme cells 

(Chang et al., 2013)) for improving the nucleus segmentation. This is likely to be fairly 

straightforward, provided there is similar nucleus-cytoplasm structure.

5.3. Limitations

Our method in part relies on the initial segmentation results. If the initial detected nucleus 

center is far away from the correct nucleus region, or if the initial extracted cytoplasm 

boundary is not correct, the final segmentation results may fail, as shown in Fig. 11(a) and 

(b), respectively. Fortunately, erroneous segmentation of cytoplasm-background boundaries 

rarely happen since most cervical cytoplasm can be reliably segmented by current 

approaches (accuracies ranging from 93% to 97% (Zhang et al., 2014b; Song et al., 2015; Li 

et al., 2012; Guan et al., 2014)). Nevertheless, more robust initial segmentation methods 

need to be exploited in future work.

6. Conclusion

A graph-search based method for improving the segmentation of abnormal cervical nuclei is 

proposed. The nuclear shape constraint is embedded in the construction of the segmentation 

graph. Globally optimal segmentation is guaranteed according to the cost function based on 

nucleus-specific edge- and region-information, and abnormal nucleus context prior 

information. The method is tested on abnormal nuclei from two cervical cell datasets with 

different specimen preparation and staining techniques. The experimental results 

demonstrate the high efficiency and superior performance of the proposed method by 

comparing with five state-of-the-art methods in terms of abnormal nucleus segmentation 

accuracy. Our method is therefore general, and can be incorporated into current automation-

assisted cervical screening systems to improve the sensitivity of recognizing abnormal cells.

Assessment of segmentation performance on overlapping nuclei needs further evaluation in 

our future work, and we will exploit other state-of-the-art detection and initial segmentation 

techniques (e.g., shape and size estimation of blobs Kong et al., 2013, deep learning based 

semantic segmentation Shelhamer et al., 2017) to improve the performance of the current 

method.
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Fig. 1. 
The segmentation framework of the proposed graph-search based method. (For 

interpretation of the references to color in the text, the reader is referred to the web version 

of the article.)

Zhang et al. Page 15

Comput Med Imaging Graph. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Schema of the graph-search based nucleus segmentation approach. Based on (a) the original 

cropped Cartesian image, (b) the graph is constructed from the image center (green point) 

using a polar transform. Yellow points represent pixels/nodes. Green arrows point to the 

successors of a node. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of the article.)
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Fig. 3. 
An example of cost components, corresponding to the case in Fig. 2. (a) The edge cost 

function image. (b) The region cost function image. (c) The combined cost function image. 

(d) The context prior constrained cost function image.
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Fig. 4. 
An example of context prior constraints, corresponding to the case in Fig. 3. (a) Incorrectly 

identified the cytoplasm-background border as the nucleus boundary, highlighted in green. 

(b) Correctly identified nucleus boundary after using context prior constraints. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web 

version of the article.)
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Fig. 5. 
The illustration of the context prior constraints. (a) The optimal path passes through 

cytoplasm boundary points. (b) Incorporation of context prior constraints. Affected nodes 

above and below the cytoplasm boundary are modified by context prior penalties and hard 

context constraints, respectively. (For interpretation of the references to color in the text, the 

reader is referred to the web version of the article.)
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Fig. 6. 
Connectivity constrained boundary detection. (a) Discontinuous boundary is detected. (b) 

Boundary detection results using the proposed connectivity constraints. (For interpretation 

of the references to color in the text, the reader is referred to the web version of the article.)

Zhang et al. Page 20

Comput Med Imaging Graph. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
Examples of abnormal cervical cells from (a) the Herlev dataset and (b) HEMLBC dataset 

with boundaries of the cytoplasm and the nuclei marked as yellow and green, respectively. In 

(a), from left to right, the nuclei tend to be darker and more irregular and the cytoplasm 

smaller, corresponding to mild dysplasia, moderate dysplasia, severe dysplasia, and 

carcinoma cells. In (b), abnormal and normal nuclei are annotated by colored and white 

bounding boxes, respectively. Abnormal nuclei are generally larger and some are darker than 

normal nuclei. For more detail about distinguishing cervical cell abnormality, please refer to 
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Solomon and Nayar (2004) and Jantzen et al. (2005). (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of the article.)
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Fig. 8. 
Examples of our graph-search based segmentations on (a) mild dysplasia, (b) moderate 

dysplasia, (c) severe dysplasia, and (d) carcinoma cervical nuclei from the Herlev dataset 

(Jantzen et al., 2005). In each sub-figure ((a)–(d)), from the first to the third rows are 

original image, ground truth (green boundaries), and our segmentation results (red 

boundaries), respectively. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of the article.)
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Fig. 9. 
Examples of graph-search based segmentation on abnormal cervical nuclei from the 

HEMLBC dataset (Zhang et al., 2014b). In each sub-figure, from the first to the third rows 

are original image, ground truth (green boundaries), and our segmentation results (red 

boundaries), respectively. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of the article.)
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Fig. 10. 
Statistical correlation analysis and Bland–Altman plots between (a) automated (our graph-

search) method and Manual 1 segmentation, (b) automated (our graph-search) method and 

Manual 2 segmentation, and (c) Manual 2 and Manual 1 segmentation on abnormal cervical 

nuclei from HEMLBC dataset (Zhang et al., 2014b).
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Fig. 11. 
Two examples of inaccurate nucleus segmentation due to erroneous initial segmentation of 

the (a) nucleus and (b) cytoplasm. In each sub-figure, from left to right are original image, 

initial segmentation, ground truth segmentation, ground truth nucleus, and our segmentation, 

respectively. The green point labels the initial detected nucleus center. (For interpretation of 

the references to color in this figure legend, the reader is referred to the web version of the 

article.)
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Table 2

Comparison of average nucleus segmentation performance of LAGC (Zhang et al., 2014b), superpixels GC 

(Song et al., 2015) and our graph-search based methods on abnormal cervical cells from HEMLBC dataset 

(Zhang et al., 2014b). Bold values indicate the highest performance for each automated method.

Methods Precision Recall F-measure Overlap

Zhang et al. (2014b) 0.88 ±0.14 0.91 ± 0.07 0.884 ±0.08 0.81 ±0.12

Song et al. (2015) 0.90 ± NA 0.91 ± NA 0.897 ± NA 0.83 ± NA

Our method 0.91 ± 0.04 0.96 ± 0.04 0.930 ± 0.03 0.87 ± 0.05

Intra-observer 0.94 ± 0.04 0.96 ± 0.03 0.953 ± 0.02 0.91 ± 0.03
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